- **1.** origin; initial side
- When the angle is positive, its rotation is counterclockwise.When the angle is negative, its rotation is clockwise.
- 3. Sample answer: A radian is a measure of an angle that is approximately equal to 57.3° and there are 2π radians in a circle.
- -90°; It has a different terminal side than the other three angles.

9.
$$430^{\circ}$$
; -290°

12.
$$280^{\circ}$$
; -80°

13.
$$\frac{2\pi}{9}$$

14.
$$\frac{7\pi}{4}$$

15.
$$-\frac{13\pi}{9}$$

16.
$$-\frac{25\pi}{9}$$

17. 20°

- **19.** about -286.5°
- **20.** about 687.5°
- 21. A full revolution is 360° or 2π radians. The terminal side rotates one-sixth of a revolution from the positive x-axis, so multiply by $\frac{1}{6}$ to get $\frac{1}{6} \cdot 360^{\circ} = 60^{\circ}$ and $\frac{1}{6} \cdot 2\pi = \frac{\pi}{3}$.
- 22. $\frac{15\pi}{4}$; $-\frac{\pi}{4}$; Sample answer: 315° is equivalent to $\frac{7\pi}{4}$ radians, and $\frac{7\pi}{4} + 2\pi = \frac{15\pi}{4}$ and $\frac{7\pi}{4} 2\pi = -\frac{\pi}{4}$.
- **23.** B
- **24.** D
- **25.** A
- **26.** C
- **27.** about 15.7 yd, about 78.5 yd²
- **28. a.** about 13.3 m
 - **b.** about 146 m²

24° = 24 degrees
$$\left(\frac{\pi \text{ radians}}{180 \text{ degrees}}\right)$$

= $\frac{24\pi}{180}$ radians
≈ 0.42 radians

$$40^{\circ} = 40 \text{ degrees} \left(\frac{\pi \text{ radians}}{180 \text{ degrees}} \right) = \frac{2\pi}{9} \text{ radians}$$

$$A = \frac{1}{2} (6)^2 \left(\frac{2\pi}{9} \right) \approx 12.57 \text{ cm}^2$$

31. $72,000^{\circ},400\pi$

 $240^{\circ}, \frac{4\pi}{3}$; Sample answer: The minute hand would generate an angle of 2880° or 16π .

- **35.** 3.549
- **36.** −1.376
- **37.** −0.138
- **38.** 0.960
- **39.** 528 in.²
- **40.** a. $\frac{\pi}{2}$
 - **b.** about 45.6 ft
- **41.** $60^{\circ}, \frac{\pi}{3}$
- **42.** $\pi 1$; *Sample answer:* Using $s = r(\pi \theta)$, the arc length of the small sector can be found to be 1. Therefore, $\pi \theta = 1$ and $\theta = \pi 1$.
- **43.** about 6.89 in.², about 0.76 in.², about 0.46 in.²

44. Sample answer: This continued fraction (which is irrational) gives rise to a sequence of rational approximations for π . When the next fraction is added, the value gets closer to the value of $\pi = 3.1415926535...$, as shown.

$$3 = 3$$

$$3 + \frac{1}{7} = \frac{22}{7} = 3.142857143...$$

$$3 + \frac{1}{7 + \frac{1}{15}} = \frac{333}{106} = 3.141509434...$$

$$3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1}}} = \frac{355}{113} = 3.141592920...$$

- **45.** yes; When the arc length is equal to the radius, the equation $s = r\theta$ shows that $\theta = 1$ and $A = \frac{1}{2}r^2\theta$ is equivalent to $A = \frac{s^2}{2}$ for r = s and $\theta = 1$.
- **46. a.** about 16.49 in.

b.
$$\frac{15\pi}{8}$$

- **c.** about 5195.4 in.²
- **47. a.** 70°33′

b.
$$110.76^{\circ}$$
; $110 + \frac{45}{60} + \frac{30}{3600} \approx 110.76^{\circ}$

- **48.** about 2.83
- **49.** about 27.02
- **50.** 7

- **51.** about 18.03
- **52.** about 11.66
- **53.** about 18.68