
Summary

On October 27th, 5:58PM UTC, friesDAO contracts were exploited
by an attacker taking control of our own deployer address through
a profanity attack vector. The hacker was able to drain the treasury
of its USDC through the refund contract, drain the FRIES tokens in
the staking contract, subsequently selling it all into the Uniswap
pool. All transactions in the main attack with the refund contract
were confirmed in the same block, then three hours later, the
attacker came back for the staking pool

1. Vulnerability

Some friesDAO contracts including KCHUP, StakingPool, NFT, and Refund,
were deployed by one address over the course of development:
0x6B20EAE3B2F21cDA2d5a8EA123AE262C86a6DF99

This address was generated for KCHUP
(0x51D35a4cfea3e5fb387e467d31cc0c87f6038a) to have a vanity address
(51D35 = “SIDES”) using Profanity, a local multithreaded GPU vanity address
miner that was considered safe at the time of generation. Profanity has
options to generate a deployer address such that the first contract it deploys
will have the address desired.

However, ownership of the contracts had not been transferred to a different
address such as the multisig after deployment in case of any changes or bugs
needed, specifically due to the high risk of how the refund contract interacts
with funds. Thus it was determined that it was safer to leave room for
emergency changes and that considering our primary developer Slip was
internally doxxed, that any attempt of theft would immediately implicate the
developer. In fact the initial deployment of the refund contract had issues and
had been redeployed to fix a calculation error:

https://etherscan.io/address/0x51d35a4cfea3e5fb387e467d31cc0c87f6038a1a
https://etherscan.io/address/0x8499d57fb9ae9e3d19cf2d717de514f570850a34#code
https://etherscan.io/address/0x8e30f1673517445708abe259337b782d09477b06#writeContract
https://etherscan.io/address/0xba57edb8396f30476f46ea60b8028498d80ff5e9
https://etherscan.io/address/0x6B20EAE3B2F21cDA2d5a8EA123AE262C86a6DF99

As time progressed and the contracts appeared to be working properly, the
developer unfortunately forgot to transfer ownership of these contracts to the
multisig and had assumed they were already transferred when in reality, the
deployer address (0x6B20) still had full ownership and control over these
contracts. Note that the deployer address’ private key never left the
metamask and was never exported out in any external format including to
the developer himself.

It is possible that the way the attacker got the private key was first by
guessing that the deployer address was a vanity address through implication
of the vanity “SIDES” contract address for KCHUP.

Subsequently, the attacker brute-forced the private key using profanity’s now
known vulnerabilities, which dramatically reduces the possibilities of private
keys due to flaws in generation and is susceptible to even consumer grade
computing power. Learn more about the Profanity hack at:
https://medium.com/amber-group/exploiting-the-profanity-flaw-e986576de7a
b

What is interesting to note, however, is that 0x51D35 (“sides”) is unlikely to
appear immediately obvious and would have been hard to guess for a

random hacker. Furthermore, this was never mentioned publicly in any
channels. Additionally there were some interactions of this hacker’s wallet
with other known wallets, who happen to also be a DAO member. These
contributed to some of our investigation angles.

2. Attack
The attack was two-part, complex and required a deep understanding of our
contracts.

After gaining control of the deployer contract, the first part drained all of the
USDC from the treasury for 2,138,705.403949 USDC:

1.​ The attacker sent in some eth for gas to the deployer contract and the
exploit

2.​ Swapped it to a bit of FRIES tokens
3.​ Set the manual, fixed refund rate variable to a high number used for

locking the automated refund rate when we needed to move funds in
the multisig

4.​ Set the manual refund rate active
5.​ Changed the merkle root whitelist of the NFT to include his deployer

address (very difficult/annoying and requires reading the format of the
whitelist carefully)

6.​ Minted a founder’s edition NFT to be enable refund capability
7.​ Refunded the small bit of purchased FRIES token for the entire

treasury’s USDC
8.​ Transferred USDC to his wallet
9.​ Transferred remaining ETH gas to his wallet

The second part took all of the FRIES out of the staking pool, then sold them
through Uniswap to extract USDC from the liquidity pool for
120.128930112550592565 ETH ($189,954.761991 at the time):

1.​ The attacker again, sent in some eth for gas
2.​ Took all of the FRIES tokens out of the staking pool using

“governanceRecoverUnsupported” which is a standard MasterChef
method supposed to be used to recover ERC20 tokens that are
mistakenly sent to the pool.

3.​ Swapped these FRIES tokens to ETH with a direct send to the attacker
wallet

4.​ Transferred remaining ETH gas to his wallet

https://etherscan.io/tx/0x5445554aac0663a8b562370286438ea4ed2eff60156700a7293aa41478bd8994
https://etherscan.io/tx/0x3f9aada231f423fc85a042fa9a6a47280b8774b549b32cd69a1ad934ec30a198
https://etherscan.io/tx/0x6823a572209909f70eed753cdef268c8429fd7215865815bf2f5b0f089568652
https://etherscan.io/tx/0x798e704d17855e2c25c60b624e736e021c5a5e8276c383b922083adf2c9986be
https://etherscan.io/tx/0x5a68b3ff7bd93b652ebec2cf2dba92cebb45f1953e4be7e1c88ac82d71dd83ec
https://etherscan.io/tx/0xd6ef0aa5a1460f2d2555b9071f9ec08ebc0019ff87612ac575f1a4fe83b02f0e
https://etherscan.io/tx/0xa4fc1486c2266a51c1701d4fbeb2b2f0a5638b832e616fc1a86ca100d1e8679d
https://etherscan.io/tx/0x8c5c75e8521f749007152d4a5124b08e7d1d8560be65a59099c89690fdc251d9
https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b
https://etherscan.io/tx/0x1a4d9ce8e5bf1fd5f361f342f9573a1b86cf7ad856b9768c6a979f608a557ca2
https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b
https://etherscan.io/tx/0x50cc45dad5def954f8ae575d0861ec58f1e177a8912422a49023da9bdd8c1fe7
https://etherscan.io/tx/0xc8d9f3932de4738306ea6aec4e94d6cdd9258c702225589e57ff06d13a1a3b7f
https://etherscan.io/tx/0xedcdee1fc2b4f0871d778101dfc68814b338490596af4d2de3e5a760c7716748
https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b
https://etherscan.io/tx/0x9aba01f06ccca7a4cba7bc8325e17a04147231767fb5a1ac050d8629b46134a1
https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b

The attacker again also drained the new 0.01 ETH gas we sent in
afterwardnwhich was used to transfer ownership of all of our contracts back
to the multisig after the exploit.

3. Attacker(s)

The attacker (0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b) had already
been exploiting projects and users using the same profanity method before
our attack. One of the wallet interactions is with
0x2222222229b89c7844f19ef503c4dc503be47f84, which is associated with a
known user and also a member of friesDAO with a history of questionable
coding including sandwich botting and black hat activities. Furthermore, this
user has been implicated in questionable actions in past projects and has had
a history of brazenly challenging others’ allegations. However this user’s wallet
appears to also be drained of its dust, which is possible that it is due to also a
Profanity wallet generation and was exploited. Although the evidence is
circumstantial, it is odd that the interaction/exploit of 0x22222 occurred just
one day prior to the hack while also being a member of friesDAO and so this
user remains a person of interest.

https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b

However, we recognize that it is entirely possible a third party entity studied
the tokens of the 0x2222 user, and noticed the vanity address of the FRIES
token itself (0xFA57F00D: “FastFood”) and while this token is protected by
multisig ownership it may have given enough reason for the user to sniff out
other related contracts of the DAO, begin brute forcing attempts, and study
the contract code. It remains a mystery that if this was indeed a targeted
attempt by an outsider, it would take time to go through 0x2222’s tokens,
brute force test the contracts successfully to ensure worthwhile time, then
study all the protocol mechanic information in the contract code, all within 1
day. If this preparation took even longer (and the exploit of 0x2222 is a
byproduct of targeting friesDAO first), then why bother draining other dust
accounts in the interim that are not nearly at the same level of sophistication?

Thus we suspect the likelihood is higher that someone who has been around
friesDAO for longer had planned and prepared for this attack. We do also
recognize the suspicion of the primary developer having the potential to

conduct this attack, but likelihood is small due to voluntarily self doxxing to
other members of the team, knows we are close to closing a store deal to get
considerable amounts of vested tokens, and would have otherwise had the
ability to carry out an attack a month earlier when the Profanity hack was
revealed due to self knowledge that Profanity was used.

4. Next Steps

This is still an ongoing investigation and we invite members and the public to
help investigate the on chain analysis as well. Because we are a US entity we
have the obligation to file a report with the FBI’s IC3/cyber crimes unit for
further assistance. Of course, we do also invite the hacker, if reading this, to
anonymously return the funds to the multisig to mitigate our law
enforcement efforts. We are also open to dialogue should you wish to reply to
the friesDAO twitter account (however any funds should be returned directly
to the multisig, anywhere else may be a scam).

We recognize the inattentive series of errors that lead to this event, of not
using extra diligence in revisiting the Profanity generated contracts when this
exploit became public knowledge. Going forward we have implemented a
plan for a secondary developer to always check all contract code and
deployments no matter how simple the process may seem in case of any
oversight that was not communicated to other team members. We have set
alerts to currently watch the hacker’s wallet for any movement of our funds,
especially to a CEX which we can doxx, and we also encourage others to do so
as well. (wallet containing our stolen funds is
https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49
b). You can also report to Etherscan to flag this wallet as an exploiter.

If funds cannot be retrieved successfully soon, there may be a possibility to
also raise a small amount to secure the store (this is still subject to the
landlord approval of the current deal we are working on) so that we may
continue our endeavors and drive recovery through the FRIES token and our
FRIES treasury. The Uniswap liquidity pool will also be restored accordingly
once we determine the proper tokenomics.

https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b
https://etherscan.io/address/0x6b88d0f4e94013b38e7c49ddc24135bfb0e2d49b

