
 DEDAUB.COM

Algem ​
Diamond Refactoring

Smart Contract Security Assessment

January 26, 2023

​

​

 DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the Algem protocol.

The contracts of the repository ilkatel/liquidStaking_audit of the Algem protocol has
been audited before, on November 2022 up to commit
0d1aa2e799ee03b116283d4a7a03ab5b9df57a48. The corresponding report can be
found here.

This report focuses exclusively on the Diamond Refactoring of the LiquidStaking
contract of the Algem protocol. The commit that introduced this refactoring is the
5a357c14c6ac1f1619c0e0e6d6063e7264d578f7. However, this commit contained a
partial implementation of the H1 fix of the main report which was later reverted since it
wasn’t finalized yet. Thus, the commit on which this audit was based is
8046a411b637c2747160526aaa9a6b0d83ee5607 which is the one after the reversion of
the H1 fix.

This report also covers the commits beyond the one on which the audit was based
(8046a411b637c2747160526aaa9a6b0d83ee5607), which include the fixes of the
issues originally reported here as part of the audit. After receiving the new
implementations, we re-audited the code with a focus on the changes that resolve the
issues. As a result, this report covers the codebase up to the commit
bc50b9aa018e2f5ced49c314f2c6ce9356f8c6e6.

Issues from the November 2022 main report that were “Dismissed”, and those which
were “Acknowledged” but were not fixed or implemented at the time of writing are not
reported here again.

1

https://github.com/ilkatel/liquidStaking_audit
https://docs.google.com/document/d/104A7OxMYM6BDdxF7FVIrByiO7Zv8DazBRahNu4PBb3s/edit?usp=sharing

 DEDAUB.COM

The audited contracts are the following:

contracts/audit/
├── ArthswapAdapter.sol
├── NFTDistributor.sol
├── ZenlinkAdapter.sol
│
├── LiquidStaking/
│ ├── LiquidStaking.sol
│ ├── LiquidStakingMain.sol
│ ├── LiquidStakingManager.sol
│ ├── LiquidStakingMigration.sol
│ ├── LiquidStakingMisc.sol
│ └── LiquidStakingStorage.sol
│
└── interfaces/
 ├── ILiquidStaking.sol
 ├── ILiquidStakingManager.sol
 └── IZenlinkPair.sol

SETTING & CAVEATS

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Functional
correctness (i.e. issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e. full-detail) specifications of
what is the expected, correct behaviour. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
specification. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most effectively
done through thorough testing rather than human auditing.

2

 DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL
Can be profitably exploited by any knowledgeable third-party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH
Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
●​ User or system funds can be lost when third-party systems

misbehave.
●​ DoS, under specific conditions.
●​ Part of the functionality becomes unusable due to a programming

error.

LOW

Examples:
●​ Breaking important system invariants but without apparent

consequences.
●​ Buggy functionality for trusted users where a workaround exists.
●​ Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

3

 DEDAUB.COM

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

ID Description STATUS

H1
Lack of access control in LiquidStakingManager
functions

RESOLVED

The pause() and unpause() functions of the LiquidStakingManager contract are
not access controlled and can be used by an attacker to pause() and unpause() this
contract at will.

MEDIUM SEVERITY:

ID Description STATUS

M1
Missing roles in LiquidStakingManager contract
initialisation

RESOLVED

The LiquidStakingManager contract has functions addManager() and
removeManager() which require the DEFAULT_ADMIN_ROLE to execute. However, this
role is not granted to the caller of the initialize() function, making them unusable.

4

 DEDAUB.COM

LOW SEVERITY:

ID Description STATUS

L1 Mistakenly reverted fixes and other compile errors RESOLVED

LiquidStaking.sol

●​ LoC:22: The initialize() can be made external.

●​ LoC:30: The setMinStakeAmount() is not visible by LiquidStaking.sol.

●​ LoC:40-43: The initialize() function uses variable _dntUtil which used to
be the 2nd argument of the constructor before the Diamond refactoring.
However, now this argument was renamed to _utilName, but the code inside
the function wasn’t updated accordingly.

LiquidStakingMain.sol

●​ LoC:194: The fix which removed the “()” from the use of the updateAll
modifier in the withdraw() function was reverted.

●​ LoC:232: The fix which renamed the lastEtaTotalBalance to the correct
lastEraTotalBalance was reverted.

●​ LoC:432: The _updateUserBalanceInUtility() uses the distr1_5 variable
which is undeclared.

●​ LoC:493: The fix which renamed the message of the require() that had a typo
was reverted.

LiquidStakingMigration.sol

●​ LoC:93: The migrateStorage() function was made public instead of
external with no apparent need for such change.

5

 DEDAUB.COM

NFTDistributor.sol

●​ LoC:432: This line contains the fix of the A6 issue from the main report which
was introduced at commit 26c4028. However, it misses the semicolon (;) at the
end of the line.

ArthswapAdapter.sol

●​ The WASTR address was mistakenly deleted when the fix for H1 of the main audit
report was reverted in commit 25e78a.

ZenlinkAdapter.sol

●​ LoC:209: The pair.approve() and the pair.totalSupply() functions
couldn’t be found in IZenlinkPair.sol.

L2
Incorrect implementation of findMedian function in
LiquidStakingMigration contract.

RESOLVED

The function findMedian() in the LiquidStakingMigration contract does not
implement the median calculation correctly when the array is already in sorted order
and is of even length. In this case, the result needs to be averaged between the two
middle values.

LiquidStakingMigration::findMedian()

function findMedian(uint[] memory _arr) private pure returns (uint mean) {
 uint[] memory arr = _arr;​
 uint len = arr.length;​
 bool swapped = false;​
 for (uint i; i < len - 1; i++) {​
 for (uint j; j < len - i - 1; j++) {​

6

 DEDAUB.COM

 if (arr[j] > arr[j + 1]) {​
 swapped = true;​
 uint s = arr[j + 1];​
 arr[j + 1] = arr[j];​
 arr[j] = s;​
 }​
 }​

 // Dedaub: The middle values need to be averaged
 // here as well when len % 2 == 0​
 if (!swapped) {​
 return arr[len/2];​
 }​
 }​
 if (len % 2 == 0)
 return (arr[len/2] + arr[len/2 - 1])/2;​
 return arr[len/2];​
}

L3
Deleting a selector will never succeed and will cause most of
the LiquidStakingManager functions to revert

RESOLVED

The deleteSelector() function of the LiquidStakingManager contract, assigns the
address(0) to the selectorToAddress mapping for the provided selector and then
calls the private _deleteSelector() which erases the rest of the data related to this
particular selector.

However, this function needs to retrieve the associated address with this selector in
order to delete the rest data from the side of the address. Thus, since the address was
deleted earlier, the function gets the address(0) as the to-be-deleted address and
reverts due to underflow error when calculating the lastIndex of the list of the
selectors.

7

 DEDAUB.COM

As a result, the functions changeSelector() and changeSelector() that call
deleteSelector() will eventually revert as well.

LiquidStakingManager::deleteSelector()

function deleteSelector(bytes4 selector) public onlyRole(MANAGER) {​
 require(selectorToAddress[selector] != address(0),
 "The selector was not set");​

 // Dedaub: Here the address of the selector is deleted before the call
 // to _deleteSelector() which needs the original value
 selectorToAddress[selector] = address(0);​
​

 _deleteSelector(selector);​
}

LiquidStakingManager::_deleteSelector()

function _deleteSelector(bytes4 selector) private {

 // Dedaub: Here the function retrieves the address of the selector
 // for deleting its related data, but it has already been
 // zeroed at that point​
 address addressFromSelector = selectorToAddress[selector];​
​

 uint256 index = selectorIndex[addressFromSelector][selector];​

 // Dedaub: Here the execution will revert due to an underflow error
 // since the length of the array of the selectors for the
 // address(0) is zero
 uint256 lastIndex = addressSelectors[addressFromSelector].length - 1;​

 bytes4 lastSelector =
 addressSelectors[addressFromSelector][lastIndex];​
​

 addressSelectors[addressFromSelector][index] =

8

 DEDAUB.COM

 addressSelectors[addressFromSelector][lastIndex];​
 selectorIndex[addressFromSelector][lastSelector] = index;​
​

 addressSelectors[addressFromSelector].pop();​
​

 if (addressSelectors[addressFromSelector].length == 0)
 _deleteAddress(addressFromSelector);​
}

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Warning for future maintainability regarding the current
implementation of the Diamond pattern

ACKNOWLEDGED

The current implementation of the Diamond pattern is not the standard
implementation since it has some differences.

We raise here a warning for future maintainability for the reason that no use of hashed
storage layout is made for ensuring no storage collisions.

However, in the current implementation the facets don’t have any storage variable of
their own and they all inherit uniformly. This means that this issue doesn’t currently
occur, but we raise this warning for future upgrades or facet additions that could
introduce some storage variables or different inherited contract order which would
cause a storage clash.

9

 DEDAUB.COM

A2 Possible misplaced setting() function in LiquidStaking
contract

RESOLVED

The LiquidStaking contract is the proxy contract which provides the entry point into
the Diamond. It is called by other contracts and performs the required delegate calls to
the other facet contracts. However, it also contains a setting() function which looks
unrelated to the rest of its functionality. Possibly this may need to be moved to a facet
instead.

A3 Redundant contract variable in LiquidStakingManager
contract

RESOLVED

The LiquidStakingManager contract has a contract variable named
diamondAddress which is never initialized nor used.

A4 No contract implements IPartnerHandler interface RESOLVED

The LiquidStakingMigration contract has a function getUserLpTokens() which
uses the IPartnerHandler interface when calling calc(). However, no contract in
the repository implements IPartnerHandler. Possibly the adapters need to
implement this interface.

A5 Compiler bugs INFO

The code can be compiled with Solidity 0.8.4. Version 0.8.4, in particular, has some
known bugs, which we do not believe affect the correctness of the contracts.

10

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1798

 DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

11

	Algem ​Diamond Refactoring
	ABSTRACT
	SETTING & CAVEATS
	VULNERABILITIES & FUNCTIONAL ISSUES
	CRITICAL SEVERITY:
	HIGH SEVERITY:
	ID
	H1

	
	MEDIUM SEVERITY:
	ID
	M1

	LOW SEVERITY:
	ID
	L1
	L2
	L3

	
	OTHER / ADVISORY ISSUES:
	ID
	A1
	A2
	A3
	A4
	A5

	
	DISCLAIMER
	ABOUT DEDAUB

