
HumanPrompt (v2022.10)

I. Introduction

Motivation

I believe most of you researchers and engineers have your own pipelines to prompt LM
APIs. It is easy to implement a single script to call LMs, while extremely difficult to unify and
extend, especially with the increasing emergence of “new LLM prompting method” papers.

This project provides a unified framework to prompt LM APIs, which is:
● Modularized: The prompting pipeline is split up into individual modules. Users can

easily combine and integrate them as their wish!
● Inclusive of 20+ LLM prompting methods: More than 20 LLM prompting methods

are already included in this modularized pipeline.
● Fully customizable and extensible: Set everything (prompt, method…) in a config

file instead of hard coding.
● Interactive and visualized: An interactive UI for users to explore prompting LLMs

everywhere at any time.

II. Implementation

Methods Components

1. [Optional] Sample selection -> x
2. [Optional] Sample annotation -> x,y
3. Select dataset -> x,y (strong dependency)
4. Retrieve in-context examples, x_test -> x_test_prompt_i, (i = 1,2,3,..., k, k is the number of

examples)
5. Prompt wrap, x_test, x_test_prompt_i -> prompt.

a. Usage(Discussion needed)
i. PromptFileFull(): e.g., load a prompt .txt with few-shot and

inference sample.
ii. PromptFileFewShot(): e.g., load a few-shot prompt .txt. Should

combine with PromptFormat().
1. To be added

iii. PromptFormat(x_test, x_test_i): e.g., select the first three rows
iv. PromptCoT(x_test, x_test_i): give a default zero-shot method to

automatically annotate CoT, e.g., “Let’s think step-by-step.”
b. View, Annotate and Trade

i. Playground
1. Free-form, OpenAI like
2. Select dataset example, prompt and method to run (SKG

annotation like)
ii. Prompt management(from different publications, different users) for

each datasets



iii. Benchmark for methods on all datasets fitable
iv. Trade prompt (TBD)

6. Function callings, prompt -> response(s)
a. Iterable calling: Make it albe to start from (4) and again and again to get

enough responses(When saving, save all the infos, add switch to control that)
b. Caching mechanism: cache the response for the same (model, prompt),

since the API calls can be expensive(ama, decomp)
c. Security: Key protection of OpenAI for service machine
d. Multithread:

7. Extraction
a. Return value format due to different APIs(OpenAI format, huggingface format,

AI21 format…)
b. Exraction for answers

i. Matching: e.g. CoT(regex…)
ii. Execution: e.g. Basic Program, Binder Program

8. Aggregation
a. No aggregation
b. Majority vote(ThinkSum)

i. Simple
ii. Prob
iii. Biased

1. Hyper-parameter
2. DiVerse-like

c. Weakly supervised algorithm
i. Dependency Graph
ii. Reinforcement Learning

9. [Optional] Model Training
10. Method implementation under framework & run experiment

a. Configuration
i. jsonnet

b. Logging
i. wandb usage inside

Papers to Include (TO BE ADDED)

Modules each paper regards:
● CoT standard: 5
● ZeroGen: 5, 6, 7, 8, (9)
● Self-consistency: 5, 8
● STaR: 5, 6, 7 9
● ImplicitRelations: todo
● ZeroShotCoT: 5
● Least-to-Most: 5, 6
● RLPrompt: 5, 6, 7, 9?
● DiVerse: 5, 8
● RationaleEnsemble: 5(iteratively), 7, 8
● ReAct: 5, 6



● Decomp: 5, 6
● Self-Ask: 5, 6
● AutoCoT: todo
● Binder: 4, 5, 7, 8
● AMA Prompt: 5, 6, 8
● CocoGen: todo
● Self-Improve: 5, 8
● Generate rather than retrieve: 5, 9


