
The purpose of this is to answer some common vocab questions you might have upon arrival to
GPU MODE & ML System Performance. It’s not really an entry point to the space, more like a
pocket book companion or cheat sheet. Several great entry points are the resource stream, the
lectures, & PMPP.

Its intended audience is newcomers to this particular domain that have terminology questions
that may seem obvious to those who have spent a lot of time in it.

Kernel = GPU/device function (not the OS kernel, not a convolution matrix, just a function you
write to run on the GPU)

Kernel Fusion - the coolest way of saying doing multiple operations using at most smem before
needing to access gmem

CPU - Central Processing Unit - Host

-​ Modern CPUs consist of many cores (consumer CPUs usually 2-16, server CPUs
usually 8-30)

-​ A single core (deals with 1 thread (process) in any instant), achieves perceived
parallelism by context switching (saving where it was in the process (Program Counter
- PC) and data relevant to that thread, and loading in that of another process) between
threads, which is expensive time-wise (as it must read & write to main memory, unless
there’s a cache hit, or the control unit of a core has room for 2 contexts, the latter are
called multithreaded CPU cores), but occurs fast enough that we don’t notice it.

-​ What decides when a CPU core changes processes is the OS scheduler, which is a
process itself, a kernel-level process, in this context kernel basically meaning highest
permission level

-​ The way CPU processes are handled, context switching, ensures data from one process
is not accessible by other processes

GPU - Graphics Processing Unit - Device

-​ When one says “GPU cores”, they are likely talking about
-​ compute cores = CUDA cores = streaming processors i.e. INT32, FP32 units

within SMs - the number of them dictate how many operations of those data
types can be done concurrently​ ​ ​

-​ a closer analogy to a CPU core is a processing block on an SM (Streaming
Multiprocessor, not Shared Memory - smem), because this is the level the control
units are located (hold PC and process data). Since there is dedicated space on
processing blocks for this information, context switches are free

-​ GPUs are programmed following the SPMD - Single Program Multiple Data model,
meaning the same program is dispatched to multiple units (SMs). Each SM works on the
segment of data it’s responsible for, and within an SM, threads collaborate on that data.

-​ SPMD often employs SIMD - Single Instruction Multiple Data -like instructions,
meaning multiple units executes one instruction simultaneously

https://github.com/cuda-mode/resource-stream?tab=readme-ov-file
https://www.youtube.com/@CUDAMODE/featured
https://www.youtube.com/@CUDAMODE/featured
https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0124159923

-​ SMs employ SIMT - Single Instruction Multiple Thread architecture, which is like
SIMD, but a key difference is that SIMT “[specifies] the execution and branching
behavior of a single thread … [enabling] programmers to write thread-level parallel code
for independent, scalar threads, as well as data-parallel code for coordinated threads”.

-​ Source & further reading: Chapter 4 of PMPP, * = Sec. 4 of CUDA Programming Guide
​
Other Cores:

-​ Tensor cores - See pros explain here
-​ Ray-tracing cores, TMU, Media Engines / Video decoders & encoders, do we care?
-​ Apple NPUs or Neural Engines - Apple’s tensor core equivalent. You’ll have to dig for

details.
On the 12 CPU core M3 Max, has 16 NPUs, I believe intended only to be used through
CoreML. 18 TOPS (I'm assuming 18 tera- (1012) operations per second)
Does anyone else care about making their iPads go brrr?

CPU memory hierarchy

-​ Registers
-​ L1 cache
-​ L2 cache
-​ L3, L4 …
-​ Main memory (but is off-chip)

GPU memory (general)

-​ Registers = RMEM = Register file (each processing block has one, so can be allocated
to cores) - always 32bits in NVIDIA GPUs

-​ Shared Memory = SMEM = SRAM, physically the same place as L1 Data Cache
-​ Global Memory = GMEM = HBM = an abstraction of L2 Cache + VRAM, access times

refer to time to access VRAM
-​ Local Memory = a portion of Global Memory, private to threads within a block

(sources for: _mem, SRAM/HBM, Pauleonix’s note)

RAM = DRAM = Main Memory = CPU memory (but is off-chip)

Cache as a concept

-​ Saving data close-by so that you don’t have to do either expensive recomputation or
expensive fetching of the data, whether that fetching is over the internet, from RAM, or
from Global Memory

PTX - One can think of the compilation & runtime process as CUDA -> PTX -> SASS (assembly
for NVIDIA GPUs)
Don’t know what assembly is? It’s the lowest level human-readable language and is basically a mapping to machine code

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-implementation
https://youtu.be/hQ9GPnV0-50?feature=shared&t=168
https://youtu.be/hQ9GPnV0-50?feature=shared&t=561
https://arxiv.org/abs/2205.14135
https://discord.com/channels/1189498204333543425/1191300313928433664/1267647819330752622

PTX is an intermediate representation (a LLVM IR) that enables forward compatibility by JIT
compiling PTX contained in fat-binaries (executables expanded with code native to multiple
instruction sets) to SASS for newer architectures, at runtime.

GPU Cache Programmability - Cache Operators & Cache Eviction Priority Hints -

-​ Cache Operators & Cache Eviction Priority Hints are the tools we have to influence this
-​ Cache Operators on load/store instructions hint to the compiler how the cache should be

used. Read about them here. In the examples linked, they use Load Cache Streaming,
meaning the data is expected to be used once, which means load it into L1 and L2, but
evict it first, to free up space in precious cache

-​ CUDA C++ interface (documentation, example in llm.c)
-​ Thrust & CUB documentation, example in llm.cpp

-​ Cache Eviction Priority Hints are used to modify persistence in cache. Read about here
-​ Looking at it through a programmer’s lens, note “Cache operators on load or store

instructions are treated as performance hints only. The use of a cache operator on an ld
[load] or st [store] instruction does not change the memory consistency behavior of the
program.” (source)
I think this means you can recommend it to the compiler but its probably going to do
what it has to so that the compiled code is correct

-​ Don’t worry too much about influencing cache or PTX in general until you’re sure you
need to. It’s like, just use PyTorch until you need Triton, just use Triton until you need
CUDA C++, just use higher-level CUDA until you really think you need to care about this
stuff

NVIDIA GPU architecture generations (Grace Hopper, Blackwell, Hopper, Ampere, Volta,
etc):
Architectures correspond to compute capabilities (Blackwell has compute capability 10.0,
Ampere has 8.0, etc).

These versions enable new capabilities, like Ampere [and onward?] can make use of sparsity,
Volta and onward can independently schedule threads of the same warp, etc.

-​ Table of architectures & GPU models (not comprehensive). Note that server class GPUs
have the first letter of their architecture as a prefix (H100 -> Hopper), but not consumer
class.

-​ Table including compute capabilities (not comprehensive)

Data center GPUs are the types you rent from a cloud vendor and send and receive
work from (Or just use, if you are the cloud vendor). The turn-around-time/latency from sending
and receiving work (in the simple case that there isn’t intermediate results sent) will be network
latency + time the work takes on the GPU.

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#load-functions-using-cache-hints
https://github.com/karpathy/llm.c/blob/1787210306ac06c356fe71219e94da3ebb8be3a2/train_gpt2_fp32.cu#L305
https://nvidia.github.io/cccl/cub/api/classcub_1_1CacheModifiedInputIterator.html#classcub_1_1cachemodifiedinputiterator
https://github.com/gevtushenko/llm.c/blob/c541c0799d6a2399311d057f57a5d88909ccefba/train_gpt2.cu#L980
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-eviction-priority-hints
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#features-and-technical-specifications
https://en.wikipedia.org/wiki/Category:Nvidia_microarchitectures
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/#compute_capability

​ Consumer GPUs are the types you either build into or come with a pre-built PC. These
are marketed as GeForce RTX/GTX, the difference between RTX and GTX is that RTX have
ray-tracing cores (specialized units for realistic graphics).
Ex. Ampere -> GeForce 30 series, and people often refer to for example, a GeForce RTX 3090,
simply as a “3090”.

Benefits of consumer over data-center GPUs is that it’s the only real privacy guarantee you can
have, latency is never network bound, you have the upfront cost of a card and whatever
electricity costs, but never have to worry about renting GPUs or buying “Compute Units”, it’s
reliably the same GPU (not always guaranteed by GPU/cloud providers, for example, A100s
may not be available on Colab, or AWS doesn’t guarantee you which GPU you’re getting for the
type of instance you select).

“Nvidia seems to roughly alternate between somewhat "experimental" architectures purely for the
data center and ones that are used more generally (both for the data center and consumers).

- Pascal was both (GTX 10 series and P100),
- Volta was data center only (V100),
- Turing both but no to "T100" card to compete with V100 (RTX 20 series and T40),
- Ampere both (RTX 30 series and A100),
- Ada Lovelace both but no "L100" to compete with H100 (RTX 40 series and L40),
- Hopper data center only (H100),
- Blackwell both (RTX 50 series and B100)
- and future Rubin will probably be data center only as far as I have heard.

So Ampere is certainly not the only one although I guess Pascal is not very relevant anymore and
Blackwell is not out yet.

"Professional" is probably not the best term for the "Tesla"/data center products as it is commonly
used for the "Quadro"/workstation cards (although that name has vanished from the actual product
names making things more confusing. See Turing's "Quadro RTX 6000", Ampere's "RTX A6000" and
Ada Lovelace's "RTX 6000 Ada").” - Paul on Aug 31, 2024

Compute Intensity - CI = Arithmetic Intensity - AI, the Roofline model, and memory-bound
vs compute-bound​
Of a kernel,
CI = (Compute operations) / (Bytes accessed by gmem)
See Chapter 5.1 of PMPP

Speed of Light - SOL analysis
The analogy being that the Speed of Light is constant and the fastest thing possible, and
everything else’s speed is relative to it.
Rather than using metrics like “it’s 100x faster than the previous implementation!”, if it’s only a
small percent of how fast it could possibly go, it’s still not good.

SOL is how Nvidia internally reasons and communicates about speed.
It’s found by first reasoning about whether an algorithm is compute or memory bound / it’s
placement on the Roofline model, and it is the percentage of measured speed / theoretical SOL
for this algorithm.
Watch the pros explain here.

CUDA - Compute Unified Device Architecture
‍The CUDA (Compute Unified Device Architecture) platform is a software framework developed
by NVIDIA to expand the capabilities of GPU acceleration. It allows developers to access the
raw computing power of CUDA GPUs to process data faster than with traditional CPUs. (source)

CTA - Cooperative Thread Arrays - Thread blocks. (source)

cuBLAS - CUDA implementation of BLAS

CUTLASS - CUDA Templates for Linear Algebra Subroutines
“a collection of CUDA C++ template abstractions for implementing high-performance
matrix-matrix multiplication (GEMM) and related computations at all levels and scales within
CUDA.” (source)

CuTe - ;)

-​ A core integral component of CUTLASS 3. CUTLASS 3 is a superset of CuTe.
-​ “By defining an appropriate swizzling function, CuTe programmers can access data the

same way they would in the non-swizzling case, without worrying about bank
conflicts. CuTe abstracts away the swizzling details by baking in swizzle as a property
of a tensor’s layout using the composition operation.”
(from tensor core talk and Tutorial: Matrix Transpose in CUTLASS)
(bank conflicts are detailed in the tutorial mentioned above, and in Ch 6.2 of PMPP)

CCCL - CUDA C++ Core Libraries = CUDA Core Compute Libraries
While raw (without CCCL or other libraries) implementations are excellent learning exercises, it
is recommended by professionals that production code should always use abstractions from
CCCL. Other professionals see it as a style choice.

CCCL is the joining of forces between​
Thrust - Contains high-level and productive features
CUB - Contains low-level and more control features
libcudacxx - Contains features that span across this spectrum

NCCL (pronounced Nickel) - Nvidia Core Communications Library
Provides a way for GPUs to communicate quickly (watch the NCCL lecture!)

nvjet - “NVIDIA's most(?) optimised matmul kernels these days [H100], used by cuBLAS
internally. You can look at the SASS in NSight Compute” - Aroun D

https://youtu.be/VLdm3bV4bKo?feature=shared&t=426
https://www.turing.com/kb/understanding-nvidia-cuda#:~:text=%E2%80%8DThe%20CUDA%20(Compute%20Unified%20Device,faster%20than%20with%20traditional%20CPUs.
https://docs.nvidia.com/cuda/parallel-thread-execution/#thread-hierarchy
https://github.com/NVIDIA/cutlass
https://youtu.be/hQ9GPnV0-50?feature=shared&t=834
https://research.colfax-intl.com/tutorial-matrix-transpose-in-cutlass/
https://www.youtube.com/watch?v=T22e3fgit-A

Swizzling - Tensor index and layout juggling in order to have the most efficient data access
performance from different type of memory

Stream Disambiguation & Notes

-​ STREAM benchmark: https://www.cs.virginia.edu/stream/ref.html
Community standard (microbenchmarking?) (exposed to me by: source)

-​ Stream algorithm = chain scan = scan (an example being Prefix Sum)​

“In general, if a computation is naturally described as a mathematical recursion in which
each item in a series is defined in terms of the previous item, it can likely be parallelized
as a parallel scan operation” **

-​ A work efficient scan algorithm uses a Reduction
-​ Reduction​

“A reduction derives a single value from an array of values. The single value could be
the sum, the maximum value, the minimal value, and so on among all elements” *
(resources: GPU Gems, Puzzle 12 of GPU Puzzles, wikipedia, * = Ch. 10, ** = Ch. 11

of PMPP, Advanced Scan)

Triton - OpenAI’s python-like GPU programming language accessible through a python
interface, and plays well with PyTorch. Using `torch.compile` actually compiles your PyTorch to
Triton. Triton compiles to PTX (but you still need CUDA to fully leverage GPUs), and because of
this, you can use ncu on Triton.

BLAS - Basic Linear Algebra Subprograms
“a specification that prescribes a set of low-level routines for performing common linear algebra
operations such as vector addition, scalar multiplication, dot products, linear combinations, and
matrix multiplication. They are the de facto standard low-level routines for linear algebra
libraries”

Common Ops (some names from BLAS)
GEMM - General Matrix-Matrix Multiply
SGEMM - Single Precision (float32) General Matrix-Matrix Multiply
GEMV - General Matrix-Vector Multiply
FMA - Fused Multiply Add
MMA - Matrix Multiply Accumulate
WGMMA - Warpgroup MMA
WMMA - Warp [level] MMA (source)

TMA - Tensor Memory Accelerator - unit that can transfer large blocks of data efficiently
between global memory and shared memory. TMA also supports asynchronous copies between
thread blocks in a cluster (source)

Common commands

https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-swizzling-modes
https://www.cs.virginia.edu/stream/ref.html
https://youtu.be/VLdm3bV4bKo?feature=shared&t=1243
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://github.com/srush/GPU-Puzzles?tab=readme-ov-file#puzzle-12---prefix-sum
https://en.wikipedia.org/wiki/Prefix_sum
https://youtu.be/VLdm3bV4bKo?feature=shared&t=1243
https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-multiply-accumulate-instructions
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

nvcc - Compile CUDA C++. It’s usage is like gcc, a common C++ compiler.
​ nvcc compiles only the device code in a .cu file while the host code is forwarded to some
host compiler from outside like gcc, clang or MSVC on Windows. This is why nvcc is sometimes
called a compiler wrapper. (There’s also the nvc++ & nvc compilers available through the NVHPC
Toolkit that do both host and device code.)
nvcc -o my_kernel my_program.cu its_utilities.cu

./my_kernel

ncu - Nsight Compute, The Profiler (regarding profiling and system monitoring, there is also the
PyTorch Profiler. Here’s a profiling lecture on usage.)
ncu my_kernel

nsys - Nsight Systems - It takes system timelines/traces and is great for looking for bubbles in
the GPU timeline, i.e. optimizing the bigger picture of many kernels on multiple GPUs and even
nodes vs a single kernel with ncu.
nsys [global_option] User Guide

nvidia-smi - Check utilization & stats about your GPUs
nvidia-smi

nvtop - GPU utilization monitoring. It’s usage is like top bpytop
nvtop

Terminology index (Source: Computer Architecture: A Quantitative Approach, Hennesy &

Pattersonm, 5th edition) :

https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://www.youtube.com/watch?v=SKV6kDk1s94
https://docs.nvidia.com/nsight-systems/UserGuide/index.html#
https://github.com/aristocratos/bpytop

Special thanks to Paul (Pauleonix) for his corrections and knowledge contributed to this doc 🙂

Have a comment? Comments are enabled for all viewers. Log in to Google to see all
comments.

