

Technical reviewer (initial review) Brian Singer

Editorial reviewer (final approval) Daniel Ruby

If you are a peer or client reviewer, please click this link upon
completing your review to notify your project manager https://zpr.io/kASLVrLhUiZm

Keyword: service level objectives

URL: https://www.nobl9.com/it-incident-management/service-level-objectives

HTML Title: Service Level Objectives: Modern Best Practices

HTML Description/Blurb for main page introduction: Learn about the importance of service level
objectives (SLOs) in monitoring and maintaining system reliability, including related concepts and best
practices for effective implementation.

Web page template’s pull-down menu title: Service Level Objectives

H1: Service Level Objectives: Modern Best Practices

Service level objectives (SLOs) help to measure system reliability. They define clear
targets for system performance and a threshold below which the user experience will
be considered degraded and the platform unstable.

This article will cover SLOs in-depth, along with related concepts like SLAs, SLIs, error
budgets, burn rates, and time windows. We will also explore advanced topics like
composite SLOs, SLO alerting strategies, common challenges, and some
recommendations to help you optimize the use of SLOs.

Summary of service level objectives
key concepts
The table below summarizes seven essential service level objective concepts this
article will explore in detail.

Concept Description

Service A resource or functionality made available to users,
whether humans, applications, or devices, to perform
specific tasks or fulfill particular needs.

Service level objective A measurable target for the performance or reliability of
a service, such as uptime or response time that a
provider aims to meet over a specified period. It helps
teams monitor service health and make informed
trade-offs between reliability and innovation.

Error Budget The allowable amount of unreliability over a specific
period of time.

Burn Rate The rate at which the error budget is consumed. A 1x
burn rate means that the error budget will last for the
time window and be consumed exactly at the end of it.

SLO time window The period of time during which the service level
performance is measured and evaluated against its
defined target.

Composite SLOs Combines multiple SLOs into one error budget to
provide a unified reliability target for services or
applications that depend on multiple components.

Setting SLO-based alerts Alerting strategies on SLOs, including alerting on the
amount of error budget remaining or alerting on burn
rates.

Alerting window The period of time during which the metrics are
measured, and the alert is evaluated against the defined
threshold.

Burn rate alerting Alerting on the rate at which the error budget is being
consumed over a specific time window. The alert will be
triggered if the consumption rate of the error budget
exceeds a predefined rate.

Multi-Window
Multi-Burn Alerting

A recommended alerting method that uses two alerting
windows; a short window for alerting on spikes with
high burn rates and a long window to alert on slow

Pg. 2 INBOUND SQUARE DRAFT

burn rates that will consume the error budget in the
long term of the time window.

SLO challenges Common challenges when setting SLOs include:
●​ Overly complex SLOs.
●​ Keeping teams involved.
●​ Choosing the right metrics.
●​ Ensuring an accurate measurement.

SLO Best Practices Recommendations for creating effective SLOs include:
●​ Selecting metrics that matter to users
●​ Starting simple
●​ Setting realistic targets
●​ Regularly reviewing and improving SLOs based

on historical data
●​ Aligning with different teams
●​ Selecting suitable time windows.
●​ Create SLAs based on SLOs.

Service level objective (SLO)
Service level objectives (SLOs) are a set of targets, often expressed in percentages,
defined by service providers and internal teams. They help ensure the expected
performance and reliability delivered to users of a service. They are crucial in
monitoring the service quality you offer and indicating whether you are meeting user
expectations or are at risk of breaching agreements with the stakeholders.

For example, a team can define an SLO that specifies that an application must be
available 99.5% of the time over one year. Another SLO could state that 97% of web
page load time from users should be less than 3 seconds within one month. These
measurable targets help align teams on what represents an acceptable performance
and provide a benchmark for tracking progress over time.

Pg. 3 INBOUND SQUARE DRAFT

Service level objectives have three components: Service, Level, and Objective

Service level indicator (SLI)
SLIs are the foundation of service level objectives (SLOs), representing the metrics
upon which they are built. Those metrics, such as availability, latency, or error rate,
indicate your system's real-time performance.

While SLIs indicate the service's performance, the SLO defines the target for that
performance.

To calculate the performance of a service or application at a point in time, you can use
this formula:

Good Events / Total Events * 100

In this context, the SLI represents the metrics used in the queries to calculate "good"
and "total" events. At the same time, the SLO defines the target of that calculation to
determine whether the service meets the required performance.

Key elements to define SLI:

Pg. 4 INBOUND SQUARE DRAFT

Three elements are important for defining SLIs: the type of service observed, the SLI
metric, and the time window.

1. Type of services observed
Common service types include:

●​ Request-driven: Services where users send requests and expect responses,
such as web browsers interacting with HTTP services or APIs for mobile apps.

●​ Pipeline: Processes that transform input data into a different output such as
converting videos from one format to another or aggregating log files from
multiple sources to create reports.

●​ Storage: Services that store data (e.g., files, records, or videos) for later retrieval.

2. SLI metrics

The table below shows the standard SLI metrics for each type of service, with an SLO
example for each SLI type

Type of
service

SLI Metric Description SLO Example

Request-
driven

Availability The percentage of time the
service is available without
failures.

The website should have at
least 99.5% uptime over the
year.

Latency The time taken by a service or a
webpage to respond to a user
request.

95% of web page loads
should be completed within
2 seconds over a 30-day
period

Error rate The percentage of requests for
a service or website that result
in error codes or failures over a
period of time

The error rate should be less
than 0.1% of all transactions
made during a week.

Throughput The number of requests that an
API or service can handle in a
time period, which is often

The website should handle
at least 1,000 requests per
second on average during

Pg. 5 INBOUND SQUARE DRAFT

referred to as RPM (requests
per minute)

peak hours over a 7-day
period.

Pipeline

Freshness This metric measures how
recently the information
accessed by the user has been
updated.

95% of data presented in
reports should be updated
within 1 hour of the latest
available information over a
30-day period.

Correctness The proportion of records
coming into the pipeline that
take in data and perform
computations on it that result in
the correct value being output.

99.8% of records processed
by the data pipeline should
produce correct outputs over
a 7-day period.

Coverage It is the proportion of jobs or
records that were successfully
processed within a defined time
window

A batch job should
successfully process 99% of
the jobs over the week

Storage

Durability The proportion of stored data
that remains readable and
retrievable without being
corrupted over a given period.

Successful data backup
restoration of 99.5% of the
stored data over the last
month

3. Time windows

Time windows define the period during which the error budget is calculated for a given
SLO. There are two types of time windows:

●​ Rolling window: A continuously moving time window that doesn’t have fixed
start and end dates. For example, for a rolling window of 30 days, we calculate
the metric data from the past 30 days. It continuously evaluates the SLO over
the last X days, weeks, or months.​
It is recommended that the rolling window be defined in weeks to ensure every

Pg. 6 INBOUND SQUARE DRAFT

rolling window has the same number of weekends. Generally, a rolling window
of 4 weeks would be an excellent general-purpose time window.

●​ Calendar-aligned: Calendar-aligned windows calculate the SLO in fixed
periods, such as a month, a quarter, or a year. The error budget is restored at the
beginning of each calendar window. For example, instead of a 30-day rolling
window, you can calculate your metric for the first week of the last month.

Service level agreement (SLA)
A service level agreement (SLA) is a written contract between a service provider and a
customer, created by the legal and business teams, that defines the expectations and
commitments between both sides and the consequences for not meeting the agreed
SLA.

While SLAs and SLOs are both reliability targets, they differ in purpose. SLAs typically
have a legal remedy associated with them, such as monetary credits. Conversely, SLOs
are internal targets that define measurable performance metrics. In another context,
SLOs focus on technical performance goals, while SLAs provide the legal framework
that formalizes those objectives.

In order to meet an SLA, teams should generally use an SLO target that is higher. For
example, an SLA might include a term for 99.0% availability, while the service provider
targets an SLO of 99.5% to provide a buffer before breaching the SLA. An easy way to
tell the difference between an SLO and an SLA is to ask yourself, “What happens if the
objective is unmet?” If there is no legal consequence, you are talking about an SLO.

Pg. 7 INBOUND SQUARE DRAFT

SLA is a more relaxed target than SLO (Source)

Error budgets
Error budgets are the acceptable amount of non-compliance before the SLO is
considered to be breached. Any downtime or errors will consume the error budget, and
if the errors continue for a longer time, the error budget will be completely consumed,
leading to violating the SLO. On the other hand, if the service operates perfectly, the
error budget will remain intact.

Think of an error budget as your monthly household budget. You have money to cover
essential expenses like rent, utilities, and groceries. This is similar to the reliability
targets defined by your SLOs. If you’re staying within your budget, you can take risks,
like buying a TV or decorating a room, similar to developers focusing on new features
or innovations. However, if unexpected expenses arise and you’re close to
overspending, you might need to skip the luxuries and focus on the critical needs;
similar to the developers, when they are near consuming the error budget, they stop
further development and apply code freezes to reduce any further risks.

Pg. 8 INBOUND SQUARE DRAFT

https://www.squadcast.com/sre-best-practices/sla-vs-slo

The error budget is calculated with this formula:

Error Budget % = 100% - SLO %

For example, if your SLO is 99.5%, your error budget is 0.5% of the total duration or
0.5 % of the total expected events over a defined time period.

Error Budget = Error Budget % * Total time window or total number of events

The table of nines below might help you understand how an error budget is estimated
from the SLO and that every extra nine of reliability you commit to in your SLO means
a lower error budget value and, accordingly, a higher risk.

SLO % Error budget

Per month Per quarter Per year

90% 3 days 9 days 36.5 days

95% 1.5 days 4.5 days 18.25 days

99% 7.2 hours 21.6 hours 3.65 days

99.5% 3.6 hours 10.8 hours 1.83 days

99.9% 43.2 minutes 2.16 hours 8.76 hours

99.95% 21.6 minutes 1.08 hours 4.38 hours

99.99% 4.32 minutes 12.96 minutes 52.6 minutes

99.999% 26.9 seconds 1.30 minutes 5.26 minutes

Burn rate
The burn rate is the rate at which the error budget is consumed. A 1x burn rate means
that the error budget will last for the time window and be consumed at the end of it. A
burn rate higher than 1x indicates that the error budget is burnt too quickly, which
would result in breaching the SLO.

Pg. 9 INBOUND SQUARE DRAFT

A burn rate higher than 1x will consume the error budget before the time window ends. (Source)

To calculate the burn rate, you need to be able to calculate the SLI's error rate during a
specific time window.

Error rate = Number of Failed Events / Total Number of Events * 100

Imagine you have a web application with 50 failed login attempts from a total of 2000
attempts during the last week.

Error rate = 50 / 2000 * 100 = 2.5%

Once you have calculated the error rate, you will be able to calculate the burn rate of
your SLO with this formula:

Burn rate = Error rate in a time window / (100 – SLO%)

For the previous example, if the availability SLO of the web application is 95%:

Burn rate = 2.5 / (100 – 95) = 0.5 %

Pg. 10 INBOUND SQUARE DRAFT

https://sre.google/workbook/alerting-on-slos/

Composite SLO
In complex applications, several components are needed to deliver the final service for
the user. While each component may have its own Service Level Objective (SLO),
determining the overall reliability of the application requires more than just looking at
those individual SLOs.

For example, imagine an application composed of three microservices: a database, an
API, and a front-end service. Each of these has its own SLO, and the system will only
operate if the three microservices are available. How can we calculate the SLO of the
application itself?

This is where a composite SLO comes in. A composite SLO combines multiple SLO
targets into a single SLO that represents your service's overall reliability.

Weighting in composite SLOs
Earlier, we introduced the concept of composite SLOs, which combine multiple SLOs
into a single target. But what happens when an application consists of several
components with different criticality levels, each having a unique SLO target? How can
the composite target be evaluated to account for these variances?

Here comes the importance of weighting in composite SLOs. as it helps to ensure that
the critical components in the application have more influence on the target than the
other services by assigning a weight to each component SLO.

​
Use case 1
Let’s consider an application with four services, A, B, C, and D, with SLOs 99%, 98%,
95%, and 97 $, respectively. Here, we assign equal weights with a weight of 1 for each
service.

Normalized weight = Weight of service / Sum of all weights * 100 = 1 / 4 * 100 = 25 %

 SLO A SLO B SLO C SLO D

Target 99% 98% 95% 97%

Weights 1 1 1 1

Pg. 11 INBOUND SQUARE DRAFT

Normalized
Weights

25% 25% 25% 25%

​
In this case, the composite SLO can be set as follows:

Composite SLO = (99% * 25% + 98% * 25% + 95% * 25% + 97% * 25%) * 100 =
(0.2475 + 0.245 + 0.2375+ 0.2425) * 100 = 97.52%​
​
Use case 2

For the same previous example, we will assign different weights for services A, B, C,
and D as 8,6,4 and 2, respectively.

 SLO A SLO B SLO C SLO D

Target 99% 98% 95% 97%

Weights 8 6 4 2

Normalized
Weights

40% 30% 20% 10%

In this case, the composite SLO can be set as follows:

Composite SLO = (99% * 40% + 98% * 30% + 95% * 20% + 97% * 10%) * 100 =
(0.396 + 0.294 + 0.19+ 0.097) * 100 = 97.7%

How to assign weights
There's no universal rule about weighting individual SLOs; the best approach will
depend on your system's context and specific requirements. Here are some bases on
which you can assign the weight:

Based on SLO Type
●​ Availability-Critical SLOs:​

In most cases, service availability is more important than service response time,
as a slow but functional service is better than a completely unavailable service.

Pg. 12 INBOUND SQUARE DRAFT

In such cases, it is recommended to assign a higher weight to the availability
SLOs than the latency SLOs.

●​ Latency-Critical SLOs:​
In some specific services, such as online meetings and video conference tools,
the response time will be as important as the service's availability. In such
cases, it is recommended that equal weights be assigned for availability and
latency SLOs.

●​ Based on business requirements:​
When creating a composite SLO for a service or application that includes a
multi-step user journey, it's recommended to assign weights based on the
relative business importance of each step. The steps that have more influence
on the business should have higher weights.​
For example, an online grocery application includes user journey steps like
browsing categories, order placement, payment checkout, and feedback giving.
For example, the ordering and payment steps would be more critical than the
others, so they will have higher weights assigned to them.

Alerting on SLOs
An alert on SLO measures and notifies how much deviation from the SLO has occurred,
ensuring that notifications are triggered well before the error budget is exhausted. This
helps teams take preventive actions rather than reacting after the SLO has been
violated.

According to Google's SRE books, there are some key factors to evaluate an SLO
alerting system:

●​ Precision: The proportion of failure events detected. A higher rate indicates that
every alert corresponds to an event.

●​ Recall: The percentage of failure events were detected. A higher percentage
ensures failure events are not missed.

●​ Detection time: How quickly an alert was triggered after an issue starts. Short
detection times minimize the consumption of the error budget and enable faster
response.

●​ Reset time: How quickly an alert triggers if there's an issue and how quickly an
alert clears after the issue is resolved, which helps the operations team focus on
new incidents.

Pg. 13 INBOUND SQUARE DRAFT

https://www.nobl9.com/resources/leveraging-slos-for-incident-management

Alerting on the remaining error budget

Error budget-based alerts track the amount of the error budget consumed and the
amount remaining. This method helps clarify how much room remains before an SLO
breach.

There are two methods to alert on the remaining error budget:
●​ Alert on the remaining percentage: For example, an alert is triggered when the

service has only 20% of its error budget left.
●​ Alert on the remaining duration: An alert will trigger when only 90 minutes of

allowable downtime remain in the SLO window.

To calculate the error budget remaining, you must first calculate the error budget
consumed:

Consumed Error Budget = Number of failed events / Number of the allowed to-fail
events (Error budget) * 100

Remaining Error Budget = 100 % - Consumed Error Budget

Let’s think about an online store that promises an SLO of 99.5% availability over a
30-day time window. From the historical data, we can expect this online store to
handle 100,000 order requests over the 30-day period, which translated into an error
budget of 500 orders. During the month, 50 order requests failed to process.

Error Budget Consumed = 50 / 500 * 100 = 10 %

Remaining Error Budget = 100 % - 10 % = 90 %

Alerting on the burn rate

Alerting on burn rates helps to notify teams about failure incidents that cause an error
budget to be consumed before the end of the SLO time window.
Some may think they can ignore alerting and check the burn rate from time to time, but
that’s not right; even the low and steady burn rates, which might go unnoticed, can
significantly consume the error budget in the long term of the time window.​
​
To calculate the burn rate, we use this formula:

Pg. 14 INBOUND SQUARE DRAFT

Burn rate = (Budget consumed × Compliance period) / Alerting window

For example, if a team decides that consuming 10% of the error budget (20 out of 200
allowed failures) in one hour is critical and should be alerted on, they can calculate the
burn rate for a 30-day compliance period as follows:

Burn rate = 10% × 720 hrs / 1 hr = 72

The challenge here would be:
This burn rate alert will never alert if the error rate is lower than the burn rate of 72. A
burn rate of 25 will still consume all the budget in 8 hours.

Time to consume the budget = Error Budget / Burn rate per hour = 200 / 25 = 8 hours

Multiple burn rate alerts

Multiple burn rate alerts ensure that the low and steady burn rates that will consume
the error budget in the long term are detected and notified.

For example, we can alert in these cases:

●​ If the burn rate over the last 1 hour consumes 2% of the budget
●​ if the burn rate for the last 6 hours consumes 5% of the budget
●​ if the burn rate for the last 3 days consumes 10% of the budget

The challenge would be:
The long reset time for the alert. For example, in the last alert, you would wait 3 days
to know that 10% of your error budget had already been consumed. After the team
applied their code changes, you would wait another 3 days to evaluate the result. It
will also require some mechanism of alert suppression so as to avoid alerts firing
multiple times for the same events.

Best practice: Multi-window, multiple-burn rate alerts

This is the recommended alerting method in which an alert is configured on two
different alerting windows: a short one and a long one; the shorter time window. This
type of alert is for sure more complex than the previous methods. Still, it ensures that
the internal team is notified in both cases when there’s a critical issue with a high burn

Pg. 15 INBOUND SQUARE DRAFT

rate and also notified when there is a steady and slow burn rate that might exhaust the
burn rate in the long term.

For example, we can alert in these cases:

●​ If the burn rate over the last 1 hour consumes 2% of the budget and the burn
rate over the last 5 minutes consumes 2% of the budget

●​ if the burn rate for the last 6 hours consumes 5% of the budget and the burn
rate for the last 30 minutes consumes 5% of the budget

●​ if the burn rate for the last 3 days consumes 10% of the budget and the burn
rate for the last 6 hours consumes 10% of the budget

Alert fatigue

Alert fatigue happens when an excessive number of alerts, often including false
positives, are triggered, overwhelming the operations team. This leads to critical alerts
being missed or delayed. False positives are alerts that were flagged to be exhausting
the SLO but, after further analysis, were found not to be.

Symptom-based alert over a caused-based alert
In addition to multi-windows and multi-burn alerts, there are two common types of
alerts teams should consider: cause-based and symptom-based.

●​ Cause-based alerts: Focus on specific technical measurements. For example,
you can alert your on-call team when the CPU usage over a database exceeds
90%, but that high CPU usage may not be meaningful to the user and might not
affect your SLO budget at all. This will cause alert fatigue.

●​ Symptom-based alerts: Focus on specific symptoms, like latency. For example,
you can alert your on-call team when 98% of the database queries take more
than 500ms over the last 5 minutes. This is an incident that requires attention as
it will breach the SLO.

Alert cooldown
Another way to overcome alert fatigue is the cooldown feature. Nobl9 provides this
out-of-the-box feature to users to ensure that alerts are not repeatedly triggered for
the same issue in a short period of time. Applying a cooldown period allows your team
time to resolve the incident without being overwhelmed by duplicate alerts.

Pg. 16 INBOUND SQUARE DRAFT

https://www.nobl9.com/alert-fatigue-case-study

It is a parameter you define while creating an alert policy that establishes the amount
of time that must pass to change the status of an alert from the okay status to an alert
being triggered or from an active alert to the resolved status.

A lifecycle of an alert in Noble9 configured with a cooldown time. (Source)

Seven proven SLO best practices
The six service-level objective best practices below can help teams optimize their
monitoring and alerting strategy.

1. Focus on the user experience

SLOs should focus on users' expectations and what matters to them. Most users care
about the application or service functioning as expected; they won't care if your CPU

Pg. 17 INBOUND SQUARE DRAFT

https://docs.nobl9.com/alerting/

utilization is over 70%. So, always resist the temptation to add many SLOs for metrics
that don't relate.

●​ Define the user journey: define the critical services of your application or
website that the users interact with, such as the front-end service or the cart
service

●​ Base SLIs on user journeys: Pick up the SLI metrics related to the journey you
defined. For example, select metrics like uptime, latency, or error rate.

●​ Align the SLO target with the customer's expectations: set targets based on
the user's satisfaction levels.

2. Use meaningful and measurable metrics

Creating an effective SLO requires meaningful and measurable SLI metrics that
accurately reflect service performance and the user experience. Here are the best
practices to follow when defining these metrics:

●​ Define a clear SLI: SLI metrics shouldn't use generic terms like "I want a reliable
or fast service." Instead, teams should use specific metrics, such as a service
with 99.5% availability up time or a service with no more than 3 seconds
response time.

●​ Keep it simple: Limit the number of SLIs to the top-priority ones that impact the
user's journey most.

●​ Use a monitoring tool: Accurate measurement and collection of data points
requires a monitoring and logging system.

3. Set realistic targets

It’s essential to be realistic when setting an SLO to avoid setting expectations that your
system can’t meet. Setting an achievable target ensures customer satisfaction and
prevents SLO breaching. Here are three tactics to help teams get it right:

●​ Avoid aggressive targets: setting a 100% SLO for uptime or performance is
unrealistic and leads to burnout and SLO violation. Instead, set a target that you
can consistently achieve.

●​ Take into account external dependencies: If your service or application
depends on a third-party service, this may also affect your SLO, so always leave
room in your SLO for incidents you have no hand in.

Pg. 18 INBOUND SQUARE DRAFT

4. Involve technical teams and stakeholders

Setting effective SLOs requires communication across different internal teams and
involving the stakeholders to ensure that the expectations are achievable and
satisfying for everyone.

●​ Collaborate with cross-functional teams: Engage developers, operations,
product managers, and business stakeholders to ensure the expectations are
achievable and satisfying for everyone.

●​ Get mutual agreement and collect feedback: Involve all the internal teams in
the SLO setting process and collect feedback after that process. Also, ensure all
agree on the expected targets to ensure alignment and avoid future conflicts.

5. Choosing the convenient time window

Choosing the right time window requires context and can significantly affect how
service-level objectives influence business outcomes. Here is a breakdown of the
benefits of short vs. long time windows:

●​ Short windows allow teams to make decisions quickly. If an SLO was violated
in the previous week, immediate action, such as bug fixes, can help prevent
further violations in the following weeks. Use short windows if you have an
application that requires tight feedback loops. For example, in an e-commerce
platform, daily SLOs should monitor operations to track critical metrics such as
website uptime, page load times, and order processing success rate.

●​ Long windows are useful for strategic decisions. For example, imagine you are
deciding whether to migrate your infrastructure to a new cloud provider. It must
be a well-informed decision that requires a large amount of data and a long
time window to evaluate effectively.

6. Create SLAs based on SLOs

It’s important not to get mistaken between Service Level Objectives (SLOs) and Service
Level Agreements (SLAs). A good SLA relies on a well-defined and accurate SLO.
SLOs define the internal goals for service performance, while SLAs define the
minimum accepted level of performance promised to the customer. Here are some
recommendations when creating SLAs:

Pg. 19 INBOUND SQUARE DRAFT

●​ Guide the SLA with the SLO target: Define the commitment target in the SLA
to be more relaxed than the defined SLO target; for example, if your SLO
specified an uptime of 99.5%, the SLA should be slightly lower, maybe 99%, to
allow for unexpected incidents.

●​ Define clear penalties: The SLA contract must indicate the consequence of
breaching the SLA target. This can be a refund, a penalty fee, or contract
termination.

●​ Use simple language: Avoid using complex terminology to define the contract
terms so that all parties can understand what they are agreeing to.

7. Revisit, review, and update regularly

Feedback loops and continuous improvement are essential to a robust monitoring
strategy. Teams should encourage empiricism and improvement with practices such as:

●​ Consider SLOs as a dynamic process: adjust and update periodically to align
with the evolving users and business needs.

●​ Use historical data: Analyze the past and current SLI values to determine how
an SLO target can be updated to be realistic and achievable.

●​ Manage the factors contributing to error budgets: External factors such as
third-party outages and maintenance windows can skew error budgets. These
anomalies can exaggerate failure rates and give an inaccurate representation of
service reliability. For example, Nobl9 allows users to control the factors
contributing to the error budget to circumvent this problem.

●​ Tighten or loosen SLOs: Based on historical performance data, check your
SLOs. If they are consistently met, consider tightening them; if they are too
challenging, try relaxing them to allow more error budget.

Recovering historical data with Nobl9 Replay
What happens if your SLI data is lost or your monitoring system corrupts?

Nobl9 introduced the Replay feature to address this common monitoring problem.
Replay allows users to retrieve historical SLI data and recalculate SLO error budgets
without worrying about data loss or gaps in SLI data that will affect the calculation of
the SLO. This is equivalent to fast-forwarding historical data through the SLO logic to
evaluate the results. Replaying the stored historical data allows teams to assess
different SLO configurations and the design of the ideal SLO without waiting weeks to
observe the live SLI metrics and try different configuration permutations sequentially.

Pg. 20 INBOUND SQUARE DRAFT

https://docs.nobl9.com/features/budget-adjustments/adjustments-use-cases
https://docs.nobl9.com/features/budget-adjustments/adjustments-use-cases

An affected SLO with data loss. (Source)

Pg. 21 INBOUND SQUARE DRAFT

https://www.nobl9.com/resources/your-reliability-tools-are-down-nobl9-is-here-to-help

Reimporting historical data in the SLO details pane. (Source)

Pg. 22 INBOUND SQUARE DRAFT

https://www.nobl9.com/resources/your-reliability-tools-are-down-nobl9-is-here-to-help

Reimporting and error budget calculation are in progress. (Source)

Pg. 23 INBOUND SQUARE DRAFT

https://www.nobl9.com/resources/your-reliability-tools-are-down-nobl9-is-here-to-help

SLO with backfilled data. (Source)

Test and adjust the SLOs with the Nobl9 SLI Analyzer
To set a reliable and realistic target for your SLO, you will need to review your system's
historical performance. Nobl9 introduced the SLI Analyzer feature, which processes up
to 30 days of historical data and lets you review the outcome of your SLO before you
implement it. This avoids the risk of unrealistic targets and saves the time you would
spend on trial and error.

You can change the targets from the interface and tweak them to see the resulting
error budgets and error budget burndown. Once your analysis is complete and you
have determined your target, you can directly create a new SLO from the analysis

Pg. 24 INBOUND SQUARE DRAFT

https://www.nobl9.com/resources/your-reliability-tools-are-down-nobl9-is-here-to-help

interface.​

Analysis result from SLI Analyzer (source)

Last thoughts
SLOs, including composite SLOs, are essential components of an effective monitoring
strategy. SLOs mainly focus on a single target, while composite SLOs combine multiple
SLOs from different targets into one SLO; it's ideal for complex systems with multiple
services. We have also discussed the alerting strategies for SLOs; you can alert when
the service's performance crosses a predefined threshold (static) or alert on the burn
rate, whether slow or fast. Using the multi-window, multi-burn-rate approach is
always recommended to capture both short-term spikes in error rate and long-term
consumption of the error budget.

Pg. 25 INBOUND SQUARE DRAFT

https://docs.nobl9.com/sli-analyzer/analyzer-overview

By adopting SLO best practices, you can make sure that you have set up an effective
SLO. Organizations should define SLOs based on critical metrics focused on user
experience, set an achievable target based on historical data, and involve all teams and
stakeholders.

Pg. 26 INBOUND SQUARE DRAFT

	Summary of service level objectives key concepts
	Service level objective (SLO)
	Service level indicator (SLI)
	Key elements to define SLI:
	1. Type of services observed
	2. SLI metrics
	
	3. Time windows

	Service level agreement (SLA)
	Error budgets
	Burn rate
	Composite SLO
	Weighting in composite SLOs
	​Use case 1

	How to assign weights
	Based on SLO Type

	Alerting on SLOs
	Alerting on the remaining error budget
	Alerting on the burn rate
	Multiple burn rate alerts
	Best practice: Multi-window, multiple-burn rate alerts
	Alert fatigue
	Symptom-based alert over a caused-based alert
	Alert cooldown

	Seven proven SLO best practices
	1. Focus on the user experience
	2. Use meaningful and measurable metrics
	3. Set realistic targets
	4. Involve technical teams and stakeholders
	5. Choosing the convenient time window
	6. Create SLAs based on SLOs
	7. Revisit, review, and update regularly
	Recovering historical data with Nobl9 Replay
	Test and adjust the SLOs with the Nobl9 SLI Analyzer

	Last thoughts

