Warren Township Public School District Curriculum | Subject: Reach/Innovation & Design | Grade: 2 | Unit: Designing Solutions | | | | |---|---|---|--|--|--| | Total Number of Lessons: 10 | Unit Time Frame: One marking period (10 six-day cycles) | | | | | | Instructional Materials (Include specific text or digital resource links that are used by teachers and students within the unit): | | | | | | | Reach Manual - Innovation & Design - Second Grade, Reach Engineering Kit - Designing Solutions, legoeducation.com Spike Essential Lesson Website | | | | | | | Goals | | Skills / Understandings | | | | | Students use their understanding of design, science, and math to create products to meet needs. Students evaluate their own and their peer's designs using given success criteria, constraints, and test results. Students improve the performance of a machine by adding computer-controlled elements. | | Engineers use science and math to design solutions to everyday problems. Blueprints provide more information than sketches. Design choices influence the performance of the products. Success criteria determine the measurements that are taken during testing. Data collection during testing informs product redesign. Feedback about product performance is given using success criteria and constraints. Humans design computer programs to complete specific tasks. Computers interface with mechanical devices such as machines to complete routine tasks. Complex tasks require human intervention. | | | | ## NI Student Learning Standards and Descriptors: K-2-ETS1-1: Ask questions, make observations, and gather information about a situation people want to change (e.g., "climate change") to define a simple problem that can be solved through the development of a new or improved object or tool. K-2-ETS1-2: Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. K-2-ETS1-3: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs. | Unit Essential Questions: | Student Vocabulary: | Lesson Learning Statement:: | |---|--|---| | How can I use science and math knowledge to design solutions? What role does measurement play in designing and building a product? What elements must be in blueprints and how is a blueprint different from a sketch? What data should I collect during testing? How can testing inform redesign? What is the best way to give feedback to my peers? What is most helpful to them in redesign? | mechanical toy mechanism redesign constraints success criteria test results test environment algorithm Debug coding programming motor | Engineers make products better by testing them. Engineers build products taking success criteria and constraints into account. Engineers continually learn new things about science and math to help them make better designs. Engineers draw blueprints to help with building the product more accurately. Engineers give each other feedback about their products taking success criteria and constraints into account. | | Interdisciplinary Connections (include standard number and activity examples): | Assessment Strategies / Resources: | Benchmark Assessments / Products:
Specific common assessments both formative and summative
(provide a link to the assessments) | | W.2.8 - Recall information from experiences or gather information from provided sources to answer a question. (2-ESS2-3) | Checklists
Exit ticket | Innovation & Design K-2 Engineering Skills Benchmark Assessment | | Patterns - Patterns of change can be used to make predictions. (3-PS2-2) | | | | Cause and Effect: Cause-and-effect relationships are routinely identified. (3-PS2-1) Cause-and-effect relationships are routinely identified, tested, and used to explain change. (3-PS2-3) | | | | MP.2 - Reason abstractly and quantitatively. (3-PS2-1) | | | | | 1 | |--|---| | ETS1.A: Defining and Delimiting Engineering Problems: | | | A situation that people want to change or create | | | can be approached as a problem to be solved | | | through engineering. (K-2-ETS1-1) | | | Ask questions, make observations, and gather | | | information about a situation people want to | | | change (e.g. climate change) to define a simple | | | problem that can be solved through the | | | development of a new or improved object or | | | tool. | | | Before beginning to design a solution, it is | | | important to clearly understand the problem. | | | (K-2-ETS1-1) | | | ETS1.B: Developing Possible Solutions: | | | Designs can be conveyed through sketches, | | | drawings, or physical models. These | | | representations are useful in communicating | | | ideas for a problem's solutions, such as climate | | | change, to other people. (K-2-ETS1-2) | | | ETS1.C: Optimizing the Design Solution: | | | Because there is always more than one possible | | | solution to a problem, it is useful to compare | | | and test designs. (K-2-ETS1-3) | | | Structure and Function: | | | The shape and stability of structures of natural | | | and designed objects are related to their | | | function(s). (K-2-ETS1-2) | Revised: August 29, 2022 ## 21st Century Life and Careers - <u>Technology</u> (link to standard 8.1 and 8.2) / <u>Career and 21st Century Skills</u> (link to standard 9.1, 9.2, 9.2) (Include standard number and activity examples from each area): - 8.1.2.CS.1: Select and operate computing devices that perform a variety of tasks accurately and quickly based on the user needs and preferences. - 8.1.2.CS.2: Explain the functions of common software and hardware components of computing systems. - 8.1.2.CS.3: Describe basic hardware and software problems using accurate terminology. - 8.1.2.IC.1: Compare how individuals live and work before and after the implementation of new computing technology. - 8.1.2.DA.1: Collect and present data, including climate change data, in various visual formats. - 8.1.2.DA.2: Store, copy, search, retrieve, modify, and delete data using a computing device. - 8.1.2.AP.1: Model daily processes by creating and following algorithms to complete tasks. - 8.1.2.AP.2: Model the way programs store and manipulate data by using numbers or other symbols to represent information. - 8.1.2.AP.3: Create programs with sequences and simple loops to accomplish tasks. - 8.1.2.AP.4: Break down a task into a sequence of steps. - 8.1.2.AP.5: Describe a program's sequence of events, goals, and expected outcomes. - 8.1.2.AP.6: Debug errors in an algorithm or program that includes sequences and simple loops. - 9.4.2.CI.1: Demonstrate openness to new ideas and perspectives. - 9.4.2.CI.2: Demonstrate originality and inventiveness in work. - 9.4.2.CT.1: Gather information about an issue, such as climate change, and collaboratively brainstorm ways to solve the problem. - 9.4.2.CT.2: Identify possible approaches and resources to execute a plan. - 9.4.2.CT.3: Use a variety of types of thinking to solve problems. - 9.4.2.GCA.1: Articulate the role of culture in everyday life by describing one's own culture and comparing it to the cultures of other individuals. - 9.4.2.IML.1: Identify a simple search term to find information in a search engine or digital resource. - 9.4.2.IML.2: Represent data in a visual format to tell a story about the data. - 9.4.2.TL.7: Describe the benefits of collaborating with others to complete digital tasks or develop digital artifacts. ## **Warren OSAC Accommodations Chart:** Pictorial displays of instructions, pictorial worksheets and checklists, options for written text, collaboration