
Flow and Packet Marking Technical Specification
This document outlines detailed technical specifications for the implementation of the flow and
packet marking mechanisms. It’s based on the reference document on packet marking written
by the Research Networking Technical Working Group. It also includes protocol extension
proposals written by the XRoot and dCache teams.

Flow and Packet Marking Technical Specification 1
1. Packet and Flow Marking Definitions 3

1.1 Flow Marking (UDP firefly) 3
1.2 Packet Marking (Flow Label) 4

2. Flow Service 4
3. Flow Identifier Lifecycle 5

3.1 Experiment Frameworks 5
Rucio 5
DIRAC 5
ALICE O2 5

3.2 File Transfer Services 6
3.3 Storage Systems and Caches 6
3.4 Clients 6
3.5 Protocols Extensions 6

3.5.1 XRoot 6
Use Case Specific Issues 7

3.5.2 HTTP-TPC 7
The COPY request 7
Processing expectation 8

3.6 Network Analytics 8
4. Prototype Implementation Plan 8
5. References 9
Appendix A: UDP Firefly JSON Schema 9
Appendix B: Registry JSON Schema 16

1

https://docs.google.com/document/d/1HTaNwv7huRqdNUvgHJTjlow8MivJgoknRUKgADNlvgY/edit#

Changes

22/03/2022
Marian

App. A: UDP Firefly Schema - Updated JSON schema with
new fields followingWG meeting decisions
(added usage and netlink as optional attributes; changed
current-timestamp to optional; added examples).

12/11/2022
Marian

Updated packet marking specification (corrected the bit
positions for different fields).

05/06/2023
Marian

Updated HTTP-TPC specification (changed to numeric
codes)

04/07/2023
Marian

Updated HTTP-TPC specification (new simplified version)

25/09/2024
Marian

Updated HTTP-TPC specification (added examples in the
processing expectations)

2

https://indico.cern.ch/event/1117851/

1. Packet and Flow Marking Definitions
There are two possible ways to mark R&E traffic, packet marking which uses a particular label in
each packet or flow marking, which identifies a particular network flow by using a separate
channel. For the purposes of this document network flow is defined as a five tuple, i.e. source,
destination, source port, destination port and flow identifier (this is to allow multiple flows btw.
same src, dest, src port, dest port). The intention of this document is to describe a system that
can support both flow and packet marking.

The current flow identifier has the following two fields:
● Experiment/virtual organisation (required) - indicates experiment/virtual organisation,

which has initiated the network flow. The mapping between experiment name and its
value is defined in advance (and should be mostly static as frequent changes are not
anticipated).

● Experiment activity (optional) - indicates experiment activity which has initiated the
network flow. In the absence of experiment activity only experiment is encoded. Activity
must not contain any personal data (any information relating to an identified or
identifiable natural person). The mapping between experiment activity and its value is
defined in advance (and should be mostly static as frequent changes are not
anticipated).

The mapping that defines which experiment/activity has which value/id is defined by a static
allocation agreed by the stakeholders. The distribution of the mappings will be initially provided
by a flow registry served from scitags.org domain. The content will be available in JSON format
with schema conforming to the one described in Appendix B. Later on a more complex system
for broader distribution is foreseen (possibly based on DNS or some other hierarchical
distribution model).

1.1 Flow Marking (UDP firefly)
UDP firefly is a mechanism to identify network flow by issuing a specific UDP packet in a
separate channel to the actual TCP or UDP transfer (original flow). UDP firefly packet has the
following characteristics and fields:

● A specific UDP packet is sent at the beginning and at the end of each original network
flow. Optionally in regular intervals in between with at least 60 seconds granularity.

● The packet has the same source and destination IPs as the original flow for both IPv4
and IPv6.

● It uses a specific destination port (10514)
● It contains the following payload:

○ It uses syslog facility header with severity: Informational: 6 and facility: Local0: 16
○ It contains flow identifier and other fields in json format that conforms to the

JSON firefly schema shown in Appendix A.
● It uses UTF-8 encoding for the payload.

3

● UDP firefly payload must fit within a single frame (maximum size is determined by MTU,
which for the purpose of this document is 1500 bytes including all headers).

1.2 Packet Marking (Flow Label)
Packet marking is using a flow label, which is a 20 bits field in the IPv6 header and therefore will
only mark IPv6 traffic.

Fig. 1 Part of the IPv6 header showing flow label and position of bits

The flow label has the following characteristics and fields:
● It contains the experiment and activity identifiers encoded in the following way:

○ Activity identifier is encoded in 6 bits in position 24-29 (c.f. Fig. 1)
○ Entropy/random bits are 5 bits in positions 12-13, 23, 30-31, they’re set at

random per flow
○ Experiment identifier is encoded in 9 bits 14-22 (bits are in reversed order to

allow for possible future adjustments)
● Flow label is set on each packet that is issued by the given experiment and/or activity

and must follow RFC6437 (random/entropy bits are set only once for the lifetime of the
flow).

● In case of absence of both activity and experiment fields, flow label is set using a
random number from the range 0x00000 - 0xFFFFF (per flow).

This allocation takes into account the existing technical limits on the IPv6 flow label and restricts
the possible range of values for both experiment and activity. This restriction should be
implemented by the flow service or any other service implementing the packet marking
mechanism.
The intent is to modify/update only the flow label 20 bits in the first 32 bit header word on IPv6
packets. How this works in practice will need testing. Also, it should be noted that IPv6
headers don’t have a checksum which removes that task when updating the flow label.

2. Flow Service
The management of the flow and packet marking mechanism is performed by a standalone
service/daemon that runs on the storage hosts and/or clients and is responsible for the
mechanics of marking/signaling the flows. In particular it will send UDP firefly packets and
optionally set flow labels (if src/dst is IPv6 and flow label is supported). It exposes the following
API to the storage systems and clients:

● flow-start
○ inputs: (protocol, src, src_port, dst, dst_port, experiment, activity)

● flow-end

4

○ inputs: (protocol, src, src_port, dst, dst_port, experiment, activity)
● flow-update (optional)

○ inputs: (protocol, src, src_port, dst, dst_port, experiment, activity)

The possible application facing interface is TBD (there are many possible options: socket, grpc,
json-rpc, http/rest interface, rmq/amq).
In both packet and flow marking it is assumed that public source IPs and ports are known. For
certain deployments that use private networks, such as Kubernetes, this will require a separate
mechanism to discover the public source IPs (TBD, possible options are STUN/TURN packets).

3. Flow Identifier Lifecycle
This section outlines the lifecycle of the flow identifier, i.e. how the flow identifier passes
through the existing data management chain to reach R&E networks and their analytics.

There are two potential ways for introducing the flow identifier in the system:
1. Full marking (default) in which both identifier fields (experiment/activity) are registered

with the experiment's data management system and passed on to the lower level
services until reaching storage, which will mark the actual traffic that the analytical
systems can consume at any point along the network path.

2. Partial marking (simplified) in which the experiment field in the flow identifier is extracted
from a token (or by some other heuristics, e.g. directory path) by the storage systems
and passed to the traffic without specifying the activity field.

3.1 Experiment Frameworks
The primary role of the experiment’s frameworks and their data management systems is to
introduce the flow identifier into the system. For this they will need to have a representation of
the flow identifier fields and be able to pass it to the data management services. The interface to
pass this information is specific to the data management system used.

Rucio
Rucio currently has both experiment and activity representations and has been already passing
this information to the other systems as part of ATLAS Data Carousel project. Extending the
existing interface with FTS might be needed and potentially integrating flow service for cases
that result in significant transfer activities and are not performed via FTS. Details TBA.

DIRAC
TBA

5

ALICE O2

TBA

3.2 File Transfer Services
If there is a middleware service between experiment’s data management and storages, such as
FTS, its role will be to pass the flow identifier received from the experiment’s data management
systems to the storages and caches by means of existing protocols (and their extensions as
detailed below). An alternative way that can be used in the early prototyping stage can be to
add the flow identifier as part of the file metadata structure, which can then be retrieved via
REST API.

3.3 Storage Systems and Caches
Storage systems and caches will be responsible for introducing the flow identifier in the network
traffic. This will require either interfacing with the flow service or directly implementing UDP
firefly and flow label mechanisms. This impacts all the existing storage systems that transfer
significant amounts of scientific data, i.e. dCache, XrootD/XCache, EOS, StoRM, CTA and
Echo.

3.4 Clients
Storage clients and client libraries (e.g. gfal2) if used to directly initiate transfers will be also
responsible for introducing the flow identifier in the network traffic by the same means as
storage systems and caches (more details TBA).

3.5 Protocols Extensions

3.5.1 XRoot
In the Xroot (and HTTP) URL, applications that initiate connections (the clients) also include the
flow identifier in their connection URL, as CGI strings. For example, the CGI can be in the form
of “scitag.flow=<experimentID><<6|<activityID>”, where experimentID and activityID conform to
the flow identifiers provided by the flow registry (see Appendix B). The CGI can be used:

1. By the client to set its own socket option for flow/packet marking, and pass to the server.
2. By the server to set its socket option.
3. The client also has an option to obtain the flow identifiers from an external source or

from its running environment, and add that to the CGI if the CGI isn’t presented by the
application's high layers.

4. Assuming(3) is possible, ideally, the client would have a way to include packet/flow
marking in the login information that is also passed as a CGI string.

6

Since Xroot protocol allows reusing a connection, it is possible that the second use of the
connection may have a different flow identifier. In this unlikely case, the CGI mechanism should
still work but may introduce inconsistencies that need to be explored.

● This should also cover cases where additional ports/sockets are opened for data
transfer. This requires corresponding logic in the storage software stack.

Use Case Specific Issues

For 3rd party copy (TPC), the CGI mechanism allows the request initiator (FTS/gfal2/xrdcp/curl)
to pass the flow identifier to the server side process/thread that actually triggers TPC.

For XRootD proxy (including forwarding proxy), we need to understand whether the packet
marking CGI can be propagated to the data source. In the case of an Xcache proxy, due to its
shared nature, the packet mark info cannot be architecturally passed to the source. Even if it
were possible, it would not accurately reflect the true purposes of all accesses to the same data
file. We think this scenario is a secondary, non-dominate case. In fact, Xcache would mark
packets as a general caching service that may or may not be tied to a particular experiment.
The packet-marking applications table has had a “Cache” application type added in common for
all Astro/HEP science domains.

3.5.2 HTTP-TPC

This section provides a mechanism that allows the controlling agent to request a specific flow
identifier be used for the data-bearing transfer when making an HTTP-TPC request.
Conforming active-party servers would ensure that the TCP connection over which data flows
has the requested flow identifier.

The COPY request

In order for the controlling agent to affect the data bearing transfer, it must tell the active party
what is the desired flow identifier. This is achieved by specifying an additional HTTP request
header in the COPY request. The following guidelines apply for the processing of the
HTTP/TPC headers:

The client MAY specify the SciTag request header. The content of the SciTag header is a
positive integer with an encoded value using the formula: <expID> <<6 | <actID>, where <<6 |
are bitwise operators and expID and actID are the numeric codes that map experiments and
activities to numbers as found in the SciTags registry API (see Appendix B).

The following is a COPY request that request data is pulled from example.org with the flow
identifier atlas (expID:2), rebalancing (actID:16).
COPY /path/to/destination HTTP/1.1
Host: destination.example.org

7

Source: https://source.example.org/path/to/source
TransferHeaderAuthorization: Bearer ABCD…
SciTag: 144

Processing expectation

The active endpoint should record the supplied value along with other details of the desired
transfer. When processing the request, the server SHOULD ensure the flow identifier is used to
mark the traffic, as received. The following processing rules apply:

● If the active party receives an HTTP-TPC COPY request with no SciTag request header
then the server SHOULD NOT mark the corresponding network traffic.

● If the active party receives an HTTP-TPC COPY request with a SciTag request header
then the active party SHOULD include a SciTag request header (with the same value
as in the COPY request) in all related HTTP requests.

● If the active party receives an HTTP-TPC COPY request with a SciTag request header
with a valid value then the server SHOULD mark the resulting network traffic with the
experiment ID and activity ID encoded in the value.

○ Valid value is a single positive integer > 64 and <65536 (16bit). Any other value is
considered invalid.

● If the active party receives an HTTP-TPC COPY request with a SciTag request header
with an invalid value then the server SHOULD mark the resulting network traffic with the
0 as the experiment ID and the activity ID.

● If the active party receives an HTTP-TPC COPY request with both a SciTag request
header and a TransferHeaderSciTag request header then it SHOULD ignore the
TransferHeaderSciTag and continue to process the request.

In particular the following processing steps apply when handling particular requests:
Assuming C is a client, A and B are servers (storages).
Pull copy

● C -> A : COPY B to A
○ A sends GET file to B with SciTag header
○ B should send the firefly (with firefly content listing src:B/dst:A); C sends scitags

header (TransferHeaderSciTag) to A in the COPY request; A should pass
(SciTag) header to B in the GET request

○ If C sends SciTag header (SciTag instead of TransferHeaderSciTag) then
A should send the firefly without passing it further to B (but in the firefly it should
set src:B/dst:A to correctly flag the source and destination). This part is optional
(good to have), but not essential (we won't need it once all major storages
support scitags).

8

https://source.example.org/path/to/source

Push copy
● C -> A : COPY A to B

○ A sends PUT file to B without SciTag header
○ A should send firefly (with content src:A/dst:B); C sends scitags header (SciTag)

to A in the COPY request, no passing of SciTag header to PUT, so B does
nothing

Direct get
● C -> A: GET file

○ C sends GET to A with (SciTag) header
○ A sends firefly (with src:A/dst:C) as it got GET with scitags header (SciTag)

Direct put
● C -> A: PUT file

○ C sends PUT to A with (SciTag) header
○ C should send the firefly as C is sending the file, but A has to do it on behalf of C

and will do so based on PUT with the scitags header (SciTag), so A sends firefly
(with src:C/dst:A)

○ This is specific/exceptional behavior, but required, as it's not realistic to have all
clients supporting scitags in the near future

3.6 Network Analytics
Network analytics system will ensure that the flow identifier can be consumed and processed in
an efficient way in order to generate statistical records and pass them on to the 3rd parties (e.g.
back to the experiment’s frameworks and data management systems).

Details TBA by R&Es

4. Prototype Implementation Plan
The following can be considered for an early prototype implementation:

● Experiments (CMS & ATLAS) update their use of Rucio to supply flow identifiers when
adding a rule.

● Rucio is updated so that a flow identifier may be supplied when adding a rule (in
essence, a "why" field).

● FTS REST API is updated to allow the submitter to give an optional flow identifier on the
PUT/POST request.

● Flow service implementation with basic UDP firefly mechanism and interface.
Alternatively also including a basic prototype of the eBPF/flow label implementation.

● Partial marking by one (or more) storage systems that detects the experiment field from
token or by other heuristic and calls the flow service.

9

● Initial prototype of the network analytics system (capturing UDP fireflies and testing
correlations with the TCP traffic)

5. References

Appendix A: UDP Firefly JSON Schema
Firefly packet protocol stack

● IPv4 or IPv6
○ ip-src: IP address of the host launching the firefly packet
○ ip-dst: IP address of the destination of the original flow
○ ip-dst: IP address of the host scitag.es.net (for testing purposes)
○ NOTE: the IP version of the outer IP header is entirely independent from

the flow record contained within the JSON-Firefly payload.
● UDP

○ src-port: ephemeral
○ dst-port: 10514

● Syslog
○ Severity: Informational: 6
○ Facility: Local0: 16

● JSON-Firefly schema: see below

The firefly packet should be encoded in compliance with syslog RFC5424 which requires
a specific header which contains the following fields:
PRIORITY VERSION TIMESTAMP HOSTNAME APP-NAME PROCID MSGID STRUCTURED-DATA MSG

In our case the following values should be set:
PRIORITY = <134>
VERSION = 1
TIMESTAMP = see RFC5424 for options (e.g. 2021-09-22T11:12:27.808092+00:00) (optional)
HOSTNAME = hostname of the host which originated the packet (optional)
APP-NAME = application name of the application that originated the packet (optional)
PROCID = -
MSGID = firefly-json
STRUCTURED-DATA = -
MSG = For our firefly case the MSG part (see RFC5424) is the JSON described below.

Based on this the following is an example of the entire payload (syslog part is in
bold, firefly json is in italics):

<134>1 2021-09-22T11:12:27.808092+00:00 26799cfec63a flowd - firefly-json -
{"flow-id": {"protocol": "tcp", "afi": "ipv4", "dst-ip": "147.213.1.1", "src-port":

10

http://scitag.es.net/

54204, "src-ip": "194.12.1.1", "dst-port": 443}, "version": 1, "flow-lifecycle":
{"state": "end", "end-time": "2021-09-22T11:12:27.801666+00:00", "start-time":
"2021-09-22T11:12:17.776691+00:00", "current-time": "2021-09-22T11:12:27.808210+00:00"},
"context": {"experiment-id": 16, "application": "flowd v0.1.0", "activity-id": 1}}

The PRIORITY field is constructed as 8*FACILITY+SEVERITY. The result is bracketed
with ‘<’ and ‘>’ at the front of the packet.

Current schema is at:

https://scitags.github.io/schemas/v1.0.0/firefly.schema.json

Examples of sample UDP firefly JSONs:

{
"version": 1,
"flow-lifecycle": {
"state": "start",
"current-time": "2021-09-07T22:22:21.998202+00:00",
"start-time": "2021-09-07T22:22:21.998225+00:00"

},
"flow-id": {
"afi": "ipv4",
"src-ip": "10.99.0.1",
"dst-ip": "10.100.0.2",
"protocol": "tcp",
"src-port": 1234,
"dst-port": 56789

},
"context": {
"experiment-id": 3333,
"activity-id": 12,
"application": "grid-ftp v99.99"

}
}

{
"version": 1,
"flow-lifecycle": {
"state": "start",
"current-time": "2021-09-07T22:22:21.999925+00:00",
"start-time": "2021-09-07T22:22:21.999933+00:00"

},
"flow-id": {
"afi": "ipv6",

11

https://scitags.github.io/schemas/v1.0.0/firefly.schema.json

"src-ip": "fe80::1",
"dst-ip": "fe80::2",
"protocol": "udp",
"src-port": 1234,
"dst-port": 56789

},
"context": {
"experiment-id": 3333,
"activity-id": 12,
"application": "grid-ftp v99.99"

}
}

–
{
"version": 1,
"flow-lifecycle": {
"state": "end",
"current-time": "2021-09-07T22:22:22.000708+00:00",
"start-time": "2021-09-07T22:22:21.999933+00:00",
"end-time": "2021-09-07T22:22:22.000690+00:00"

},
"flow-id": {
"afi": "ipv6",
"src-ip": "fe80::1",
"dst-ip": "fe80::2",
"protocol": "udp",
"src-port": 1234,
"dst-port": 56789

},
"context": {
"experiment-id": 3333,
"activity-id": 12,
"application": "grid-ftp v99.99"

}
}

{
"flow-id": {
"protocol": "tcp",
"afi": "ipv6",
"dst-ip": "2001:67c:1bec:236::9",
"src-port": 30175,
"src-ip": "2001:48a8:68f7:1:192:41:231:128",
"dst-port": 50152

12

},
"version": 1,
"flow-lifecycle": {
"state": "end",
"start-time": "2021-09-21T17:46:43.406370+00:00",
"end-time": "2021-09-21T17:46:43.406370+00:00",
"current-time": "2021-09-21T17:46:43.406352+00:00"

},
"usage":{
"received": 4234,
"sent": 34343443,

},
"netlink":{
"rtt": 33.4,

},
"context": {
"experiment-id": 16,
"application": "flowd v0.0.1",
"activity-id": 1

},
}

13

Appendix B: Registry JSON Schema
Flow Registry JSON Schema
https://scitags.github.io/schemas/v1.0.0/registry.schema.json

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://scitags.org/schemas/v1.0.0/registry.schema.json",
"title": "Flow registry schema",
"description": "Mapping of the flow identifiers to the experiments and activities",
"type": "object",

"properties": {
"version": {
"description": "The version number of the schema",
"type": "integer",
"minimum": 1,
"maximum": 1,

},
"experiments": {
"type": "array",
"items": {"$ref": "#/$defs/exps"},
"minItems": 1,
"uniqueItems": true

},
"modified": {
"description": "The UTC date/time when the content of registry was last

modified",
"type": "string",
"format": "date-time",

},
},
"$defs": {
"exps": {
"type": "object",
"required": ["expName", "expId", "activities"],
"properties": {
"expName": {
"type": "string",
"description": "Experiment name",

},
"expID": {
"type": "integer",
"description": "Experiment id",

},
"activities": {
"type": "array",

14

https://scitags.github.io/schemas/v1.0.0/registry.schema.json

"description": "Experiment's activity ids",
"items": {"$ref": "#/$defs/acts"},
"minItems": 1,
"uniqueItems": true

},
}

},
"acts": {
"type": "object",
"required": ["activityName", "activityId"],
"properties": {
"activityName": {
"type": "string",
"description": "Activity name"

},
"activityId": {
"type": "integer",
"description": "Activity id"

}
}

}
},
"required": ["version", "experiments"],

}

Example:
{
"version": 1,
"modified": "2021-09-07T22:22:21.998225+00:00",
"experiments": [
{
"expName": "atlas",
"expId" : 16,
"activities": [
{
"activityName": "production",
"activityId": 14

},
{
"activityName": "rebalancing",
"activityId": 16

}
]

},
{
"expName": "cms",

15

"expId": 23,
"activities": [
{
"activityName": "production",
"activityId": 14

},
{
"activityName": "rebalancing",
"activityId": 16

}
]

}
]

}

16

