
bfcache: Test API for eviction 
hajimehoshi@chromium.org 

Last Updated: 2019-07-16 
Status: Public 

CL for this proposal 

tl;dr 
We propose these action items: 
 

●​ Add DOMMessageQueue::RenderFrameDeleted to make EvalJsOptions return when 
the frame is gone 

●​ Guarantee that EvalJs (and JavaScriptExecuteRequestForTests) is called on a 
non-freezable task runner 

●​ Add world_id parameter to JavaScriptExecuteRequestForTests and avoid using 
JavaScriptExecuteRequestInIsolatedWorld for tests 

 
By these items, we can test BFcache eviction correctly. 

Background 
Back-forward cache (a.k.a BFcache) aims for faster back-forward navigation by freezing the old 
page and reusing it when the user goes back to the page.  
 
A BFcached page is supposed not to mutate its state due to privacy concerns. For example, 
JavaScript must not be executed on the BFcached frozen page. In most cases, JavaScript is 
executed on per-frame task runners, and we can freeze these task runners. However, there are 
still a few cases when JavaScript is executed on per-thread task runners. As per-thread task 
runners are used by multiple pages, we cannot freeze these task runners for one frozen page. 
Then we need to ‘evict’ the page when JavaScript execution is detected. 
 
To test the eviction, we need an API to execute JavaScript with some conditions. For example, 
JavaScript must be executed on a non-freezable task runner in the test, or JavaScript would 
never be executed. We would also like to specify isolated world IDs for extension tests. We 
investigated the current APIs to execute JavaScript and these attributes. 

Current APIs 
 

mailto:hajimehoshi@chromium.org
https://chromium-review.googlesource.com/c/chromium/src/+/1703052
http://go/bfcache
https://docs.google.com/document/d/1E6efB594SqODZX5_PRxmv8eZ9YsmheqhKFg3KoDh3vs/edit?usp=sharing


 Wait for 
results? 

Can 
specify 
an 
isolated 
world? 

Is the task 
runner 
frozen on 
BFcache? 

Who is called on renderer 
side? 

content::​
ExecJS 

Yes Yes either RenderFrameImpl::​
JavaScriptExecuteRequestF
orTests / 
JavaScriptExecuteRequestI
nIsolatedWorld 

content::​
ExecuteScript 

Yes No either (same as above) 

content::​
ExecuteScriptWithoutUse
rGesture 

Yes No either (same as above) 

content::​
ExecuteScriptAsync 

No No either RenderFrameImpl:: 
JavaScriptExecuteRequestF
orTests 

RenderFrameHost::​
ExecuteJavaScript 

No 
(callback) 

No no? RenderFrameImpl::​
JavaScriptExecuteRequest 

RenderFrameHost::​
ExecuteJavaScriptInIsola
tedWorld 

No 
(callback) 

Yes yes? RenderFrameImpl:: 
JavaScriptExecuteRequestI
nIsolatedWorld 

RenderFrameHost::​
ExecuteJavaScriptForTes
ts 

No 
(callback) 

No no? RenderFrameImpl::​
JavaScriptExecuteRequestF
orTests 

RenderFrameHost::​
ExecuteJavaScriptWithU
serGestureForTests 

No No no? RenderFrameImpl::​
JavaScriptExecuteRequestF
orTests 

 
For task runners, there is no explicit guarantee. This is the current implementations and they 
can be changed in the future. It looks like JavaScriptExecuteRequestInIsolatedWorld uses 
PausableScriptExecutor using a per-frame freezable task runner, while the other functions don’t 
(kInternalIPC, which is not frozen on BFCache). 
 
In the context of BFcache eviction, these properties are required: 
 

●​ Want to wait for execution result?: No. After eviction, the frame no longer exists. If the 
API waits for the result of JavaScript execution, this would never return. 



●​ Want to specify an isolated world?: Yes. Eviction should work on all the isolated 
worlds (e.g., for extensions), and we want to test it. 

●​ Want to specify a task runner?: Yes. The task for JavaScript execution must be on 
non-freezable task runner for tests. We also want an explicit guarantee of task runners. 

 
Unfortunately, there is no existing API that satisfied all the above requirements. 

Proposal 
We propose these action items: 
 

●​ Add DOMMessageQueue::RenderFrameDeleted to make EvalJsOptions return 
when the frame is gone: Now EvalJs blocks forever when the frame is gone. We can fix 
this by observing RenderFrameDeleted at DOMMessageQueue and abort the run loop 
inside. 

●​ Guarantee that JavaScriptExecuteRequestForTests is called on a non-freezable 
task runner: JavaScriptExecuteRequestForTests is now called on a non-freezable task 
runner, and we can guarantee (kInternalIPC). Let’s add comments. 

●​ Add world_id parameter to JavaScriptExecuteRequestForTests and avoid 
JavaScriptExecuteRequestInIsolatedWorld for tests: We don’t have to use 
JavaScriptExecuteRequestInIsolatedWorld that uses a per-frame (freezable) task runner. 
Let’s replace the usage in EvalJs. 

 
These should be safe in terms of backward compatibility. 
 


	bfcache: Test API for eviction 
	tl;dr 
	Background 
	Current APIs 
	Proposal 

