
Abstract 

Representation learning has been widely studied in the context of meta-learning, enabling rapid 
learning of new tasks through shared representations. Recent works such as MAML have 
explored using fine-tuning-based metrics, which measure the ease by which adaptation can 
achieve good performance, as proxies for obtaining representations. We present a theoretical 
framework for analyzing representations derived from a MAML-like algorithm, assuming the 
available tasks use approximately the same underlying representation. We then provide risk 
bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the 
algorithm can provably leverage the shared structure. The upper bound applies to general 
function classes, which we demonstrate by instantiating the guarantees of our framework in the 
logistic regression and neural network settings. In contrast, we establish the existence of 
settings where any algorithm, using a representation trained with no consideration for 
task-specific fine-tuning, performs as well as a learner with no access to source tasks. This 
separation result underscores the benefit of adaptation-based methods, such as MAML, over 
methods with “frozen representation” objectives in few-shot learning. 
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