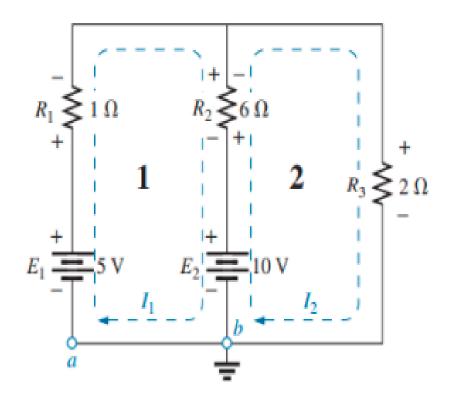
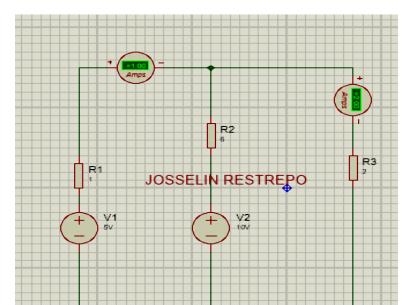


TRABAJO "METODOS DE MALLAS"

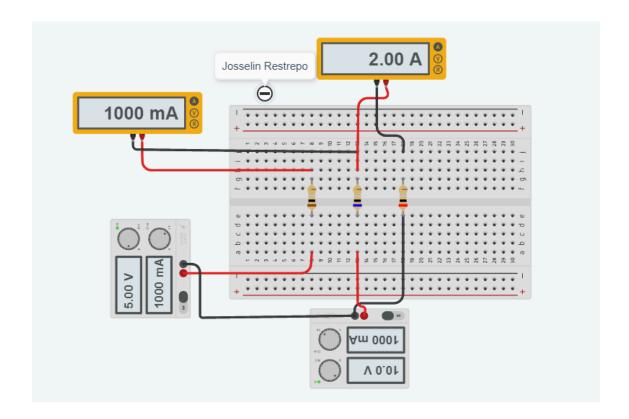

REALIZADO POR JOSSELIN RESTREPO GIRALDO

DOCENTE MARIA VICTORIA HERRERA DEDERLE

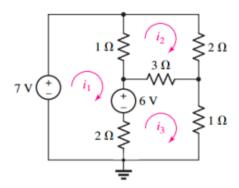
ASIGNATURA
ELECTRONICA BASICA


AÑO

PORTAFOLIO_TAREA 3. SOLUCIÓN MÉTODO DE MALLAS



CORRIENTE L1= 1 ohm
CORRIENTE L2= 2 ohm

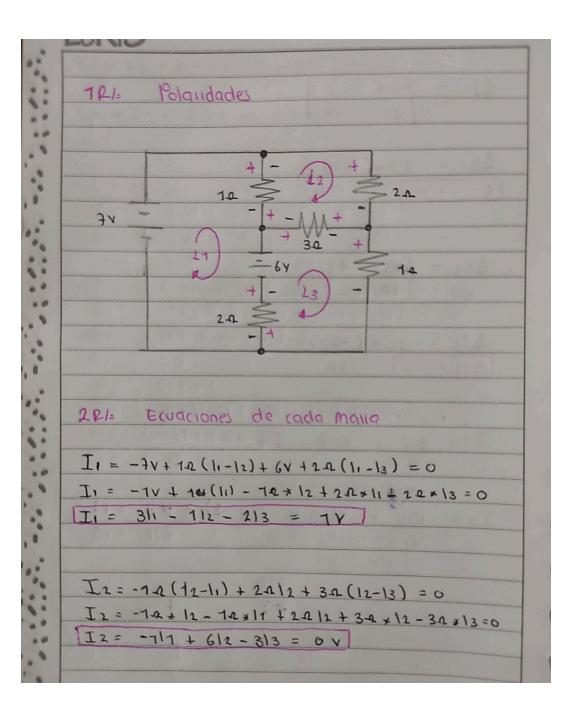

SIMULACION EN PROTEUS

SIMULACION EN TINKERCAD

Para el circuito de la figura, haga lo siguiente:

- 1. Dibuje las polaridades en las resistencias de acuerdo con las corrientes de malla mostradas
- 2. Plantee las ecuaciones de cada malla
- 3. Resuelva el sistema de ecuaciones de acuerdo con las indicaciones dadas en clase
- 4. Encuentre el voltaje en la resistencia de 3Ω
- 5. Encuentre la corriente en la resistencia de 2 Ω que está en serie con la fuente de 6v
- 6. Compruebe los resultados en proteus y pegue una imagen de las comprobaciones

MALLAS


Corriente en l1: 3A

Corriente en l2: 2A

Corriente en l3: 3A

Voltaje en 3 ohm: 3V

Corriente en 2 ohm: 0A

LuKiS

 $I_3 = 2\Omega(13-11)-6Y+3\Omega(13-12)+1\Lambda 13=0$ $I_3 = -6Y+2\Omega\times13-2\Omega\times11+3\Omega\times13-3\Omega\times12+113=0$ $I_3 = -21_1-31_2+61_3=6Y$

321. Solution de Ecuaciones

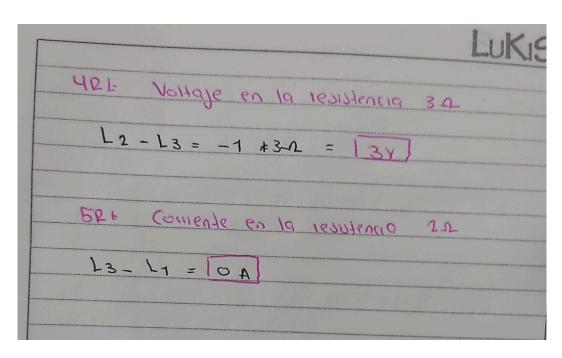
311 - 112 - 213 = 1 (1) -111 + 612 - 313 = 0 (2) -211 - 312 + 613 = 6 (3)

 $\Delta = \begin{vmatrix} 3 & -1 & -1 & 3 & -1 \\ -1 & 6 & -3 & -1 & 6 \\ -1 & -3 & 6 & -1 & -3 \end{vmatrix}$

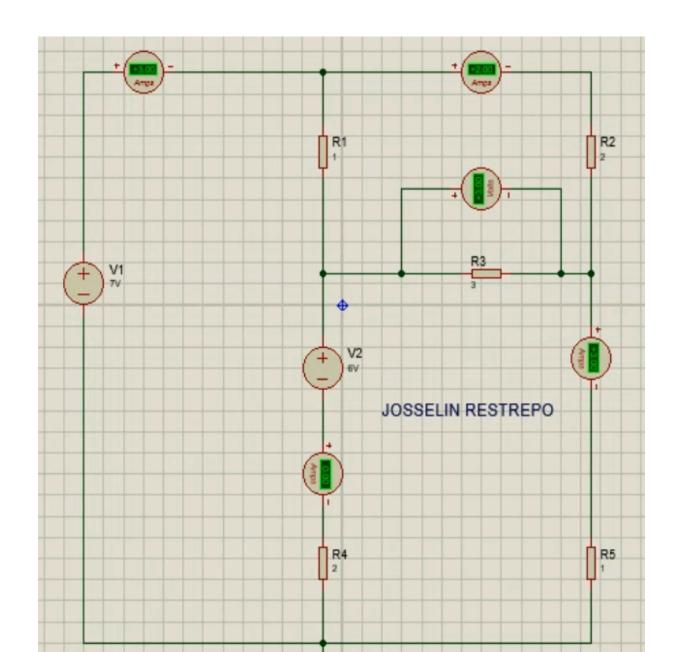
 $\Delta = \left[(3)(6)(6) + (-1)(-3)(-2) + (-2)(-1)(-3) \right]$ $\Delta = \left[108 + 6 - 6 \right]$

A = 96

 $\Delta = \left[(-2)(6)(-2) + (-3)(-3)(3) + (6)(-1)(-1) \right]$


D= [24+27+6]

D= 57


A =	96-67:39
0-5/1	121208 - 61208 1 11228 - 612081 40 - = 57
ID	= 39 / 1/03 - \$13,000 18 - 1184 - 203
	(1 1 10 (10 10 10 10 10 10 10 10 10 10 10 10 10
AL	
	0 6 -3 0 6
	6 -3 6 6 -3
	1-0169271203471841640 1 11-5
	[(1)(6)(6) + (-1)(-3)(6) + (-2)(0)(-3)
A1 =	[36+18+0]
A1 =	: 54
32	1914.6
	[(6)(6)(-2) + (-3)(-3)(1) + (6)(0)(-1)]
01 =	[-72+9+0]
= 14	4-63 C- ADM: 12-4-14-1
A1 =	54 + 63
DI:	= 117
Lı	= <u>N</u> 117
66-	1 (A) A) (A) (A) (A) (A) (A) (A)
	1 2 4 6 4 4 2 1 - 7
111	1 = 3A

A2 = -3 -1 0 -2 6 6 -2 [(3)(0)(6) + (1)(-3)(-2) + (-2)(-1)(6) A2 = [0+6+12] Δ2 = 18 12 = [(-2)(0)(-2)+(6)(-3)(3) + (6)(1)(1)] A2: [0-54-6] A1 = -60 A2 = 18 + 60 A1 = 78 Δ2 -18411 Δ 39 L2 = 2 A

A3 = 6 6 0 -3 6 -3 -1 D3 = [(3)(6)(6)+(-1)(0)(-2)+(7)(+)(-3)] 43= [108 + 0 + 3) A3 = [(-2)(6)(1)+(-3)(0)(3)+(6)(-1)(-1)] A3: [-12-0+6] D3 = 6 D3 = 171+6 A3 = 977 13= Δ3 - 114 39 13= 34

SIMULACION EN PROTEUS

