

Game Design Document

Snatcher

Spring Quarter 21-22
All work Copyright © 2022 by Drexel University

1

Table of Contents
Table of Contents​ 2

Overview​ 6
High Concept​ 6
Category​ 6
Audience​ 6
Accessibility​ 6
Budget​ 6
Timeline​ 6

Getting Started​ 7
TBA Games Team​ 7
Communication and Meetings​ 7
Team Site​ 7
Tasks and Planning​ 7
Collaboration and Organization​ 7
Development​ 7

Core Gameplay​ 7
Game Flow​ 8
Snatcher​ 8
Character Controls​ 9
Enemy​ 9
Enemy Behavior​ 9

Standard Behavior​ 9
Scent Tracking Behavior​ 9

Weight System​ 10
Stamina System​ 10
Obtainable Limbs​ 10

Chameleon’s Tail​ 10
Mushroom’s Legs​ 10
Maple Seeds’ Wings​ 11

Challenges​ 11
Current​ 11
Future​ 11

Death​ 11
Level Design Overview​ 12
Upper World​ 13
Wells​ 13
Dungeon 1.1​ 13
Dungeon 1.2​ 15

2

Dungeon 1.3​ 16
Dungeon 1.4​ 17
Fun​ 17

Story​ 18

Audio​ 19
Volume​ 19
Sound effects​ 19

Graphics​ 20
Perspective​ 20
HUD​ 20
Screen System​ 20

Start menu screen​ 20
Pause menu screen​ 21
Parameter menu screen​ 21
Death by falling screen​ 22
Death by enemy screen​ 22

Concept Artwork​ 22

Game Assets​ 27
Primary Asset Template​ 27
Asset List​ 31
Asset Repository​ 31

Dev Documentations​ 32
Coding Standards​ 32

General Structure of a File​ 32
Open Curly Bracket​ 32
Classes​ 32
Abstract Class​ 32
Public Properties​ 32
Protected Properties​ 33
Private Fields​ 33
Methods​ 33
Method Parameters​ 33
Local Variables​ 33
Constants​ 33
Events​ 34
Access Modifiers​ 34
Others​ 34

Player Finite State Machine​ 35
Introduction​ 35

3

Player State Machine​ 37
Terminology​ 37
Update Method and Passing Context​ 37
Switching States​ 37
Public Properties & Private Fields​ 38
Factory Pattern​ 39

Super State​ 40
Configuration Consultant​ 40
Ability Entry State​ 41

Sub State​ 42
Special Sub State: The Idle State​ 42
Move​ 43
Fall​ 44
Dash​ 44

Unity Mecanim​ 44
Mirroring The FSM​ 44
Parameter Hashing​ 45

Related Manager Classes​ 46
PlayerStateFactoryManger​ 46
StateConfigManager​ 47
LimbManager​ 47

ScriptableObject Event System Manual​ 49
Overview​ 49

Rationale​ 49
Preface​ 49

Manuals​ 49
How to Create an Event?​ 49

What are the types of events?​ 50
What if the type I need is not present?​ 50

How to Subscribe?​ 51
IEventListener​ 51
Action Callbacks​ 52

How to Raise an Event?​ 53
Caveats​ 54

Event Dictionary​ 54
Example​ 54

Debug Logging​ 56
TL;DR​ 56
Toggling Logs​ 56
Logging Methods​ 57
Identifying Logging GameObject​ 58

4

Concatenation​ 59
Cinemachine Camera Setup​ 60

Cinemachine Brain​ 60
Cinemachine Virtual Camera​ 61

General UI Canvas Setup​ 62
Canvas Component​ 62
Canvas Scaler (IMPORTANT)​ 62

Interactable Setup​ 63
Steps to Set Up​ 63
Interactables​ 64
Interactable Creation​ 64

Event Dictionary​ 65
OnLimbSwitched​ 65

Publishers​ 65
Subscribers​ 65

5

Overview

High Concept
“Snatcher” is a 2.5D isometric action explorer where you play as the Snatcher. ​
​
The main objective of the game is the completion of room-to-room dungeons against
environmental and movement-based challenges to advance to the next level until the final
challenge dungeon.

Category
“Snatcher” is set to be a single-player real-time action, exploration, and puzzle-based game.

Audience
This game is targeted at those who enjoy a fair challenge. This group typically consists of core
gamers that are previously experienced in games with more sophisticated mechanics.

Accessibility
This game is set to be developed for PC along with controller support.

Budget
This game was given an initial budget of 343,350 DB (Diefenbucks). For a detailed breakdown
of spending, please visit the Gantt chart. A projected increase in budget is yet to be discussed
at this time, but the decision is to be made on executive review.

Timeline
This game was given an initial development cycle of 10 weeks. For a detailed task-oriented
breakdown of events during this development period, please visit the Trello and the Gantt chart.
For a by-teammate recollection of their work weeks during this development period, please visit
our team’s website at https://sites.google.com/view/tbagames. A projected extension in the
development cycle is yet to be discussed at this time, but the decision is to be made on
executive review.

6

https://docs.google.com/spreadsheets/u/0/d/19OzqDBa9tx4wyy8jg5mCICka9UDw7SEnQC9jRx4hceI/edit
https://trello.com/invite/b/1QdFW9ZP/fc89f77e923f86c5d50f23dea44df134/development-roadmap
https://docs.google.com/spreadsheets/u/0/d/19OzqDBa9tx4wyy8jg5mCICka9UDw7SEnQC9jRx4hceI/edit
https://sites.google.com/view/tbagames

Getting Started
Welcome to the team! Below you will find the current team members and the different platforms
we use to communicate, work on the game, and keep everything organized.

TBA Games Team

Mahin Production Lead Erica Technical Director/Scrum Master

Ben Lead Programmer Adam Lead Programmer

Aaron Writer/Programmer John Level Designer

Sandalu Programmer/QA Sarah Lead Artist/Modeler

Wuheng Programmer/Modeler

Communication and Meetings
The team will be mainly using Discord to hold meetings and communicate regularly. Weekly
recurring meetings are held on Mondays, Wednesdays, and Fridays.

Team Site
This is where we showcase our work to the public including things like weekly versions of our
build, the team blog, this document itself, and more. Be sure to add yourself to the ‘Meet the
Team’ and ‘Team Blog’ section. Message the team on Discord for access to edit. Visit our team
site at https://sites.google.com/view/tbagames. Once you’ve gotten settled, make sure to update
your personal blog every week.

Tasks and Planning
The team will be using Trello to detail and assign tasks. The Gantt chart will be used to plan and
keep track of where we are in development. Message the team on Discord for access.

Collaboration and Organization
The team will be using Google Drive to share and work on documentation and presentations,
and will be using GitHub for version control, to work on the game’s codebase and to manage
our assets. Message the team on Discord for access to these resources.

Development
We will be using Unity 2021 LTS as our choice of game engine to develop our product.

7

https://discord.gg/uRzAkuy27H
https://sites.google.com/view/tbagames
https://trello.com/invite/b/1QdFW9ZP/fc89f77e923f86c5d50f23dea44df134/development-roadmap
https://docs.google.com/spreadsheets/d/19OzqDBa9tx4wyy8jg5mCICka9UDw7SEnQC9jRx4hceI/edit?usp=sharing

Core Gameplay

Game Flow

The player spawns as Snatcher in an outdoor overworld area where entrances to multiple wells
are scattered about. Each well leads to a dungeon variant that holds a key. Retrieving these
keys in the various dungeons allows the player to advance to the corresponding well/dungeon
until they retrieve the key in the final well to pass the current overworld into the next overworld
with new dungeons. This is repeated until they reach the final challenge dungeon.

Snatcher
Snatcher is a frog-like creature. Snatcher can launch a hook to snatch limbs from various
enemies to use as his own. The abilities granted from the various limbs will be used to help with
enemy encounters and terrain obstacles to progress through the dungeons.

8

Character Controls

Keyboard Controller Action

WASD Left Analog Stick Directional movement

Space East Button Dash

Left Click / Left Mouse Button Left Trigger Use current limb

Q / E or Scroll Wheel Shoulder Buttons Swap current limb

X West Button Drop current limb

F South Button Interact with game object

ESC (Escape) Pause/Unpause

Enemy
Enemies cannot be killed, however some can have their limbs stolen. Current enemies with
snatchable limbs are the chameleon, mushroom, and maple seed. There is a tiger enemy that
has a different behavior associated with a limb, but no snatchable limbs at the moment.
Enemies planned for future development include a gorilla/muscular animal, a snail, and a lamb.
More details about enemies can be found in the Game Asset section.

Enemy Behavior
Current enemies all travel on the same level as the ground. Future plan is to have an additional
unique behavior for each enemy based on the ability Snatcher gains from snatching its limb.

Standard Behavior
Enemy will be idle until it detects Snatcher in their sight. The enemy will chase Snatcher until
Snatcher is out of its sight range.

Scent Tracking Behavior
Enemy will be idle and will not detect and chase Snatcher unless Snatcher is actively using a
limb that stinks. Once the stinky limb is inactive, the enemy immediately stops chasing Snatcher
and returns to its initial idle location.

9

Weight System
Each limb has its own weight. The more limbs Snatcher carries, the more Snatcher weighs. This
lowers the overall speed of Snatcher. Individual limbs are also affected by this shown in the
Obtainable Limbs section below.

Stamina System
Snatcher has a total of 100 stamina. Each limb has its own stamina cost on usage, it may be
stamina per use or stamina drain for the duration of usage. Snatcher regenerates stamina over
time. The more Snatcher weighs, the stamina cost on each limb will increase.

Obtainable Limbs

Limbs can be dropped and picked up at a later time.
The chart below contains ideas for limbs.
Bolded contents are currently implemented or in development

‘Limb’ Ability Stamina
Cost

Weight Effect by weight

Chameleon’s
tail

Invis 5 5 TBD

Mushroom’s
legs

Jump 15 3 Jump height decreased

Maple Seed’s
wings

Flight 10 10 Distance gained decreased

Gorilla’s arm Destroy terrain/
shoves enemy

50 20 TBD

Snail’s shell Roll 20 15 TBD

Lamb’s wool Decoy 40 10 TBD

Chameleon’s Tail
This limb is stinky. When active, enemies with standard behaviors will not detect and chase
Snatcher. Only enemies with scent tracking behavior will detect and chase Snatcher when the
tail is used. Simply equipping the limb does not trigger this behavior.

Mushroom’s Legs
When used, Snatcher can jump. However, Snatcher’s walk speed becomes slower than usual.

10

Maple Seeds’ Wings
Snatcher can gain more and more verticality with each use of the wing. When equipped,
Snatcher has a bigger hitbox and gets pushed back in windy areas of the map.

Challenges

Current
Enemy avoidance Snatcher has to avoid or run from enemies.

Terrain navigation Snatcher has to use one or more limbs to navigate the terrain.

Future

Race against time Snatcher has to reach the goal before the toxic water rises to its level.

Pathmaking Snatcher has to modify terrain using its limbs to reach the goal

Death

Snatcher dies from coming into contact with enemies or when it falls off the platforms into the
depths below. When death occurs in the dungeon, progress is reset back to the state when
Snatcher first entered the dungeon. When death occurs in the overworld, progress is reset for
the current overworld. Keys and limbs obtained in the current overworld will be reset.

11

Level Design Overview
A level will consist of the main hub, currently being called the “Upper World'', which will contain
access to a varying number of sub-levels classified as “dungeons”, as well as an exit that will
lead to future levels in planning. The current version of the game displays one of these “Upper
Worlds” with four iterative “dungeons” attached. Each “dungeon” will contain a series of
movement and enemy-based interactions players must navigate to locate the key for the next
“dungeon”. Upon collecting all of the keys players will be provided access to the exit and in turn
the next level or “Upper World”.​

12

Upper World
The initial spawn for players will be a centralized point in the Upper World. Here players will be
introduced to a brief background on the Snatcher and be allowed to explore the terrain and
interact with various enemies they may find useful. Depending on the time taken to explore
players will eventually discover the dungeon entrances and begin progression through the first
sub-level.

Wells
The wells are scattered around the Upper World and represent the transition points from the
Upper World into the dungeons. A shift in audio will also signify the engagement of a new
environment.

Dungeon 1.1
Upon entering the first dungeon players will find themselves in a much more confined space
facing off against enemies. This section focuses on the player's understanding of stealth and

13

familiarization with standard enemy movement, allowing for virtually easy maneuverability with
the Chameleon's Tail. After finding and collecting the key here players will gain access to the
second dungeon.

14

Dungeon 1.2
This section will introduce the player to more movement-based challenges on top of the enemy
interactions. It will now be impertinent that players begin to investigate the benefits and
drawbacks of certain limbs to survive. In particular, the Maple Seed’s Wings may seem an
obvious choice to clear gaps and walls. However, players will run into strong winds rendering
flight useless at times. In turn, the Mushroom’s Legs may provide better progression, but they
come with their own set of drawbacks leaving the player to decide when to engage and
disengage limbs. Again, after collecting the key here access to the next dungeon will be
granted.

15

Dungeon 1.3
Upon completion of the previous dungeon the player will now be given more options in the limb
usage for progression. The iterative style will carry over similar mechanics, however, they will be
meshed with new interactions to allow for thoughtful combinations of limb usage. The strong
winds previously mentioned will now be sporadic, providing the option of navigating between
currents or perhaps shedding some weight for an alternate route. In correspondence with the
previous dungeons, a key must be found here for access to the final dungeon.

16

Dungeon 1.4
The final dungeon of this level will incorporate completely new enemy interaction and behavior.
Similar movement mechanics will be present as in the three dungeons prior, however, the main
idea is to demonstrate the possibility of additional enemies that players will have to investigate
in an instant with no prior knowledge. Upon key collection and completion of this dungeon,
access to the Upper World exit will be provided and progression to the Upper World, which is
still in development and will be available in full production.

Fun
The enjoyment of the game stems from the ability to build your own creature; the joy of
discovering how playstyles can differ from run to run based on the approach you want to take.
Players will find themselves being more meticulous by exploring the level for potential new
solutions and then acting on them, by putting more emphasis on problem-solving rather than
combat.

17

Story
The story of Snatcher is one that is not told linearly; instead, it is told through descriptions of
items found in the dungeons and overworlds of the game.

Snatcher is the latest in a long line of creatures that shared that name and had the goal of
conquering the dungeons in the area. The player is unaware of this fact when first loading the
game, only knowing that Snatcher was drawn to this area at the very start. While the story is not
an integral component of this game, players have the option of exploring the dungeons in order
to piece the story together in order to gain a better understanding of the world and the
characters in it.

18

Audio

Volume
Currently the game only has a master volume slider. Future plan is to split existing and future
audio into two categories of music and sound effects. The two categories will be controlled by
separate sliders.

Sound effects
Footsteps and ambient noise are different depending on
whether the Snatcher is in the overworld or in the
dungeon. There are also on-event sound effects
included, as shown in the list on the right.

19

Graphics

Perspective
Snatcher is currently set to be a 2.5D, isometric game with a third-person POV. The camera will
remain at a fixed angle, and stay still or follow the player, depending on the size of the room.

HUD
We will have a simple HUD to display the player’s current key collection progress, limb
inventory, and current stamina.
When the game expands to potentially include limb modification, currency, collectibles, and
bestiary, this will also be accessible through the HUD.

Screen System

Start menu screen

20

Pause menu screen

Parameter menu screen

21

Death by falling screen

Death by enemy screen

Concept Artwork
Snatcher’s art style is best described as “gothic horror”.

22

23

24

25

26

Game Assets

Primary Asset Template

Snatcher

Description/Backstory Not much is known about Snatcher. But
Snatcher knows what he wants. Limbs.

Height/Width 1 meter

Parameters Limb inventory: this determines its ability
Dash distance
Rotation speed
Hook length
Max stamina
Weight

Animation list snatcher_dash
snatcher_walk
snatcher_fall
snatcher_idle
snatcher_hook
snatcher_obtain
snatcher_swap
snatcher_fly​
snatcher_invis​
snatcher_jump​
snatcher_die

27

Stinky Chameleon

Description/Backstory When snatched by Snatcher, it will lose its
tail.

Behavior Standard

Snatchable limb Tail

Height 1 meter

Parameters Detection range: 10
Move speed: 3.5

Animation list enemy_invis_walk
enemy_invis_idle

28

Tall Mushroom

Description/Backstory When snatched by Snatcher, it will lose its
legs. The ability its limb gives to Snatcher is a
vault.

Behavior Standard

Height/Width 3 meter

Parameters Detection range: 10
Move speed: 3.5

Animation list enemy_vault_walk
enemy_vault_idle

29

Flying Maple Seed

Description/Backstory When snatched by Snatcher, it will lose its
wings. The ability its limb gives to Snatcher is
flight. This enemy does not currently fly when
idle or chasing Snatcher.

Behavior Standard

Height/Width 2 meter

Parameters Detection range: 10
Move speed: 3.5

Animation list enemy_fly_walk
enemy_fly_idle

30

Scent-Tracking Tiger

Description/Backstory There is no limb to be snatched currently.
This enemy wanders around on the ground.

Behavior Scent Tracking

Height/Width 1 meter

Parameters Detection range: 10
Move speed: 3.5

Animation list enemy_fly_walk
enemy_fly_idle

Asset List
The asset sheet and task assignment can be found here.

Asset Repository
The asset repository can be found here.

31

https://docs.google.com/spreadsheets/d/1KWl4qYCJ7PTYVMCxLaaZTFlEaOQ1oGzMuc70ySFy6uQ/edit?usp=sharing
https://github.com/poofin7076/Snatcher_Assets

Dev Documentations

Coding Standards

General Structure of a File
●​ Since everything in C# must be in a class, it makes sense to separate the

implementation of a class into its own file.
●​ Remove any unnecessary “using” statement
●​ After the name of the class, follow the order listed below

○​ Properties and fields
■​ Constants (public ones should go above private ones)
■​ Static (public ones should go above private ones)
■​ Public properties and events

●​ Events here mean C# event not SO Events
●​ SO Events should be treated like [SerializeField] private fields

■​ [SerializedField] private fields
■​ Private fields

○​ Methods
■​ Public methods
■​ Unity-related methods

●​ Start, Update, FixedUpdate, etc.
■​ Private methods

Open Curly Bracket
●​ Please put it on the next line

Classes
●​ Use PascalCase
●​ Names should be nouns

○​ “Enemy”

Abstract Class
●​ An abstract class should be prefixed with the letter “A”

○​ “APlayerState”

Public Properties
●​ Use PascalCase
●​ Names should be nouns or adjectives
●​ Try to use public properties instead of public fields

32

○​ If you want to expose a field in the inspector, use [SerializeField] on a private
field.

○​ There is an exception for classes that are very self contained and simple, or if it
is a ScriptableObject. For sake of simplicity, use it. However, it should still use
PascalCase.

●​ “Direction” “IsMoving”

Protected Properties
●​ Use PascalCase
●​ Names should be nouns or adjectives
●​ Try not to use protected fields

○​ When using properties or fields that are protected, we are essentially
accessing/modifying something from another class. For this reason, we use
PascalCase.

Private Fields
●​ Use _camelCase
●​ Prefixed with underscore (_)
●​ Names should be nouns or adjectives

Methods
●​ Use PascalCase
●​ Names should be verbs

Method Parameters
●​ Use camelCase
●​ Use nouns and adjectives

○​ “movementVelocity”

Local Variables
●​ Use camelCase
●​ Use nouns and adjectives

○​ “currentIndex”

Constants
●​ ALL_CAPS and underscore between words

○​ “PI” or “RESOURCE_PATH”
●​ Use nouns and adjectives

33

●​ Keep the declaration of a constant at the top of the file. If they are constants, that means
they are important.

Events
●​ Use PascalCase
●​ Prefix with “On”

○​ For both the SO events themselves and the subscribers’ callbacks
■​ Use past participle verbs

○​ For the subscribers’ callbacks, you can opt to use simple verbs, too. Just like a
call to action (method).

Access Modifiers
●​ Always add access modifiers for consistency
●​ In C#, if a method/field/class does not have a specified access modifier, it is implicitly

marked as private.
●​ To maintain consistency, always add “private” in front of things that you want to be

private
●​ This means that the Start and Update methods in the provided template of a

MonoBehavior needs to be corrected as well. By default, there are no “private” access
modifiers in front of them.

Others
●​ Try not to abbreviate too much

○​ Unless it’s something everyone knows, such as CPU or i and j for a for-loop

34

Player Finite State Machine

Introduction

Figure 1. Abstract structure of Snatcher Hierarchical FSM. The Super States and the Sub States

are independent of each other.

​ The implementation of Finite State Machine (FSM) in this project is a hierarchical FSM.
Much like a regular state machine, we segment the specific behaviors we envision for a state
into its own class. Doing so allows us to reduce conditional checks and thus chances of errors.
A swim state only cares about aspects related to swimming, and, when doing its own business,
it does not care to check if it is also in the air.

The difference between a regular FSM and our hierarchical FSM is that our
implementation requires the state machine to be in two states all the time, one being a Super
State and the other a Sub State. Mix and match, and we get multiple combinations of overall
states the state machine can be in, as shown in Figure 1.

The Super State is directly related to the Limb the player is currently equipped with. It
functions as a configuration consultant for the Sub States where it provides stats affected by the
currently held Limb, such as movement speed, dash distance, and Limb Ability.

The Sub States are the states that actually manifest the behaviors of a state machine.
Moving the CharacterController, setting a boolean value in the Animator, and reading player
input, are done by the Sub States. There are four universal Sub States that are always present
regardless of the currently equipped Limb: Idle, Move, Fall, and Dash. Idle State is a special
state which we will discuss later.

There are three major parts to the system: the context, the abstract state, and the
concrete states. The context is the Player State Machine, which is a MonoBehaviour. The
abstract states are the templates for concrete states. ASuperState is the template for Super
States, ASubState is for Sub States, and APlayerState for both ASuperState and ASubState.
The concrete states are the concrete implementation of ASuperState or ASubState. To

35

summarize, APlayerState is the grandparent class, ASuperState and ASubState are the parent
classes, and all concrete classes are child classes.

Figure 2. Flowchart of the four universal Sub States and the ability state(s).

​ The flowchart above demonstrates the relations between the four universal Sub States
and the Ability State determined by the current Super State. A solid line means a two-way
transition, and a dotted line means a one-way transition. The Super State and the Ability State
will be explained later.

Now, take a look at Fall State and we can see that only two states can transition into it:
Move and Idle. Such transitions happen when the context becomes NOT grounded. We can
also see that there is only one state that Fall State can transition into: Idle. The transition
happens when the context becomes grounded again. The last observation we can make on Fall
is that it has nothing to do with Dash. It is a good example of Fall State only caring about what
needs to be cared about for itself.

Finally, the reason why we are able to delegate distinct concrete implementations to
each individual state, and still be able to wire them together using our FSM, is that each state
(whether a Super State or a Sub State) is a child of the common abstract state APlayerState
from which they inherit shared common methods and properties. On that note, every Sub State
is always able to get relevant information from the current Super State because all Super States
inherit from ASuperState which guarantees that all Super States meet certain requirements. We
can say the system relies heavily on polymorphism to carry out its function.

36

Player State Machine

Terminology
​ The first task to tackle is to clarify some terminologies. In this Guideline, the term Player
State Machine is interchangeable with the term context. They both refer to the MonoBehaviour
instance that is attached to the GameObject that we want to act as the player. For consistency
throughout the Guideline, and for cohesion with the actual code implementation in the Unity
project, the term context will be used, unless it becomes necessary to use the term Player State
Machine for sake of clarity.

Update Method and Passing Context
​ The APlayerState is a pure abstract C# class. This means every state in this system is
not a MonoBehaviour. If a class does not derive from MonoBehaviour, it does not have methods
like Start or Update. This makes an operation in a state that requires an update every frame a
tricky task. To cope with that, every state has the public method UpdateState, which is a result
of deriving from APlayerState. We can call this method from the context in the Update Method,
like shown in Figure 3.. Remember, the context is a MonoBehaviour.
​ The communication between the states and the context are two-way, meaning that the
context knows the current state it is in, and the state also knows who is operating on it. It is easy
for the context to know its current state. However, it is not so obvious from the state’s standpoint
which context is acting on it. Some models of FSM pass the context as an argument when
calling a method of a state. Our implementation, shown in Figure 3, uses a trick where it does
not require passing the context as an argument and still makes the context known to its states.
It will be explained in the Factory Pattern section.

Figure 3. The Update method in the context. When calling the UpdateState method, we do not

pass in the context as an argument.

Switching States
​ The ability to transition into a different state is a requirement for a FSM. Most models of
FSM, ours included, let the states decide when to transition into another state. The states
themselves don’t have the mechanism to actually make transition happen. However, the context
does. Therefore, when a state decides to transition into another state, it calls a method in the
context to do so while also specifying which state to transition into next.

37

Figure 4. Above is the SwitchSubState method in the context. Below is an example of a state

calling the SwitchSubState method from the context. There is also a similar method called
SwitchSuperState which handles switching to a different Super State.

​ The lower image in Figure 4 shows a simplified code snippet from the Idle State. It
demonstrates that when the context is not grounded, it will transition to Fall State. The identifiers
Context, Controller, and Factory will be explained in the next sections. However, there is one
thing that is important here. This code exists in a state, and it needs to know the context in order
for this operation to work. It shows the importance of making the context known to the states,
and, in this case, it does.

Public Properties & Private Fields
​ In the lower image in Figure 4, we can see that, within the state, we are calling
Context.Controller, which is a public property of the context. In this case, it is a reference to
Unity’s Built-in Character Controller component. This kind of operation is frequently used in this
system. If the state needs to do something with the Animator, it calls Context.Animator. Of
course, these have to be public properties that have already been set up in the context.
​ The preferred way of setting up this kind of property is through the use of public get-only
properties. Properties in C# are like a syntactic sugar of getter and setter methods. By making it
get-only, we prevent others from accidentally changing the value of a field or the instance of a
class. The image below shows the general idea of how this is set up.

Figure 5. Both images are code snippets from the context. The above shows when getting

Controller, it will return the instance of _controller. The _controller in this case is something we
will cache a reference in the Awake method using GetComponent<CharacterController>().

38

​ Here is a list of public properties (and their types) currently offered in the context. Note
that this list is subject to change as the project expands.

●​ Debug (bool)
●​ PlayerInput (PlayerControls; an input-related script)
●​ Controller (CharacterController)
●​ Animator (Animator)
●​ HookController (HookController; custom script for hook behavior)
●​ GroundCheck (Transform)
●​ LimbSlot (Transform)
●​ CurrentSuperState (ASuperState)
●​ CurrentSubState (ASubState)
●​ CanGrapple (bool)
●​ GrappleDestination (Vector3; it is also a setter)

Factory Pattern

Figure 6. APlayerState has a public getter to the context and another public getter to a factory

instance. Both are initialized in the constructor of APlayerState.

​ Naturally, a state should not be hard-wired to other states. However, it is up to the state
to call for switching to other states, and specifying which state to switch to is crucial. Therefore,
we need a centralized place, accessible from all states, to manage all the available states and
grant access to the states it manages to other states. This is the job of the factory. Quick
disclaimer, this is not a typical implementation of the factory pattern. However, the difference
here is trivial.
​ As shown in Figure 6, since every state has a reference to the factory containing all the
states, a state can then specify another state and transition to it by calling Factory.Fall, for
example, like in Figure 4. The main takeaway here is that we don’t need to and don’t want to
hard reference a concrete state to another.
​ The implementation of the factory can be found in PlayerStateFactoryManager. It is a
manager class, and how it is initialized as well as how it initializes states will be addressed in
the PlayerStateFactoryManager section.

39

Super State

Configuration Consultant
​ Super States are pretty useless if we consider that they don’t actually define any
behaviors, and they tend to have just fewer lines in their files for that reason. However, they are
important because the Sub States, the handling of Mecanim, and switching of Limbs rely on the
Super States to do the job.
​ In Figure 1, we can see that the Super States and Sub States are independent of each
other. It is as though being in a Move Sub State has nothing to do with being in a Hover Super
State. With the way we handle it, if there are five Super States and five Sub States, we can
come up with 25 unique combinations of the overall states for the context. This does not even
take into account some additional Sub States that are specifically related to Limb Abilities, which
will be discussed in the Ability Entry State section.
​ There is a problem with this approach. The Move Sub State will have the same behavior
regardless of the Super State the context is in. But what if we want Snatcher to move more
slowly when it is equipped with a large arm, making Snatcher in, say, a LargeArm Super State?
​ The way we handle this is to let the Sub State be aware of the current Super State the
context is in. Additionally, we want the current Super State to provide appropriate configurations
for the movement speed, turn speed, and dash distance, etc. Stringing the two requirements
together, we get something like this:

Figure 7. Code Snippet from the Move Sub State. We can access the Super State by calling

SuperState. We can also ask for configuration using the dot notation and specify StateConfig.

​ In Figure 7, the StateConfig is a property that has a reference to a ScriptableObject that
contains a number of configurations/parameters for a specific Super State. When working in a
Sub State and wanting to access a certain configuration, you do not need to worry about which
concrete Super State the context currently is in. You simply need to know that the current Super
State can be accessed this way, and the configuration in question is queried and provided
automatically by the system.

If you’re interested in how this is done, just hit F12 whenever you want to see the
implementation of something, and go through the code.

40

Ability Entry State

Figure 8. Diagram of entering and exiting a series of Ability States. The structure is similar to a
singly linked list where we only care about the head node (the Ability Entry State, Squat State).

The rest of the nodes (other Ability States, High Jump State and Hero Landing State) will handle
themselves and eventually transition back to Idle State.

​ Every Super State has a property that holds a reference to a special state, the Ability
Entry State. Under the hood, the Ability Entry State is just a Sub State that handles some
behaviors for the context. It is called the Ability Entry State because whenever we want to
activate the Limb Ability, we enter this state.
​ There are currently two Sub States in which we can transition into an Ability Entry State:
Idle State and Move State.

Figure 9. Code snippet from Move State. OnAbilityPressed is a callback to a button press event,

which is invoked when the ability button is pressed.

​ Pay attention to the expression in the middle, SuperState.AbilityEntryState. Once again,
we delegate the task of finding the appropriate state to the current Super State. The Sub State
simply needs to acknowledge that its current Super State knows what state is the right state to
transition into.

41

​ Inside the Super State, there is something like this:

Figure 10. Code snippet from a Super State.

​ We can see that the Super State has a property of type ASubState. In this case, we
specify the reference to be the Hook Out State, which is the Ability Entry State for the Basic
Limb.
​ The reason we cache the reference to the Ability Entry State inside the EnterState
method instead of doing so in the constructor, is a little complicated. To simply put, if we cache
in the constructor by calling Factory, we will recursively call the constructor, which will never end
and will raise a StackOverflow Exception. Caching inside the EnterState method solves that
problem. The current implementation is not the most optimized. However, we also don’t switch
Super States that often.
​ Now, switching to an Ability Entry State makes sense. However, going back to normal, or
in our case, transitioning back to Idle State, is not so obvious. It is actually the responsibility of
the person who designs the Limb Ability States to figure out how to transition back to Idle State.
In the case of Hook Out State, it simply transitions back to Idle State when nothing is hit. Or, it
transitions to Grapple Toward State when a grapple pillar is hit. Grapple Toward State
automatically transitions back to Idle State when the character is close enough to the grapple
pillar. The implementation of transitioning into a different Super State when hitting an enemy has
not been done yet.
​ The entire process can be thought of as a singly linked list like shown in Figure 8. The
idea is that when a Limb Ability is activated, we first transition into the corresponding Ability
Entry State. Then, a cascade of Ability States happens as one transitions into another. The
process will eventually end up transitioning back to Idle State. It is important that we terminate
the process in the Idle State, not Move State or other Sub States. It has something to do with
Mecanim and setting parameters. It is also important that if there is branching, like in the case of
Hook Out State, all branches should lead to Idle State as well.

Sub State

Special Sub State: The Idle State
​ Idle State handles the behavior for when the character is idling. In a sense, it does not
do much except for playing the idle animation and waiting from some input.
​ Idle State is a very special Sub State because it is sort of like a default Sub State. Every
other Sub State (except for the in between Ability States) can transition into Idle State. In

42

addition, Idle State can transition to every other Sub State (again, except for the in between
Ability States). This makes Idle State an ideal go-to state because it will handle the logistics of
transitioning to other states with most efficiency.
​ For example, the current Sub State is Fall State. After falling, we don’t need to worry
about whether the player is holding down directional input thus switching to Idle State or Move
State accordingly. We simply transition to Idle State because if the player is holding down
directional input, the Idle State will by itself transition into Move State.
​ Another reason why we want to always transition back to Idle State is that it resets the
animation parameter that controls the Ability animations.

Figure 11. Code snippet from the EnterState method in Idle State.

​ Like shown in Figure 11, we call the SetBool method with the Animator, and we specify
the Animator should exit animations that are related to a Limb Ability. Technically, we can call
this method in Move State, too, and don’t always have to transition to Idle State. However, we
don’t want to repeat ourselves, so Idle State naturally becomes the candidate for calling this
method. (The hash will be explained in the Parameter Hashing section.)

Move
​ Move State is the Sub State that handles the movement behavior of Snatcher. There
isn’t much to look at since the implementation is stable at this point. However, there are still a
few points worth mentioning.

Going back to Figure 2, we can see that Move State can only be accessed from Idle
State. This only occurs when the FSM receives a directional input. When entering Move State,
two things happen.

First, we register the FSM to three input events, each of which, once invoked, will cause
the FSM to transition to another state.

●​ OnMovementCanceled event, which happens when the directional input is terminated
and the FSM will transition back to Idle State.

●​ OnDashPressed event, which happens when the dash button is pressed and the FSM
will transition to Dash State.

●​ OnAbilityPressed event, which happens when the ability button is pressed and the FSM
will transition to the Ability Entry State of the current Super State.
The second thing that will happen upon entering Move State, is that the FSM will set the

bool parameter “IsMoving” in the Animator to true.
​ The opposite operations will be executed upon exiting Move State. The FSM will
unregister from the three input events, and will also set “IsMoving” to false.
​ In the UpdateState method, four things happen, and they execute in this specific order:
UpdateDirection > UpdateRotation > UpdateMovement > CheckSwitchState. The details are
irrelevant in this Guideline, but two methods need special attention to some extent.

The first is the UpdateMovement method. Its only job is to combine horizontal movement
with vertical movement (gravity), and apply this overall movement to the character by calling the

43

CharacterController’s Move method. This step of combining movements is necessary as calling
the Move method more than one time within one frame can create artifacts. Therefore, we have
to account for both types of movement, aggregate their values, and only apply it once per frame,
which is exactly what UpdateMovement does.

The second is CheckSwitchState. It is also called every frame. In this case, it will check if
the player is still grounded. If not, the FSM will transition into Fall State. There is currently no
way to check such an occurrence using an event. Thus, we have to check it every frame.

Fall
​ Fall State is very similar to Move State. In Fall State, the character can move around and
rotate. It also sets an Animator Parameter to play the fall animation. However, there are two
differences between Fall State and Move State. First, Fall State does not observe any input
event. It only transitions to Idle State when the character becomes grounded. Second, the
gravity applied to the character is different than that when it is grounded. This gravity constant is
usually larger, but we can configure it otherwise.
​ One thing to mention is the isGrounded property of the CharacterController component.
It will only detect correctly if in the last frame update, the Move method was called. Therefore,
both in the Move State and Fall State, the Move method is always used to move the character. It
is never through the means of directly moving Transform.

Dash
​ Dash State, once entered, will only exit to Idle State when the dash has been fully
performed. In the future, we will want to stop the dash when hitting something. The
implementation is rather simple. However, it also uses DOTween and an async method, both of
which can seem like dark magic.

Unity Mecanim

Mirroring The FSM
​ The Mecanim side of the Player FSM should mirror the structure of the scripting side. It
should do so in two senses. One is the Super States being their own small state machines. We
will make Sub State Machines for the Super States in Mecanim to reflect that. The other is that
the transitioning between Sub States in Mecanim should reflect the actual transitions in the
scripts. If Fall State cannot transition into Dash State in the scripts, it should not have an
animation transition in the Mecanim, either.

44

Figure 12. The Super State layer of Mecanim. Interim State is a state to mediate the entry into
one Sub State Machine.

Figure 13. Inside the Invis Sub State Machine. The structure is very similar to the structure

shown in Figure 2.

Parameter Hashing
​ Looking at the Unity documentation on Setting a boolean parameter in an Animator we
can see that there are two method overloads; one takes a string and a bool while the other
takes an int and a bool. We can use the string, which must correspond to the name of one of the
parameters in an Animator, to change its boolean value. However, this is a slow operation and
our FSM changes states very frequently. The solution is to use the integer which is an id for a
parameter.
​ Animator has a static method called StringToHash which takes a string as an argument
and returns an integer. The returned integer is an id for a parameter. And with this id, we can
access the parameter faster. To use it, we can still call the SetBool method. Instead of passing
in a string, we pass in the integer, and then we can specify the boolean we want.
​ ASuperState has already provided a number of id’s. Their values are initialized in the
constructor of ASuperState and can be accessed from outside the class.

Ideally, we do not need to touch this code unless a new parameter is introduced. An
exception is the IsInSuperStateHash, which is an abstract int property. The reason why we
enforce the implementation in its child class is because, at the level of ASuperState, we do not
know the parameter that controls the entry and exit of a Sub State Machine yet. In other words,
we have to wait until we create a Super State that we know which parameter we should use for
controlling the in and out of the Sub State Machine that is related to that Super State.

45

https://docs.unity3d.com/2022.2/Documentation/ScriptReference/Animator.SetBool.html
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/Animator.StringToHash.html

Figure 14. Hashed ids in ASuperState and the initialization.

Related Manager Classes
​ All the manager classes listed below derive from ASingletonScriptableObject, which are
at the same time singletons and ScriptableObjects. The properties of a manager can be
accessed by typing its name with the dot notation followed by the identifier “Instance” and
another dot. It is very similar to other implementations of the singleton pattern.
​ One advantage of using a ScriptableObject to make a singleton is that it is not scene
dependent. This is achieved by default without having to call DontDestroyOnLoad. Another
advantage is that we can more easily reference other assets in our manager classes. They work
just like one ScriptableObject referencing another ScriptableObject or a prefab. Note that I said
“assets,” meaning that we still cannot reference a GameObject in a scene.

PlayerStateFactoryManger
​ PlayerStateFactoryManager is a manager that is also a factory. It has the entire
collection of all possible states, both Super and Sub States. In the Factory Pattern section, we
talked about how we can access this class to grab the state we need. There is still an
unanswered question though: How do the states know about the context and the factory?
Because at the end of the day, the states need to know both in order for them to carry out their
own tasks.

This is partially answered in Figure 6, where we can see that the context and the factory
are specified in the constructor of APlayerState. But who calls the constructor? The answer is
PlayerStateFactoryManager. It calls the constructors of all states in its public method InitContext
which is called by the PlayerStateMachine itself in Awake.

To summarize the process, we start with the initialization of the PlayerStateMachine, a
MonoBehaviour. When its GameObject is loaded, the Awake method is called. In the Awake
method, it calls PlayerStateFactoryManager.Instance.InitContext(this). In other words, we pass

46

this object to the manager and specify that this is the current instance of the context. The
manager then initializes all the states with this specific context. As a result, all the states know
who the context is. In addition to that, upon initialization, the states also hook up the reference
to the manager like shown in Figure 6.

The disadvantage of adopting this implementation is that there can only be one instance
of PlayerStateMachine. This is because whenever a new instance is created, it will re-initialize
all the states with itself and override the old one. This is currently not a problem because there
is only one context present at any given moment.

The advantage of this is that the Limbs can also reference this manager. The Limbs are
of type ALimb, which is a pure C# class. An instance of ALimb has to know its corresponding
Ability Entry State. This can be easily done with the use of a singleton. The beauty of this is that
a Limb will not need to know the context, but will still get access to the Ability State that works
with the context. With the manager as the middleman, we eliminate the hard-wiring of ALimb to
an instance of the context, which is an instance of the MonoBehaviour PlayerStateMachine.

StateConfigManager
​ StateConfigManager is a container that has all the references to configuration
ScriptableObjects for each state. The configuration ScriptableObjects are of type
PlayerStateConfig. To make a new reference to a PlayerStateConfig, just declare it as a public
field. This is one of the few exceptions where public fields are used. An example is shown in
Figure 15. After creating the field, you will need to drag and drop the actual PlayerStateConfig
ScriptableObject asset into the StateConfigManager ScriptableObject asset.

Figure 15. Above is the implementation StateConfigManager. Below is the Inspector window
view of the StateConfigManager ScriptableObject asset. We can see it references two other

ScriptableObjects which are of type PlayerStateConfig.

LimbManager
​ LimbManager handles the collection of Limbs Snatcher has at a given moment. It
provides public properties where other classes can access information such as the current,
next, and prior Limbs. Again, the Limbs are derived classes from ALimb. The underlying data
structure of the Limb collection is a List and an index of type int.

47

The manager also has public methods SwitchLimb and DecrementLimbDurability.
Calling SwitchLimb will cause the internal index to either increment or decrement, and thus
change the current, next, and prior Limb. DecrementLimbDurability decreases the durability of
the current Limb which is an integer kept within the ALimb.

Upon calling SwitchLimb, the manager also invokes an event called OnLimbSwitched.
Other entities listen to the invocation of this event. However, it is beyond the scope of this
Guideline. For more information about events, see the Guideline on SO Event System.

Calling DecrementLimbDurability will also cause the event OnAbilityUsed to be invoked.
Other entities listen to the invocation of this event.

48

https://docs.google.com/document/u/0/d/1TzXQIn2zCDJsLyp1Zmychn79y6ubjrzOvmbRBWPWRx0/edit

ScriptableObject Event System Manual

Overview

Rationale
​ The observer pattern is a good way to decouple the codes that we write. Imagine that we
want the UI to know about a player’s death so that it can show a pop-up text “You Died.” A way
to do it is to have the player reference the UI and call a method when it is dead. The problem is
that if the UI is not in the scene (maybe you’re just testing movement abilities), you now get a
null reference exception. In order for you to test the movement abilities, you need to drag in the
UI prefab; it is a lot of trouble and it doesn’t make sense.
​ The solution is to utilize the observer pattern. Instead of having the player control the UI,
we can have the UI listen to the player. The player doesn’t care about the UI at all. When the
player dies, the player announces its death, like how you will announce an event. Everyone that
listens to the player’s death event will get notified.
​ The bad news is that we have to set up a way of communication so that the player does
not know or care about the UI. The good news is that, once set up, we can have as many
listeners as we want, and the player does not need to know about ANY of them. The player’s
only job is to announce its death when it happens.
(Go to the Example Section for more detail)

Preface
​ The implementation of the SO event system in our project is largely based on Dapper
Dino’s implementation. Check out his videos on the topic if you’re interested. Part 1 and Part 2
The only difference between his implementation and ours, is that I added an additional option to
subscribe to an SO event as you will see later.

Manuals

How to Create an Event?

49

https://youtu.be/iXNwWpG7EhM
https://youtu.be/P-U7GPXMtLY

​ In the Assets/Event folder (or you can create a subfolder for organization), right-click >
Create > Snatcher > Event > choose one.

​ After that, you will get something like this. You just made an event, and it is ready for
other scripts to reference it.

What are the types of events?
​ Commonly seen event types include: Void Event, Int Event, Float Event, and Vector3
Event. What does that mean? The type determines what gets passed down when the event is
invoked. Imagine we want to let the enemies know the player’s location when the player lands.
What we can do is to have the player invoke a Vector3 Event called OnPlayerLanded and pass
its current location into the event upon invoking it. What will happen is that all the enemies that
have subscribed to OnPlayerLanded will receive a notification, not just about the fact that the
player has landed, but also the location where the player has landed.
​ A more abstract idea has to do with the Void Event. What does a Void Event pass
around? Actually, nothing. For the subscribers, it’s like knowing that something just occurred but
no other information is provided. It is similar to subscribing to an Action event in C# style,
whereas a Vector3 Event is like Action<Vector3>.

A side-note here: notice that I spelt Void with a capital v. That is because “void” is a
keyword in C#, and “Void” is a boilerplate struct that I made for this system to work. You will not
need to know the Void struct that gets passed around upon an event’s invocation because it will
not contain any useful information.

What if the type I need is not present?
​ Let me know. I will make it for you.
​ Or watch the videos. Just know that when defining an event whose type is a pure C#
class or a struct (that means the object is not a Unity Object like Vector3 or CanvasGroup),
make sure you add the attribute [System.Serializable] as show below:

50

How to Subscribe?
​ There are two ways you can subscribe to an SO event: through IEventListener or
through classic C# style action callback. Before we start, I need you to know that IEventListener
is recommended as it is safer and it gets invoked before C# style action callbacks.

IEventListeners require more steps to set up, but it ensures the subscribing and
unsubscribing are done automatically for you. Action callbacks offer more convenience and are
quicker to set up. However, you do need to handle the unsubscribing part on your own.
Otherwise, there will be errors.

IEventListener
​ The IEventListener is an interface that all the listener scripts in the system implement.
That means IntEventListener, FloatEventListener, Vector3EventListener, and VoidEventListener
(and others we might implement in the future), all have the ability to respond to the invocation of
an event.

How they did that is unimportant. What is important is that, if you want to subscribe to an
int event, you need to use an IntEventLister. And, you will attach an IntEventLister onto a
GameObject. Preferably, it is the GameObject that has the script in which there is a function you
want to call. It becomes important when it comes to subscribers that are in prefabs.

51

​ The left image shows that you can type in the search bar to look for IntEventListener. On
the right, you can see that, after adding the component, it expects a Game Event that is of type
IntEvent, which is an int SO event. You can also see that it expects some UnityEvents. The way
this works is the same as that of a UI button’s, so I won’t go over it here. Just note that the
method you want to call needs to be public in order for it to be accessible from the Inspector.

Also, note that to hook up methods for non-Void Events, you probably want to reference
it dynamically for the method to actually use the value that gets passed down by the publisher.
The image below shows there are two options for calling MyIntCallback, one under the label
“Dynamic int” and the other “Static parameter.” The one under “Dynamic int” is usually the one
we want.

​ That is the process of setting up an IEventListener, in this case an IntEventListener.
​ (Remark: UnityEvent has a reputation of being slow and not performant. We might have
to deal with this in the future, but for now, it should be fine.)

Action Callbacks
​ If you’re not familiar with C# delegate or event, I suggest you watch the two-video series
by Sebastian League, to go over the basics.
​ How we set up to subscribe to an SO event using C# style action callbacks, is very
similar to how we invoke one. Below is the demonstration of how to subscribe to a VoidEvent
and an IntEvent. Pay attention to the arguments that are passed in into the RegisterListener
methods of the two events. Also pay attention to the parameter of VoidEventCallback and that of
IntEventCallback.

52

https://youtube.com/playlist?list=PLFt_AvWsXl0dliMtpZC8Qd_ru26785Ih_

​ Two things are worth mentioning. Firstly, the callbacks are passed into RegisterListener
without the () at the end. This is because we are not calling them, we are passing them around
like variables. Secondly, the parameter types of the callbacks match the types of their events
respectively. The “Void _” is just syntactic stuff that indicates we won’t be using this parameter in
this callback. As for IntEventCallback, we do potentially want to use myInt.
​ After we are done subscribing to the events, it is important that we somehow
unsubscribe it.

​ In this example, I choose to unsubscribe from the event inside OnDisable. This is
probably the single most common place to unsubscribe from an event because once a
MonoBehaviour is disabled, all the other logics within it should stop working as well.

How to Raise an Event?
​ Raising an event is pretty straight forward. Get a reference to the event that will be
invoked. And call the Raise method when you want to invoke it.

53

​ Here I have an example of raising two events in the Start method. For the VoidEvent,
there is no need to pass in any argument. For the IntEvent, it does expect an integer for input.

​ In the Inspector, we can now add events to it.

Caveats

Event Dictionary
​ One thing to keep in mind when using this system is that the Unity Editor isn’t helpful in
terms of keeping track of who’s referencing who. Sometimes, we will lose track of it, and it can
be a pain to debug. You must note the publisher(s) and subscriber(s) of an SO Event.
​ The way we will cope with this problem is to use an Event Dictionary. Event Dictionary
can be found in the Documentation folder of this Google Drive. Open up the Summary to quickly
reference the SO event of interest.

54

Example

(Source: Three ways to architect your game with ScriptableObjects)

The diagram above demonstrates the basic framework of an event system implemented

using Unity Engine’s ScriptableObject (SO). The Player is the publisher of the SO event
OnPlayerDied, which is the event itself. Music System, Game Over UI, and Enemy are the
subscribers of the event. The implementation of this pattern in our project is a little more
advanced. However, the underlying concept is the same.

It goes like this: Music system, Game Over UI, and Enemy subscribe to the
OnPlayerDied event. The Player holds a reference to the OnPlayerDied SO event, which sits
inside the Assets folder. When the Player invokes the event, Music system, Game Over UI, and
Enemy all get notified.

The Player can be a MonoBehaviour (the type of script you attach to a GameObject), or
it can be other things as well. As long as it can hold a reference to the OnPlayerDied SO event,
it can invoke it. The beauty of it, besides many amazing things events provide us, is that the SO
event sits in the asset folder regardless of which scene is currently active. It is essentially an
asset. As long as you can hold a reference to it, you can always call it.

55

https://unity.com/how-to/architect-game-code-scriptable-objects#architect-events

Debug Logging

TL;DR
​ Instead of using Debug.Log(“your message here”), use this.Log(“your message here”).
Your logging message should appear in the Console as usual, with the exception that it now
shows which entity is logging.

Toggling Logs
​ Try to make a boolean variable exposed in the Inspector that allows you to toggle on or
off logging messages. This is pretty easy; you just need to put the log function call in an if-block,
and you want to check against the toggle boolean value.

Besides adhering to the coding conventions, you should name that boolean variable
_debug unless you have multiple levels of details you need to debug. Mark the variable
[SerializedField] private, and you can switch on/off logging to the console without having to go to
the script.

Figure 1. Toggle of a Log method.

The new logging system will not compile the logging behavior when making a build. So,

we don’t need to worry about remnant logging function calls in the code base. That being said, it
is still a good idea to remove unused calls to log, unless it is a debugging tool that you
constantly need to use. For example, when setting up a new state for the FSM, you probably
want to see what state the FSM enters. It is therefore a good idea to leave the call in the script
with a toggle like shown above, and use it in need.

56

Logging Methods

Figure 2. Demonstration on how to use logging methods.

Figure 3. Console results from Figure 2.

Figure 4. The name of the GameObject is also printed in the Console. In this example, the name

of the Game Object “Example Name” is used in the logged messages in Figure 3.

57

Figure 5. Variables besides strings can also be logged.

Figure 6. Logging methods can also be called directly on variables like extended methods.

Identifying Logging GameObject

Figure 7. Highlighting the logging GameObject.

​ If you click on a logged message in Console, it will highlight the GameObject that makes
the function call. However, to achieve this, there are two requirements to be met.

Firstly, it has to be in a MonoBehaviour script. It makes sense because only
Monobehaviour scripts can be attached to GameObjects, and everything in the Hierarchy is a
GameObject. Therefore, when you want to highlight something in the Hierarchy, it implies that
such an entity is a GameObject that has a MonoBehaviour script attached to it.

Secondly, the logging method has to be called in such a fashion as shown in Figure 5. It
has to be called by calling on the this keyword. It cannot be called like shown in Figure 6.

58

If both requirements are met, you can click on the message, and it will show the
GameObject in the Hierarchy that called it.

Concatenation
​ You can pass in more than one argument into the logging methods. The logging
methods will concatenate the arguments and separate them using semicolons.

Figure 8. Demonstration on message concatenation. Arguments are separated with semicolons.

59

Cinemachine Camera Setup

Cinemachine Brain
​ Cinemachine Brain is a component that gets automatically added to the Main Camera
when you add a Cinemachine Virtual Camera into a scene. (If you drop a prefab with a
Cinemachine Virtual Camera component, it won’t automatically do so.) You will see an icon on
the Main Camera in the Hierarchy like shown in Figure 1.
​ The component detail itself is shown in Figure 2. There isn’t anything we want to change
in this component for now.
​ Two things to note: (a) we need to update the Camera component on Main Camera
to use Orthographic for the Projection, shown in Figure 3, (b) if you added a Cinemachine
Virtual Camera in the scene, you cannot move the Main Camera now.

Figure 1. Main Camera in Hierarchy

Figure 2. Details of Cinemachine Brain component. The Live Camera indicates which

Cinemachine Virtual Camera the Brain is currently using.

Figure 3. Projection of Camera component needs to be updated to Orthographic

60

Cinemachine Virtual Camera
​ A Cinemachine Virtual Camera is essentially an empty Game Object with a Cinemachine
Virtual Camera component on it. The reason why the Main Camera cannot move once you add
a Cinemachine Virtual Camera to a scene, is that it is now the Virtual Camera’s job to move
around and act as the camera that we actively use. You will notice that the Main Camera’s
Transform Position and Rotation are the same as those of the currently active Virtual Camera.
​ To use a Cinemachine Virtual Camera, we just need to drag and drop a prefab and hook
up the reference of our player Game Object.

1.​ Set the Projection of the Main Camera to Orthographic
2.​ Add a Cinemachine Brain component to the Main Camera
3.​ Go to _Snatcher > Prefab > drag and drop Player Virtual Camera to the scene
4.​ In the Hierarchy, select the Player Virtual Camera you just dropped
5.​ In the Inspector, drag and drop the player Game Object into the Follow field of the Virtual

Camera component, like shown in Figure 4.
6.​ The Virtual Camera should now follow the player as it moves around

Figure 4.

61

General UI Canvas Setup

Canvas Component

Figure 1. Canvas component.

​ We want the Render Mode to be Screen Space - Overlay, which is the default anyway.
There will be cases where we need popup damage text or overhead health bar displays. In
those cases, we will use something else.

Canvas Scaler (IMPORTANT)

Figure 2. Canvas Scalar.

There are four things we need to make sure they are in place:

1.​ Ui Scale Mode should be set to Scale With Screen Size
2.​ Reference Resolution should be 1920 by 1080
3.​ Screen Match Mode should be Match Width Or Height
4.​ Match should be set to 0.5

62

Interactable Setup

Figure 1. World-space UI Indicator.

Steps to Set Up
1.​ _Snatcher > Prefab > Interactable > go to Teleporter or Unlocker > drag and drop the

prefab into the scene
2.​ Adjust the size of the Box Collider if needed; DO NOT change the scale of the

GameObject itself
3.​ Type in text in the Hint Indicator component, as shown in Figure 2.
4.​ Adjust the Y rotation of the GameObject’s Transform if needed
5.​ Tweak settings in Hint Indicator and TeleportController or UnlockerController

Figure 2. Hint Indicator Component. Text To Show input field is where to put in the hint text.

Hover over the Animation-related fields to see explanations.

63

Interactables
​ Inside Prefab > Interactable, there is a prefab called Interactable. This prefab has two
prefab variants, Interactable_Teleporter and Interactable_Unlocker. Interactable has a Hint
Indicator script on it that is responsible for showing UI when the player enters the box collider.
Additionally, Interactable_Teleporter has a TeleportController script attached to it that defines the
instance’s teleport behavior. Similarly, Interactable_Unlocker has an UnlockerController on it
and it defines the unlocking behavior of that instance.

Interactable Creation
​ If you need something that changes an SO reference, you need an
Interactable_Unlocker. If you need to teleport the player when it presses F, use an
Interactable_Teleporter. There are some readymade prefab variants of the two kinds. For
example, Interactable_WoodenDoor is a prefab variant of Interactable_Teleporter, and
Interactable_Key is a prefab variant of Interactable_Unlocker.

If you need to make your own, make a prefab variant out of either Interactable_Unlocker
or Interactable_Teleporter because they are the two most common types of Interactables. After
you have made a prefab variant out of your choice, drop in the model inside that variant.

Never scale the parent GameObject. If the box collider is too small, change the
boundaries using the Box Collider component settings. If the UI text is too small, adjust the
Canvas settings and TMP settings. If the model is too small, scale the model itself. Do not
‘Apply changes’ to parent prefabs. It might accidentally break something.

64

Event Dictionary

OnLimbSwitched

Publishers
●​ LimbManager

○​ On the LimbManager ScriptableObject
○​ When calling LimbManager.Instance.SwitchLimb(), this event is raised.

Subscribers
●​ LimbCanvas prefab
●​ PlayerLimbController on the Player Prefab

65

	
	Game Design Document
	
	
	
	
	
	
	

	Table of Contents
	
	Overview
	High Concept
	Category
	Audience
	Accessibility
	Budget
	Timeline

	
	Getting Started
	TBA Games Team
	Communication and Meetings
	Team Site
	Tasks and Planning
	Collaboration and Organization
	Development

	Core Gameplay
	Game Flow
	Snatcher
	Character Controls
	Enemy
	Enemy Behavior
	Standard Behavior
	Scent Tracking Behavior

	Weight System
	Stamina System
	Obtainable Limbs
	Chameleon’s Tail
	Mushroom’s Legs
	Maple Seeds’ Wings

	Challenges
	Current
	Future

	Death
	
	Level Design Overview
	
	Upper World
	Wells
	Dungeon 1.1
	
	Dungeon 1.2
	
	Dungeon 1.3
	Dungeon 1.4
	Fun

	Story
	Audio
	Volume
	Sound effects

	
	Graphics
	Perspective
	HUD
	Screen System
	Start menu screen
	Pause menu screen
	Parameter menu screen
	Death by falling screen
	Death by enemy screen

	Concept Artwork
	

	Game Assets
	Primary Asset Template
	Asset List
	Asset Repository
	

	Dev Documentations
	Coding Standards
	General Structure of a File
	Open Curly Bracket
	Classes
	Abstract Class
	Public Properties
	Protected Properties
	Private Fields
	Methods
	Method Parameters
	Local Variables
	Constants
	Events
	Access Modifiers
	Others
	

	Player Finite State Machine
	Introduction
	Player State Machine
	Terminology
	Update Method and Passing Context
	Switching States
	Public Properties & Private Fields
	Factory Pattern

	Super State
	Configuration Consultant
	Ability Entry State

	Sub State
	Special Sub State: The Idle State
	Move
	Fall
	Dash

	Unity Mecanim
	Mirroring The FSM
	Parameter Hashing

	Related Manager Classes
	PlayerStateFactoryManger
	StateConfigManager
	LimbManager

	

	ScriptableObject Event System Manual
	Overview
	Rationale
	Preface

	Manuals
	How to Create an Event?
	What are the types of events?
	What if the type I need is not present?

	How to Subscribe?
	IEventListener
	Action Callbacks

	How to Raise an Event?
	Caveats
	Event Dictionary

	Example

	
	Debug Logging
	TL;DR
	Toggling Logs
	Logging Methods
	Identifying Logging GameObject
	Concatenation
	

	Cinemachine Camera Setup
	Cinemachine Brain
	Cinemachine Virtual Camera
	

	General UI Canvas Setup
	Canvas Component
	Canvas Scaler (IMPORTANT)
	

	Interactable Setup
	Steps to Set Up
	Interactables
	Interactable Creation

	
	Event Dictionary
	OnLimbSwitched
	Publishers
	Subscribers

