
Third-Party Origin Trials
This Document is Public

Authors: chasej@chromium.org
Last Updated: 2020-08-12

One-page overview

Summary
Origin trials can now be enabled by embedded scripts, based on tokens matching their
third-party origin. Previously, any script can inject tokens to enable an origin trial, but only
when the token matches the origin of the containing document. This intended to allow
third-party providers to experiment more effectively via origin trials.

Platforms
Mac, Windows, Linux, Chrome OS, Android.
Origin trials are not supported in Android WebView.

Team
chasej@chromium.org
experimentation-dev@chromium.org

Bug
crbug.com/1069623

Code affected
Origin trial framework, JavaScript bindings, DOM manipulation, script loading.

mailto:chasej@chromium.org
mailto:chasej@chromium.org
mailto:experimentation-dev@chromium.org
https://crbug.com/1069623


Design

Motivation
As in the origin trials explainer, the goal is to encourage broad participation and feedback
from web developers, while preventing burn-in of features or hampering iteration. Origin
trials currently require opt-in/attribution for first-party origins, which causes undue friction
for third-party providers. For some features, third-party providers are often in the best
position to experiment and provide feedback.

Today, it is possible for any script embedded in a document to enable an origin trial for that
context. Scripts can inject a <meta> tag containing a valid trial token, which is matched
against the origin of the containing document.

For any third-party provider willing to register multiple target origins (i.e. embedder
origins), the current approach is workable. For some third-party providers, it is infeasible to
know or register all the target origins in advance (e.g. CDNs, ad tech providers). Specific
challenges include:

● Size of target origin population: may require hundreds of origins (or more) to form a
representative population for meaningful experiment results. Registering and
deploying hundreds of trial tokens is a significant burden (especially if staggered
rollouts are desired).

● Variability in target origins: determining target origins may require sampling from
the entire set origins served, and either the candidate set or sampling criteria
change rapidly. As well, target origins could be selected at runtime by the server
(especially when limiting usage to a small percentage).

Today, each trial has a usage limit of 0.5% of Chrome page loads, to prevent websites from
relying on the feature (i.e. burn-in). For third-party providers that are widely-used, a
representative population of target origins could exceed the 0.5% limit. To gather
meaningful experiment results, third-party providers need alternate mechanisms to
prevent burn-in.

See Trust Token API, as a motivating example for third-party participation.

High-Level Design

The current processing of script-created trial tokens will be extended in two ways:
1. Match against the origin of the external script that injected the token, instead of the

origin of the containing document.

https://github.com/GoogleChrome/OriginTrials/blob/gh-pages/explainer.md#a-sketch-of-a-solution
https://github.com/GoogleChrome/OriginTrials/blob/gh-pages/developer-guide.md#3-what-happens-if-a-large-site-such-as-a-google-service-starts-depending-on-an-experimental-feature
https://docs.google.com/document/d/1TNnya6B8pyomDK2F1R9CL3dY10OAmqWlnCxsWyOBDVQ/edit#


○ NOTE: For the purposes of token injection, matching or validation, "origin" refers
to the response URL origin. That is, based on the URL after any redirects, not the
request URL origin.

2. Apply different usage restrictions, which may prevent a trial from being enabled,
even with an otherwise valid trial token. These usage restrictions are an alternative
to the global limit of 0.5% of Chrome page loads.

Web developers will need to explicitly opt-in into this different behaviour when registering
for an origin trial.

The overall flow (including process, logistics and runtime behaviour):
● In the Intent to Experiment, support for third-party origins is requested and

explicitly approved.
● The origin trial is configured to allow third-party origin trial tokens (both in

Chromium and the developer console).
● During trial registration, web developers request a third-party token, and optionally

a different usage restriction.
○ The third-party registration is reviewed and approved, if necessary.

● Trial token is issued with additional "third-party" metadata.
● Third-party web developers provide the issued token, by injecting a <meta> tag from

their external script embedded on the desired origins.
● Using the "third-party" metadata, the browser validates the token against the

external script origin, and any different usage restrictions.
● (Optional) When valid, the browser dynamically adds a JavaScript binding for trial

detection, e.g. `navigator.<trial name>TrialEnabled`.
○ This should only be required if the trial-controlled feature is lacking suitable

feature detection.

The following sections explain in more detail and show how it doesn't materially impact the
ability of origin trials to limit usage of features and attribute usage to specific web
developers.

Alternate Usage Restrictions
The current limit on usage is defined as 0.5% of Chrome page loads, measured in a way to
allow for temporary spikes of higher usage. The allowance for temporary spikes is expected
to be insufficient for some third-party providers to experiment effectively.

Web developers will be able to choose to one of these restrictions, if the global usage limit
isn't suitable:

● Exclusions of a random subset of users, which cannot enable the trial.
● On/off cycles for longer, predictable durations.

○ E.g. Trial is available for higher usage (>> 0.5%) for 1 month, followed by 1
month where the trial is completely disabled for the origin.

https://developers.chrome.com/origintrials/
https://github.com/GoogleChrome/OriginTrials/blob/gh-pages/developer-guide.md#3-what-happens-if-a-large-site-such-as-a-google-service-starts-depending-on-an-experimental-feature


In both cases, the restriction is applied during runtime validation of a provided trial token.
A third-party token, which is otherwise valid, can fail to enable a feature due to one of the
restrictions being applied.

When one of these restrictions are applied, a higher threshold is used for the global usage
limit. Instead of 0.5% of Chrome page loads, the threshold is 5%(?) when the built-in
safeguard will disable the trial for all users.

User Subset Exclusions
With a subset exclusion, a small percentage of users are randomly selected to have the trial
always disabled. The field trial ("Finch") infrastructure is used to define a target population,
and the 10%(?) of Chrome users for which the trial is always disabled. The field trial
infrastructure provides "permanent consistency", such that users are assigned to a
population that remains consistent across sessions and browser restarts. The exclusion
subset is defined based on the trial, not individual tokens. It should not be possible to have
multiple tokens to effectively generate an empty exclusion subset.

The approach:
● Setup a new field trial, using the existing field trial infrastructure

○ Given the user exclusion approach, this most likely should not reuse an
existing field trial for the feature.

● Configure the field trial with a small experimental group for the target exclusion
percentage. The control group will have the trial enabled.

● Configure a mapping from origin trial name -> exclusion field trial name.
○ Similar to the approach in SetRuntimeFeaturesFromChromiumFeatures(), as

described in Initialization of Blink runtime features in content layer.
○ Exact code location TBD.

On/Off Cycles
The trial is available for higher usage (>> 0.5%) for a defined duration, followed by the same
duration where the trial is completely disabled for the origin, e.g. on for 1 month, then off
for 1 month.

Web developers will need predictability and control over the cycle, to account for rollout of
the trial token and associated functionality. Upon registration, developers can specify the
start date of the first on cycle, subject to appropriate limits (e.g. must be less than 1 month
in the future). From the provided start date, the cycle schedule is a mechanical calculation
(e.g. on for period 1 and following odd periods, off for even periods).

https://source.chromium.org/chromium/chromium/src/+/master:content/child/runtime_features.cc;l=194;drc=210ef7767dab836b7d8e55f7c3d7ac9596e5807c?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:docs/initialize_blink_features.md


Trial Configuration
As part of the Intent to Experiment (I2E) process, API Owners will explicitly approve
individual trials to allow third-party origin registration. There may be trials where it is not
appropriate to allow third-party providers to broadly enable features.

Chromium Client-Side Configuration
The runtime enabled features configuration will be extended with a new flag,
`origin_trial_allows_third_party`. Similar to origin_trial_allows_insecure, this
configuration is used to implement additional checks or optimize generated code.

Similar to navigation origin trials, it may be appropriate to require explicit approval to land
CLs enabling third-party origins for trials. This is intended as a backstop to the process
approval by API owners on the I2E.

Developer Console Server-Side Configuration
The developer console has configuration values for each trial, which control both the UI
and processing logic. Similar to the Chromium client configuration above, new values will
be added:

● Flag to indicate "allows third-party origins".
● List of alternate usage restrictions that are enabled. For example, "none" or some

combination of "user subset" and "on/off cycle".

The full implementation details are internal and outside the scope of this document.

Trial Registration and Token Issuance
Trial registration in the developer console now requires additional checks and a separate
approval process. In particular, it is a non-goal to allow a JavaScript library or framework to
act as a polyfill and enable a feature for all users.

The current registration process has the capability to block specific origins for a trial, but
otherwise allows any user to register for any origin. Previously, this was sufficient because:

● The global usage limit (0.5% of page loads) applied regardless of the number of
tokens issued.

● Every token for a combination of trial and origin is functionally equivalent, given the
global duration for when a trial is enabled. Registering repeatedly to issue multiple
tokens did not enable additional or longer usage (other than potentially affecting
feedback collection).

● Origin "ownership" is irrelevant, as tokens are only useful if the developer has
access to provide the token in server responses from the origin.

https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/API_OWNERS
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/runtime_enabled_features.json5;l=87;drc=e5912ac3d2a3dd77ee101f214ffea31b93a60c34?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://docs.google.com/document/d/1bPWScr35Wv-xPy85JQ3mf12AXJ7AqSFqen6MxxslSJM/edit#heading=h.rdvv1jkbwxi7


The alternate usage restrictions for third-party tokens could be bypassed or abused if
unconditionally issuing tokens:

● For on/off cycles, register the same origin with different cycle start dates, to
generate tokens with overlapping on cycles. Then provide all of the tokens in the
third-party script.

● Register an origin for both first-party and third-party tokens. The existence of the
third-party token could relax the global usage limit, and then provide the first-party
token in non-gated mechanisms (e.g. HTTP header) for excessive usage.

Trial Registration Process
The registration process is largely handled by the developer console:

● The "Register for Trial" page will present options to request a third-party token.
○ Only for trials configured to allow third-party tokens.

● For third-party tokens, the web developer can choose from three options for usage
restrictions:

○ As described in Alternate Usage Restrictions.
● If the standard 0.5% limit is chosen, immediately issue a third-party token (as today).

○ A third-party token is defined in Changes to Trial Token Format.
● If either of the alternate usage restrictions are chosen, the registration is marked as

"pending", and an offline process for approval is initiated:
○ The approval process is out of scope here. This is assumed to require human

intervention, based on some kind of "trusted tester" program or partnership
arrangements. This may include some kind of verification of ownership for
origins.

○ The approval process is responsible for ensuring that multiple or improper
tokens are not issued to bypass the usage restrictions.

○ The outcome is that the request is either approved or rejected.
● When the registration is approved, a third-party token is issued and the developer is

notified.
○ A third-party token is defined in Changes to Trial Token Format.

Changes to Trial Token Format
Trial tokens are essentially a versioned JSON payload, which is then encoded and signed for
verification (format definition). The token format will be changed:

● Increment version to 3 (current version is 2)
● Add fields to JSON payload, which are all optional:

○ `isThirdParty`: boolean; default to false.
○ `usage`: one of "" (empty), "cycle", "subset"; default to empty.
○ `cycle`: a dictionary, containing:

■ `startDate`: date for to begin the first on cycle; required.

https://docs.google.com/document/d/1v5fi0EUV_QHckVHVF2K4P72iNywnrJtNhNZ6i2NPt0M/edit


■ `duration`: integer, number of days per cycle; default is 30.
As the fields are all optional, versions 2 and 3 could likely be parsed by a single
implementation, reducing the complexity of supporting multiple versions.

Trial Token Injection and Validation
Third-party tokens will only be supported when injected by a script-created <meta> tag.
Trial tokens can also be provided by HTTP response header or <meta> tag in markup (see
developer guide). Those mechanisms will remain unchanged and not support third-party
tokens.

Token Injection
The processing of script-created <meta> tags shares the implementation with
markup-declared <meta> tags in HttpEquiv::Process. For <meta> tags created by an
external script, the origin information will be captured, and passed along for token
validation.

The process for capturing the external script origin (based on cl 2173473):
● Get the url of the currently executing script, by querying the V8 stack. If the url

exists, continue.
● Pass the url and token to OriginTrialContext::AddTokenFromExternalScript().

If any of the above steps/conditions are not met, the token will be processed as a
first-party token, via OriginTrialContext::AddToken().

This approach may not work for all script execution paths. For example, if <meta> tags are
injected by callbacks provided by external script, but the callbacks are invoked elsewhere.
Initially, it seems reasonable to limit support to easier script injection scenarios, and
require web developers to adjust if needed. There are already restrictions on how tokens
must be provided, e.g. web developers must ensure that tokens are provided early in the
page lifecycle, before attempting to use the feature enabled by the trial.

Token Validation
Token parsing and validation is performed by TrialTokenValidator::ValidateToken. A token
must be parsed first to determine if it should be matched to a third-party origin, or the
current origin. Thus, both the current origin and external script origin will be passed into
ValidateToken().

TrialTokenValidator::ValidateToken
The validator uses an OriginTrialPolicy plugin, to allow Chromium embedders to control
if/how trial tokens are validated.

https://github.com/GoogleChrome/OriginTrials/blob/gh-pages/developer-guide.md#how-do-i-enable-an-experimental-feature-on-my-origin
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/loader/http_equiv.cc;l=132;drc=8722a28f4bc4d4f4fb31b61634cbc1f5df26c827?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://html.spec.whatwg.org/multipage/scripting.html#concept-script-external
https://chromium-review.googlesource.com/c/chromium/src/+/2173473
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/origin_trials/origin_trial_context.h;l=75;drc=c39131b385fe661c82a1045d2659fc1648b9c10a?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/common/origin_trials/trial_token_validator.h;l=45;drc=94d8a87a53fb0a4a448e868c6c6dd11e05deee17?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/common/origin_trials/origin_trial_policy.h


The validation algorithm:
● If the token is well-formed, continue.

○ Well-formed means it has the expected format, with appropriate values, and
has a valid signature.

● If it is a third-party token and an external script origin was provided:
○ Validate the token, passing the external script origin to TrialToken::IsValid().
○ If valid, continue.

● Else for a first-party token:
○ Validate the token, passing the current origin to TrialToken::IsValid().
○ If valid, continue.

● If the feature is not disabled, continue.
○ Determined by calling OriginTrialPolicy::IsFeatureDisabled()

● If the token is not disabled, continue:
○ Determined by calling OriginTrialPolicy::IsTokenDisabled()

● If it is a third-party token and usage = "on/off cycle":
○ Compute if currently in an on cycle, using the start time in the token.
○ If current time is within an on cycle, continue.

● If it is a third-party token and usage = "subset":
○ Determine if the trial should be disabled for the current user, by calling

OriginTrialPolicy::IsFeatureDisabledForUser(). See below.
○ If not disabled, continue.

● If all the above checks succeed, the token is valid.

OriginTrialPolicy::IsFeatureDisabledForUser
This method is used to allow for embedder-specific logic to disable the trial for individual
users. The Chrome policy implementation will use a Finch trial to exclude some users, as
described in User Subset Exclusions.

An alternative approach would be to include the user exclusion logic in the existing
OriginTrialPolicy::IsFeatureDisabled() method. The token validation returns specific codes to
explain why a token isn't valid. It seems useful to be able to distinguish between a trial that
is disabled for everyone (or even by platform), vs disabled for a certain user.

Alternatives Considered
● Add an imperative JavaScript API, e.g. navigator.originTrial.addToken().

○ A purpose-built API would be easier to implement in Chrome.
○ This exposes a non-standard API to every web page in Chrome. This could

become yet another way for pages to browser-detect Chrome (and variants)
○ This doesn't seem to provide additional benefit to web developers vs

injecting a <meta> tag.

https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/common/origin_trials/trial_token.cc;l=81;drc=0717d3146e601d585b883b082c08e293c34434b5?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/common/origin_trials/trial_token.cc;l=81;drc=0717d3146e601d585b883b082c08e293c34434b5?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/common/origin_trials/origin_trial_policy.h;l=23;drc=0717d3146e601d585b883b082c08e293c34434b5?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/common/origin_trials/origin_trial_policy.h;l=26;drc=0717d3146e601d585b883b082c08e293c34434b5?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/common/origin_trials/origin_trial_policy.h;l=23;drc=0717d3146e601d585b883b082c08e293c34434b5?originalUrl=https:%2F%2Fcs.chromium.org%2F


● Support the `Origin-Trial` HTTP header on external scripts.
○ Anecdotally, some web developers prefer to use the <meta> tag, as it's easier

to change markup, rather than the HTTP headers. For third-party providers
that must carefully select when to provide a third-party token, it seems likely
to be easier to selectively include scripts on a request vs dynamically
changing headers.

○ The current implementation for the HTTP header is tied to document loading,
as it relies on the SecurityOrigin of the document. Supporting the header on
scripts would require a larger refactoring of the implementation.

Metrics

Success metrics
Success is defined by third-party web developers effectively participating in origin trials.
This will be determined qualitatively, by feedback from trial authors and web developers.
Participation rates in origin trials are expected to be too low to collect meaningful
quantitative metrics.

Regression metrics
Speed launch metrics, especially for loading, to verify that capturing the origin of external
scripts doesn't have an adverse impact.

Experiments
This functionality will be used in origin trials for other features. Given an origin trial is an
experiment on its own, it's not feasible to experiment using Finch.

Rollout plan
Waterfall (standard rollout).

Core principle considerations

Speed

https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/loader/document_loader.cc;l=1688;drc=23f61cb65a94208dc2c4728e895e87d47f64a8b6


Generally, the origin trials functionality is triggered by the presence of a trial token. If no
tokens are provided, there is negligible impact on speed, memory, etc. (ignoring the
obvious impact of code size). Depending on the final implementation, capturing the
third-party script origin may require additional memory usage for all external scripts,
regardless if a trial token is provided. This should be minimal (i.e. storing a single URL per
script), but may have an impact.

Security
Third-party origin trials do not enable any additional capabilities. It is already possible for
embedded, cross-origin scripts to provide trial tokens to enable features. This functionality
may increase the frequency at which trials are used to enable features, as it intentionally
reduces the friction for web developers. Features exposed by origin trials are already
subject to security reviews as needed, so this should not increase the security risk.

Trial tokens are base64-encoded, cryptographically-signed blobs, which are parsed and
validated to enable features. As previously described, the token format is modified to add
properties to the contained JSON payload. The token signature is extracted to verify the
token contents came from a trustworthy source (i.e. for Chrome, that Google issued the
token). The signature is verified with a public key that is shipped with the browser itself. In
the event that the signing key is updated, the shipped public key may be replaced by a
server-pushed component update. Only after the token contents are cryptographically
verified, will Chromium parse and validate the tokens (otherwise, tokens are ignored as
invalid).

Typically, tokens are provided by a document to enable its use of features directly, so the
parsing and validation is done in the renderer process. In other scenarios, the parsing and
validation may be done in the browser process, or another process (e.g. for service
workers, or features implemented in the browser process). The JSON payload is parsed
using the existing Chromium parser. The changes to the token format do not introduce any
novel parsing techniques. The parser is also tested with a fuzzer.

Privacy considerations
As described in Security, third-party origin trials may increase the frequency at which
features are enabled. Features exposed by origin trials are already subject to privacy
reviews as needed. Third-party trials can only be used by scripts that are embedded in a
page, so it should not be possible to fingerprint users or gather any data that was not
already available.

Trial tokens are validated using only configuration stored locally, with no network access
required.

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/component_updater/origin_trials_component_installer.cc;l=95;drc=d251e9163d8a4dc1e9ab78e2576560957acf35e3
https://source.chromium.org/chromium/chromium/src/+/master:content/test/fuzzer/origin_trial_token_fuzzer.cc


Testing plan
The current origin trials functionality is covered by automated tests, both unit tests and
Blink web tests. Tests will be added for full coverage of the third-party functionality. Manual
testing should not be required.

Followup work
The approval process for token issuance needs to be designed in more detail. That is out of
scope for this document.

crbug.com/1124390 - Record the usage of third-party trials.

https://bugs.chromium.org/p/chromium/issues/detail?id=1124390

