
The purpose of this is to answer some common vocab questions you might have upon arrival to 
GPU MODE & ML System Performance. It’s not really an entry point to the space, more like a 
pocket book companion or cheat sheet. Several great entry points are the resource stream, the 
lectures, & PMPP.  
 
Its intended audience is newcomers to this particular domain that have terminology questions 
that may seem obvious to those who have spent a lot of time in it. 
 
Kernel = GPU/device function (not the OS kernel, not a convolution matrix, just a function you 
write to run on the GPU) 
 
Kernel Fusion - the coolest way of saying doing multiple operations using at most smem before 
needing to access gmem 
 
CPU - Central Processing Unit - Host 

-​ Modern CPUs consist of many cores (consumer CPUs usually 2-16, server CPUs 
usually 8-30) 

-​ A single core (deals with 1 thread (process) in any instant), achieves perceived 
parallelism by context switching (saving where it was in the process (Program Counter 
- PC) and data relevant to that thread, and loading in that of another process) between 
threads, which is expensive time-wise (as it must read & write to main memory, unless 
there’s a cache hit, or the control unit of a core has room for 2 contexts, the latter are 
called multithreaded CPU cores), but occurs fast enough that we don’t notice it. 

-​ What decides when a CPU core changes processes is the OS scheduler, which is a 
process itself, a kernel-level process, in this context kernel basically meaning highest 
permission level 

-​ The way CPU processes are handled, context switching, ensures data from one process 
is not accessible by other processes 

 
GPU - Graphics Processing Unit - Device 

-​ When one says “GPU cores”, they are likely talking about 
-​ compute cores = CUDA cores = streaming processors i.e. INT32, FP32 units 

within SMs - the number of them dictate how many operations of those data 
types can be done concurrently​ ​ ​  

-​ a closer analogy to a CPU core is a processing block on an SM (Streaming 
Multiprocessor, not Shared Memory - smem), because this is the level the control 
units are located (hold PC and process data). Since there is dedicated space on 
processing blocks for this information, context switches are free 

-​ GPUs are programmed following the SPMD - Single Program Multiple Data model, 
meaning the same program is dispatched to multiple units (SMs). Each SM works on the 
segment of data it’s responsible for, and within an SM, threads collaborate on that data. 

-​ SPMD often employs SIMD - Single Instruction Multiple Data -like instructions, 
meaning multiple units executes one instruction simultaneously 

https://github.com/cuda-mode/resource-stream?tab=readme-ov-file
https://www.youtube.com/@CUDAMODE/featured
https://www.youtube.com/@CUDAMODE/featured
https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0124159923


-​ SMs employ SIMT - Single Instruction Multiple Thread architecture, which is like 
SIMD, but a key difference is that SIMT “[specifies] the execution and branching 
behavior of a single thread … [enabling] programmers to write thread-level parallel code 
for independent, scalar threads, as well as data-parallel code for coordinated threads”. 

-​ Source & further reading: Chapter 4 of PMPP, * = Sec. 4 of CUDA Programming Guide 
​  
Other Cores: 

-​ Tensor cores - See pros explain here 
-​ Ray-tracing cores, TMU, Media Engines / Video decoders & encoders, do we care? 
-​ Apple NPUs or Neural Engines - Apple’s tensor core equivalent. You’ll have to dig for 

details. 
On the 12 CPU core M3 Max, has 16 NPUs, I believe intended only to be used through 
CoreML. 18 TOPS (I'm assuming 18 tera- (1012) operations per second) 
Does anyone else care about making their iPads go brrr? 

 
CPU memory hierarchy 

-​ Registers 
-​ L1 cache 
-​ L2 cache 
-​ L3, L4 … 
-​ Main memory (but is off-chip) 

 
GPU memory (general) 

-​ Registers = RMEM = Register file (each processing block has one, so can be allocated 
to cores) - always 32bits in NVIDIA GPUs 

-​ Shared Memory = SMEM = SRAM, physically the same place as L1 Data Cache 
-​ Global Memory = GMEM = HBM = an abstraction of L2 Cache + VRAM, access times 

refer to time to access VRAM 
-​ Local Memory = a portion of Global Memory, private to threads within a block 

(sources for: _mem, SRAM/HBM, Pauleonix’s note) 
 
RAM = DRAM = Main Memory = CPU memory (but is off-chip) 
 
Cache as a concept 

-​ Saving data close-by so that you don’t have to do either expensive recomputation or 
expensive fetching of the data, whether that fetching is over the internet, from RAM, or 
from Global Memory 

 
PTX - One can think of the compilation & runtime process as CUDA -> PTX -> SASS (assembly 
for NVIDIA GPUs) 
Don’t know what assembly is? It’s the lowest level human-readable language and is basically a mapping to machine code 
 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-implementation
https://youtu.be/hQ9GPnV0-50?feature=shared&t=168
https://youtu.be/hQ9GPnV0-50?feature=shared&t=561
https://arxiv.org/abs/2205.14135
https://discord.com/channels/1189498204333543425/1191300313928433664/1267647819330752622


PTX is an intermediate representation (a LLVM IR) that enables forward compatibility by JIT 
compiling PTX contained in fat-binaries (executables expanded with code native to multiple 
instruction sets) to SASS for newer architectures, at runtime. 
 
GPU Cache Programmability - Cache Operators & Cache Eviction Priority Hints -  

-​ Cache Operators & Cache Eviction Priority Hints are the tools we have to influence this 
-​ Cache Operators on load/store instructions hint to the compiler how the cache should be 

used. Read about them here. In the examples linked, they use Load Cache Streaming, 
meaning the data is expected to be used once, which means load it into L1 and L2, but 
evict it first, to free up space in precious cache 

-​ CUDA C++ interface (documentation,  example in llm.c) 
-​ Thrust & CUB documentation, example in llm.cpp 

-​ Cache Eviction Priority Hints are used to modify persistence in cache. Read about here 
-​ Looking at it through a programmer’s lens, note “Cache operators on load or store 

instructions are treated as performance hints only. The use of a cache operator on an ld 
[load] or st [store] instruction does not change the memory consistency behavior of the 
program.” (source) 
I think this means you can recommend it to the compiler but its probably going to do 
what it has to so that the compiled code is correct 

-​ Don’t worry too much about influencing cache or PTX in general until you’re sure you 
need to. It’s like, just use PyTorch until you need Triton, just use Triton until you need 
CUDA C++, just use higher-level CUDA until you really think you need to care about this 
stuff 

 
NVIDIA GPU architecture generations (Grace Hopper, Blackwell, Hopper, Ampere, Volta, 
etc): 
Architectures correspond to compute capabilities (Blackwell has compute capability 10.0, 
Ampere has 8.0, etc). 
 
These versions enable new capabilities, like Ampere [and onward?] can make use of sparsity, 
Volta and onward can independently schedule threads of the same warp, etc. 
 

-​ Table of architectures & GPU models (not comprehensive). Note that server class GPUs 
have the first letter of their architecture as a prefix (H100 -> Hopper), but not consumer 
class.  

-​ Table including compute capabilities (not comprehensive) 
 

Data center GPUs are the types you rent from a cloud vendor and send and receive 
work from (Or just use, if you are the cloud vendor). The turn-around-time/latency from sending 
and receiving work (in the simple case that there isn’t intermediate results sent) will be network 
latency + time the work takes on the GPU. 

 

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#load-functions-using-cache-hints
https://github.com/karpathy/llm.c/blob/1787210306ac06c356fe71219e94da3ebb8be3a2/train_gpt2_fp32.cu#L305
https://nvidia.github.io/cccl/cub/api/classcub_1_1CacheModifiedInputIterator.html#classcub_1_1cachemodifiedinputiterator
https://github.com/gevtushenko/llm.c/blob/c541c0799d6a2399311d057f57a5d88909ccefba/train_gpt2.cu#L980
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-eviction-priority-hints
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#features-and-technical-specifications
https://en.wikipedia.org/wiki/Category:Nvidia_microarchitectures
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/#compute_capability


​ Consumer GPUs are the types you either build into or come with a pre-built PC. These 
are marketed as GeForce RTX/GTX, the difference between RTX and GTX is that RTX have 
ray-tracing cores (specialized units for realistic graphics).  
Ex. Ampere -> GeForce 30 series, and people often refer to for example, a GeForce RTX 3090, 
simply as a “3090”. 
 
Benefits of consumer over data-center GPUs is that it’s the only real privacy guarantee you can 
have, latency is never network bound, you have the upfront cost of a card and whatever 
electricity costs, but never have to worry about renting GPUs or buying “Compute Units”, it’s 
reliably the same GPU (not always guaranteed by GPU/cloud providers, for example, A100s 
may not be available on Colab, or AWS doesn’t guarantee you which GPU you’re getting for the 
type of instance you select). 
 
“Nvidia seems to roughly alternate between somewhat "experimental" architectures purely for the 
data center and ones that are used more generally (both for the data center and consumers). 
 
- Pascal was both (GTX 10 series and P100), 
- Volta was data center only (V100), 
- Turing both but no to "T100" card to compete with V100 (RTX 20 series and T40), 
- Ampere both (RTX 30 series and A100), 
- Ada Lovelace both but no "L100" to compete with H100 (RTX 40 series and L40), 
- Hopper data center only (H100), 
- Blackwell both (RTX 50 series and B100) 
- and future Rubin will probably be data center only as far as I have heard. 
 
So Ampere is certainly not the only one although I guess Pascal is not very relevant anymore and 
Blackwell is not out yet. 
 
"Professional" is probably not the best term for the "Tesla"/data center products as it is commonly 
used for the "Quadro"/workstation cards (although that name has vanished from the actual product 
names making things more confusing. See Turing's "Quadro RTX 6000", Ampere's "RTX A6000" and 
Ada Lovelace's "RTX 6000 Ada").” - Paul on Aug 31, 2024 
 
Compute Intensity - CI = Arithmetic Intensity - AI, the Roofline model, and memory-bound 
vs compute-bound​
Of a kernel, 
CI = (Compute operations) / (Bytes accessed by gmem) 
See Chapter 5.1 of PMPP 
 
Speed of Light - SOL analysis 
The analogy being that the Speed of Light is constant and the fastest thing possible, and 
everything else’s speed is relative to it. 
Rather than using metrics like “it’s 100x faster than the previous implementation!”, if it’s only a 
small percent of how fast it could possibly go, it’s still not good. 



SOL is how Nvidia internally reasons and communicates about speed. 
It’s found by first reasoning about whether an algorithm is compute or memory bound / it’s 
placement on the Roofline model, and it is the percentage of measured speed / theoretical SOL 
for this algorithm. 
Watch the pros explain here. 
 
CUDA - Compute Unified Device Architecture 
‍The CUDA (Compute Unified Device Architecture) platform is a software framework developed 
by NVIDIA to expand the capabilities of GPU acceleration. It allows developers to access the 
raw computing power of CUDA GPUs to process data faster than with traditional CPUs. (source) 
 
CTA - Cooperative Thread Arrays - Thread blocks. (source) 
 
cuBLAS - CUDA implementation of BLAS 
 
CUTLASS - CUDA Templates for Linear Algebra Subroutines 
“a collection of CUDA C++ template abstractions for implementing high-performance 
matrix-matrix multiplication (GEMM) and related computations at all levels and scales within 
CUDA.” (source) 
 
CuTe - ;) 

-​ A core integral component of CUTLASS 3. CUTLASS 3 is a superset of CuTe. 
-​ “By defining an appropriate swizzling function, CuTe programmers can access data the 

same way they would in the non-swizzling case, without worrying about bank 
conflicts. CuTe abstracts away the swizzling details by baking in swizzle as a property 
of a tensor’s layout using the composition operation.” 
(from tensor core talk and Tutorial: Matrix Transpose in CUTLASS) 
(bank conflicts are detailed in the tutorial mentioned above, and in Ch 6.2 of PMPP) 

 
CCCL - CUDA C++ Core Libraries = CUDA Core Compute Libraries 
While raw (without CCCL or other libraries) implementations are excellent learning exercises, it 
is recommended by professionals that production code should always use abstractions from 
CCCL. Other professionals see it as a style choice. 
 
CCCL is the joining of forces between​
Thrust - Contains high-level and productive features 
CUB - Contains low-level and more control features 
libcudacxx - Contains features that span across this spectrum 
 
NCCL (pronounced Nickel) - Nvidia Core Communications Library 
Provides a way for GPUs to communicate quickly (watch the NCCL lecture!) 
 
nvjet - “NVIDIA's most(?) optimised matmul kernels these days [H100], used by cuBLAS 
internally. You can look at the SASS in NSight Compute” - Aroun D 

https://youtu.be/VLdm3bV4bKo?feature=shared&t=426
https://www.turing.com/kb/understanding-nvidia-cuda#:~:text=%E2%80%8DThe%20CUDA%20(Compute%20Unified%20Device,faster%20than%20with%20traditional%20CPUs.
https://docs.nvidia.com/cuda/parallel-thread-execution/#thread-hierarchy
https://github.com/NVIDIA/cutlass
https://youtu.be/hQ9GPnV0-50?feature=shared&t=834
https://research.colfax-intl.com/tutorial-matrix-transpose-in-cutlass/
https://www.youtube.com/watch?v=T22e3fgit-A


 
Swizzling - Tensor index and layout juggling in order to have the most efficient data access 
performance from different type of memory 
 
Stream Disambiguation & Notes 

-​ STREAM benchmark: https://www.cs.virginia.edu/stream/ref.html 
Community standard (microbenchmarking?) (exposed to me by: source) 

 
-​ Stream algorithm = chain scan = scan (an example being Prefix Sum)​

“In general, if a computation is naturally described as a mathematical recursion in which 
each item in a series is defined in terms of the previous item, it can likely be parallelized 
as a parallel scan operation” ** 

-​ A work efficient scan algorithm uses a Reduction 
-​ Reduction​

“A reduction derives a single value from an array of values. The single value could be 
the sum, the maximum value, the minimal value, and so on among all elements” * 
(resources: GPU Gems, Puzzle 12 of GPU Puzzles, wikipedia, * = Ch. 10, ** = Ch. 11 

of PMPP, Advanced Scan) 
 
Triton - OpenAI’s python-like GPU programming language accessible through a python 
interface, and plays well with PyTorch. Using `torch.compile` actually compiles your PyTorch to 
Triton. Triton compiles to PTX (but you still need CUDA to fully leverage GPUs), and because of 
this, you can use ncu on Triton. 
 
BLAS - Basic Linear Algebra Subprograms 
“a specification that prescribes a set of low-level routines for performing common linear algebra 
operations such as vector addition, scalar multiplication, dot products, linear combinations, and 
matrix multiplication. They are the de facto standard low-level routines for linear algebra 
libraries” 
 
Common Ops (some names from BLAS) 
GEMM - General Matrix-Matrix Multiply 
SGEMM - Single Precision (float32) General Matrix-Matrix Multiply 
GEMV - General Matrix-Vector Multiply 
FMA - Fused Multiply Add 
MMA - Matrix Multiply Accumulate 
WGMMA - Warpgroup MMA 
WMMA - Warp [level] MMA (source) 
 
TMA - Tensor Memory Accelerator - unit that can transfer large blocks of data efficiently 
between global memory and shared memory. TMA also supports asynchronous copies between 
thread blocks in a cluster (source) 
 
Common commands 

https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-swizzling-modes
https://www.cs.virginia.edu/stream/ref.html
https://youtu.be/VLdm3bV4bKo?feature=shared&t=1243
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://github.com/srush/GPU-Puzzles?tab=readme-ov-file#puzzle-12---prefix-sum
https://en.wikipedia.org/wiki/Prefix_sum
https://youtu.be/VLdm3bV4bKo?feature=shared&t=1243
https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-multiply-accumulate-instructions
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


nvcc - Compile CUDA C++. It’s usage is like gcc, a common C++ compiler. 
​ nvcc compiles only the device code in a .cu file while the host code is forwarded to some 
host compiler from outside like gcc, clang or MSVC on Windows. This is why nvcc is sometimes 
called a compiler wrapper. (There’s also the nvc++ & nvc compilers available through the NVHPC 
Toolkit that do both host and device code.) 
nvcc -o my_kernel my_program.cu its_utilities.cu 

./my_kernel 
 
ncu - Nsight Compute, The Profiler (regarding profiling and system monitoring, there is also the 
PyTorch Profiler. Here’s a profiling lecture on usage.) 
ncu my_kernel  

 

nsys - Nsight Systems - It takes system timelines/traces and is great for looking for bubbles in 
the GPU timeline, i.e. optimizing the bigger picture of many kernels on multiple GPUs and even 
nodes vs a single kernel with ncu. 
nsys [global_option] User Guide 
 
nvidia-smi - Check utilization & stats about your GPUs 
nvidia-smi 
 
nvtop - GPU utilization monitoring. It’s usage is like top bpytop 
nvtop 

 

 

Terminology index (Source: Computer Architecture: A Quantitative Approach, Hennesy & 

Pattersonm, 5th edition) : 

https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://www.youtube.com/watch?v=SKV6kDk1s94
https://docs.nvidia.com/nsight-systems/UserGuide/index.html#
https://github.com/aristocratos/bpytop


 

 



 

 

 

Special thanks to Paul (Pauleonix) for his corrections and knowledge contributed to this doc 🙂 

 
Have a comment? Comments are enabled for all viewers. Log in to Google to see all 
comments. 


