Data Structures CSE 2341
Spring 2022 Programming Assignment 02 Page 10of 4

Autolndexer

Due Date: Monday Feb 28, 2022 @ 6am to Github Assignment Repo
Early Submission Deadline: Saturday Feb 26, 2022 @ 6am to Github Assignment Repo

Introduction

Professor Jackson was just assigned to be the editor of a riveting textbook titled “Advanced Data
Structure Implementation and Analysis”. She is super excited about the possibility of delving into the
material and checking it for technical correctness. However, one of the more mundane tasks she must
perform is creating an index for the book. Everyone has used the index at the back of a book before. An
index organizes important words or phrases in alphabetical order together with a list of pages on which
they can be found. But, who or what creates these indexes? Do humans create them? Do computers
create them? As a comp sci prof, Jackson decides she wants to automate the process as much as
possible because she knows that an automated indexer is faster and more accurate, and because it can
be reused later when she finishes writing her own book. So as she is editing the book, she keeps a list
of words on each page that should be included in the index. However, time is short, and she needs to
get the book edited AND indexed quickly. She’s enlisted your help to write an Autolndexer.

Implementation Requirements

You'll read two input files:

1) the text of the book separated by page indications

2) the keywords files that Prof. Jackson has been constructing while editing.

The full index will be written to a third file output will be written to a third file.
Book Text Input File

This file will contain the text that Professor Jackson is editing. The book is currently in raw text (ASCII);
layout and page design isn't part of her job. The book is separated into pages; each page number is in
angle brackets on its own line. The end of the text is indicated by <-1> as the page number. Listing 1 gives
an example of a book text file:

£3s
Preface:

Advanced Data Structures and Algorithm Implementation is a new
exciting text from Mustang Publishers aimed at upper divisian
undergraduate courses or introductory graduate courses.

o

Some of the topics covered are:

+ Fast String Matching

+ B+ Tree Implementation

= P Graph Traversal

210
In a B+ Tree, the leaf nodes are connected as a doubly Tinked list,
d=1x

Listing 1: Example book text.

The Keyword Input File

The input text file will contain a list of keywords and phrases from the book that need to be indexed.
When making it, Prof. Jackson didn’t pay attention to letter-case, so you’ll need to account for that in
your program. This means that ‘tree’ and ‘Tree’ should be considered as the same word. Each word or

Data Structures CSE 2341
Spring 2022 Programming Assignment 02 Page 2 of 4

phrase to be indexed will be on a separate line. No line will exceed 80 characters. There is no
relationship between the order of the index file and the order of appearance in the text. Additionally,
because she edits one chapter at a time, items to be indexed may actually be repeated; don't have two
entries in the index for that though. A simple Keyword Input File can be found in Listing 2.

b+ Tree

algorithm

analysis

doubly linked Llist
Aok

Listing 2: Sample keyword file.

[2]

2-3 tree: 1

[A]

algorithm: 1, 15
analysis: 1, 15

[B]

b+ tree: §

binary search tree: 1
binary tree: 5, 15
[c]

clique: 8

complexity: 1
complete binary tree: 5
[F]

full binary tree: 5

Listing 3: Sample OQutput Text File.
IMPORTANT NOTE: This index doesn’t match the text and keywords
from Listing 1 and Listing 2. It is for example only.

The Output Index File

The output Index File will be organized in ascending order by keyword/phrase with numeric index
categories appearing before alphabetic categories. Each category header(A, B, C, etc.) will appear in
square brackets followed by index entries that start with that letter in ascending alphabetic or numeric
order. An index entry will consist of the indexed word, a colon, then a list of page numbers where that
word was found in ascending order. No output line should be longer than 70 characters. The line should
wrap before 70 characters and subsequent lines for that particular index entry should be indented 4
spaces. An example output text file can be found in Listing 3.

Data Structures CSE 2341
Spring 2022 Programming Assignment 02 Page 3 of 4

The DSVector Class
You don't have any idea how many individual words, index entries, etc. will be present in the input data
file. And since Jackson doesn't like the container classes from the C++ standard library, you can’t use the
vector class that automatically grows as you insert elements into it. You'll need to implement some
“data structure” that is capable of “growing” as needed. This sounds like a good place to use a vector,
DSVector specifically. You'll need to implement a DSVector class that should minimally include the
following features/functionality:
e contiguously allocated sequential container
e homogeneously typed, but should be able to hold any type (in other words, you class should be
templated)
e grow as needed
o In other words, don't start with an array of 500,000 elements. Start with a modest size
(10 sounds like a good place to start) and double the size as needed.
o You are permitted to have a constructor that accepts an initial size.
e avector shall minimally contain the following functionality:
o add a new item to the container - you can choose how many options you would like to
give to the client code of DSVector.
access elements using the [] operator
remove an element from the container given a particular value or an index.
Follow rule of three
search the container for an element and return a location.
functionality to allow the user to iterate over elements in the vector. You could even go
so far as to implement something that mimics std: :vector<>::iterator.

o O O O O

There's a great deal of other functionality that SHOULD be included, but this is the minimum amount
needed. Your DSVector Class should be thoroughly tested using CATCH2.

Other Requirements for your implementation:

e Your submission should be fully Object Oriented.

e You must use your DSString class from PAOT; no c-strings (except inside DSString, and no
std:strings). The one exception is using a char array buffer to temporarily store info when
reading from the file.

e Your code should have a minimal amount of memory leaks per Valgrind.

Assumptions

You may make the following simplifying assumptions in your project:

e The input file will be properly formatted according to the rules above

e You need to remove punctuation from the input file words. ‘Data!! and ‘data’ should be
considered the same word
No line of text in the input file will contain more than 80 characters
No keyword or phrase will be longer than 80 characters
Different forms of the same word should be considered as individual entries in the index (e.g.
run, runs, and running would each be considered separate entries words).

e A word may appear as part of more than one phrase or as an individual keyword. For example
“algorithm” and “algorithm analysis”.

Data Structures CSE 2341
Spring 2022 Programming Assignment 02 Page 4 of 4
Execution

There will be two modes of execution for this project:
1. CATCH2 test mode - No command line args
2. run mode - 3 command line args
a. book text file name
b. keyword file name
C. index output file name

What to Submit

You should submit:
e well formatted and documented source code
e Your sample testing files

Grading
Points Possible

DSVector class and CATCH2 Tests 20
Proper Templating Implementation for DSVector 10
Reasonable OO Design of source code base 20
Dynamic Memory Management including minimal mem leaks 10
Book Indexing functionality 30
Source Code Quality including Comments 10

	AutoIndexer
	Introduction
	Implementation Requirements
	Book Text Input File
	The Keyword Input File
	The Output Index File
	The DSVector Class

	Other Requirements for your implementation:
	Assumptions
	Execution
	What to Submit
	
	Grading

