Name:

Unit 1: Milestone 4 (Part 2 of 2)

You will:

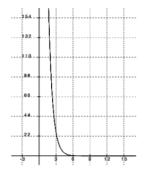
- build a function that models a relationship between two quantities.
- find or create a pattern that can be modeled using geometric sequences.

<u>Learn:</u>

New Notes on Geometric Sequences:

Geometric Sequence: A geometric sequence goes from one term to the next by **multiplying** (or dividing) by the same value.

Example: Start with 400, and multiply by $(\frac{1}{4})$ to find the next term:

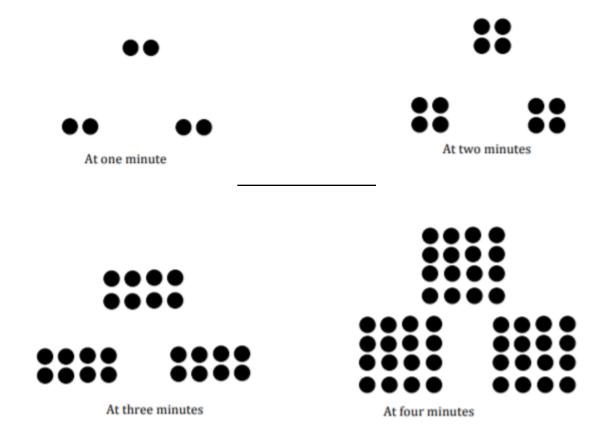

n	1	2	3	4	 n
f(n)	400	100	25	6.25	
	400	$400\left(\frac{1}{4}\right)^1$	$400\left(\frac{1}{4}\right)^2$	$400\left(\frac{1}{4}\right)^3$	$400\left(\frac{1}{4}\right)^{(n-1)}$

400 is the first term, and every term after that is multiplied by $(\frac{1}{4})$.

This makes the exponent one less than the term number.

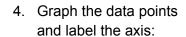
For this sequence, $f(n)=400(\frac{1}{4})^{(n-1)}$.

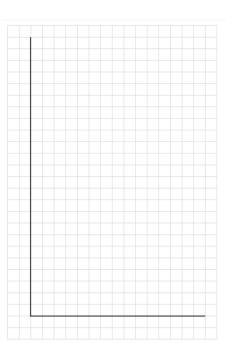
And in general terms,


f(n)=(starting number)(common ratio) f(n)

If the initial value is called A and the common ratio r, the expression can be written more simply as:

$$f(n)=Ar^{(n-1)}$$


Do you see from the graph that the relationship between n and the corresponding number in the sequence is exponential?

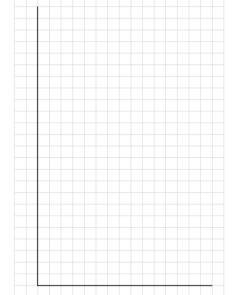

Growing Dots Problem:

- 1. Describe and label the pattern of change you see in the above sequence of figures.
- 2. Assuming the sequence continues in the same way, how many dots are there at 5 minutes?
- 3. Fill in the table below to model this situation:

n			
f(n)			

5. Find the explicit geometric formula for the geometric sequence. Hint: find f(n)=(starting number)(common ratio) f(n)

6. How many dots are there at 20 minutes? Hint: use your formula from #5.


Bacteria Growth Problem:

A culture of bacteria doubles every 1 hour. At 1 hour of growth, there are 500 bacteria.

1. Fill in the table below to model this situation:

n			
f(n)			

2. Graph the data points and label the axis:

3. What is the explicit geometric equation? Hint: find f(n)=(starting number)(common ratio) f(n)

4. What does n stand for?

5.	What does $f(n)$ stand for?
6.	How many bacteria will there be after 24 hours?
•	n for Geometric Sequences: e one of the following (You must let me know which one you choose first):
	Create a pattern that can be modeled using geometric sequences.

b. Create a poster that explains geometric sequences from all that you have learned

c. Help someone get through all the milestones, but you need to talk to me first and I will have a conversation with the student you help to check their progress.

throughout the milestones.