GET, POST, PUT,DELETE in express

Hana Aden documentation

Hey | am Hana Aden today | wanna guide you doing the 4 magic words of express
1: get : use that when you like to get/read something like data from the server side
2: put : is update existing data on the server side

3: delete : is the deleting the data on server side

4 : post : adding or creating data to you server side data like database

The first thing that | tried to understand is What is express ?

Express is Framework that handles HTTP request in simple way you can say it is a tool
that helps make a server in node js

It is like helper that handles requests and responses between clients to servers

Since you understand that let we start

First | created a folder and | named it express CRUD after that | created a file inside that
folder and | named it server.js

| started coding immediately the first line const express = require(“express”) what
happened was Vs code saying wait “who is express” then | figured out that | should
install express in my folder

Better for you to do so now write this command as | did

In my terminal :

PS D:\Hana\online study\visual st\Express crud>npm init -y

PS D:\Hana\online study\visual st\Express crud>npm install express

See now you see the magic you got the package json in your Folder as do | after that
VS code recognized the express

Now | have express installed package json installed and my first line of code

const express = require(“express”)

Now | added

Const app = express() that means | created express app ahead the third line is
app.use(express.json()) means any time that some sends a JSON data to the server
side please change it into javaScript object so | can send responses and use it as
req.body without this line the req.body will stay undefined

Now we have our first 3 lines

Const express = require(“express”)

http://server.js

Const app = express()
app.use(express.json())

Let we go ahead what we are waiting we need a data so let we create a fake database
by our selves

Let users = [

{id: 1, name : “John”},

{id :2 , name : “Jane”}

]

As Basic javaScript the word [LET] allowing as the changes means if we make const the
PUT in express is impossible as well as POST and what we have is array inside it a
objects so that is our database by now

Now let we start the four words but before that we need to know or check if our server is
running

So start the server

app.listen(5000, () => console.log(“the server is running on port 5000”))

Let we prepare the postman

The postman is tool helps us to test our APIs you can directly send requests to you
server side instead of building the frontend everytime

Click new in your post man and paste the URL “http://localhost:5000/users”

Before pasting like we do the get in our server side

Now above you app.listen(5000, () => console.log(“the server is running on port
50007))

Create your POST GET PUT DELETE things

Let we fo the GET then code with me :

app.get(“/users”, (req ,res)=>{

res.json(users)

}

Now you wonder what is req , res and “/users” the “/users” is route path that you add
you api see “http://localhost:5000/users” now req(request) is all incoming information
about the request the client made example reg.body.name you will get name and
res(response) means is what you send to the client side

It get method see you send all users in your database to the client side that is why you
used res

No in your terminal :
PS D:\Hana\online study\visual st\Express crud> node server.js

http://localhost:5000/users
http://localhost:5000/users
http://req.body.name
http://server.js

You have to get
the server is running on port 5000

Ok let we go the postman paste this URL “http://localhost:5000/users” choose get and
click send

GET v http://localhost:5000/users Send v

So you will get in your postman this
{} JSON ~ [> Preview [A Visualize ~

[

RS]
e

3 "id": 1,

4 "name": "Jane"
5 i,

6 i

7 "id": 2,

5] "name": "John"
9 t
1@]

One my first mistake the postman was giving we error saying not found while now is
giving me response look | figured our running the server always will gonna solve the
problem

Now let me go to the POST
app.post(“/users”, (req ,res)=>{
Const newUser = {

id : users.length + 1 |

name : req.body.name

}

users.push(newUser)
res.status(201).json(newUser)

}

EXPLANATION
app.post : creates POST route in express

http://localhost:5000/users
http://app.post
http://app.post

“lusers” : this is URL path as you know so when someone sends request to
http://localhost:5000/users this code will run

Users.length + 1 : automatically gives id

req.body.name : read the name requested in the body

And pushes into your user

Now go to your postman in this URL http://localhost:5000/users choose POST then
body -> row then JSON

POST w http:/flocalhost:5000/users Send v

Params Authorization Headers (9) Body e Scripts Settings Cookies

Choose body then row then JSON

And write
none form-data x-www-form-urlencoded €@ raw binary GraphQL JSON
104
2 | "name": "Leo"
3 %
Click send

Now you see in your postman
{} JSON ~ [> Preview [Visualize

1
"id": 3,
"name": "Leo"

N SV W

Why we are not going back to get and see if our database is updated

http://localhost:5000/users
http://req.body.name
http://localhost:5000/users

{} JSON ~ [> Preview [X] Visualize ~

1 [

2 i

3 "id": 1,

4 “name": "Jane"
5 i,

6 i

7 "id": 2,

8 “name": "John"
9 i,

1@]

11 "id": 3,

12 “name": "Leo"

See now | added a user

Let we go to PUT

As usual do but in our route we add ID so we have to get the user id that we are

updating

app.post(“/users/:id” , (req ,res)=>{

Const userld = parselnt(req.params.id)

Const user = users.find(u=>u.id === userld)

if(luser) return res.status(404).json({messege: “user not found”})
user.name = req.body.name

res.json(user)

¥

Now in your postman copy the link http://localhost:5000/users/2
Choose PUT => Body =.> row => json

PUT v http://localhost:5000/users/2
Params Authorization Headers (9) Body e Scripts Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON
1 4
2 | "name": "Johnny"
3 i

You will get in your post man

m

Cookies

Beautify

http://app.post
http://user.name
http://req.body.name
http://localhost:5000/users

[N
[

[=]

o]

.
"name": "Johnny"

oW
e

Now check again the get and see the update

[
1
"id": 1
"mname”: "Jane"
i,
1
id 2,
"name": "Johnny"
i,
i
"id": 3
“name" : Leo
i
1

Now let we do the DELETE the only one that is remaining
app.delete(“/users/:id”){
Const userld = parselnt(req.params.id)

Const userindex = users.findIndex(u=>u.id === userld)
if (user.id === -1) return res.status(404).json({messege: “user not found™})
users.splice(userindex , 1)

res.json({messege : “user deleted successfully’})

}

http://req.params.id
http://u.id
http://user.id

Now our postman

‘ DELETE ~ http://localhost:5000/users/2 ‘

The output

{} JSON v~ [> Preview [Visualize ~

1 4
2 ‘ "message”: "user deleted successfully”
3 i

Let we get our users

{} JSON v~ [> Preview [Visualize ~

1 [

2 i

3 "id": 1,

4 “name": "Jane"
5 [

6 i

7 "id": 3,

8 “name": "Leo"
9 I

10]

Hope this documentation helped as intended

FULL CODE

express = require ("express")
app = express|()

app.use (express.json())

users = |
{id: 1 , name : "Jane"},

{id: 2 , name : "John"}

.get ("/users" , (reqg ,res)

res.json (users)

.post ("/users" , req ,res)

(
newUser = {

id : users.length + 1 ,
name : req.body.name

}

users.push (newUser)

res.status (201) . json (newUser)

.put ("/users:id" , (req ,res) {
userId = parselnt (reqg.params.id)
user = users.find(u=>u.id === userId)
if (!user) {
return res.status (404).json({messege : "user not found"})
}
user.name = reqg.body.name

res.json (user)

.delete (" /users/:id" , (req ,res) {
userId = parselnt (reqg.params.id)
userIndex = users.findIndex (u u.id === userId)

if (userId === -1) {

return res.status (303).json ({messege : >r not found"})

}

users.splice (userIndex , 1)

res.json ({messege : "deleted suc fully"})

})

pp.listen (5000, () unning on port 5000"))

	GET, POST, PUT,DELETE in express

