
Proposal of MPU: RISC-V Memory Protection Unit

Dong Du, Xu Lu, Bicheng Yang, Wenhao Li, Yubin Xia, Shanghai Jiao Tong
University and RISC-V TEE Task Group

Contributors: Nick Kossifidis, Joe Xie, Paul Ku, Bill Huffman, Jonathan Behrens,
Allen Baum, Robin Zheng, Zeyu Mi, Members of the TEE Task Groups

Note: The doc is archived and you can refer to RISC-V TEE’s github for the latest spec
(https://github.com/riscv/riscv-tee/blob/main/Ssmpu/Ssmpu.pdf).

1. Motivation
We propose MPU (RISC-V Memory Protection Unit) to provide isolation when MMU is not
available.

RISC-V based processors recently stimulate great interest in the emerging internet of things
(IoT). However, as the page-based virtual memory (MMU) is usually not available on IoT
devices, it is hard to isolate the S-mode OSes (e.g., RTOS) and user-mode applications. To
support secure processing and isolate faults of U-mode software, it is desirable to enable
S-mode OS to limit the physical addresses accessible by U-mode software on a hart.

Figure 1: Comparison of PMP and MPU. MPU can provide isolation in M-S-U when MMU is not

available.

2. Memory Protection Unit (MPU)
An optional RISC-V Memory Protection Unit (MPU) provides per-hart supervisor-mode control
registers to allow physical memory access privileges (read, write, execute) to be specified for
each physical memory region. The MPU values are checked after the physical address to be
accessed pass both the PMA checks and PMP checks described in the privileged spec.

Like PMP, the granularity of MPU access control settings are platform-specific and within a
platform may vary by physical memory region, but the standard MPU encoding should support
regions as small as four bytes.

MPU checks could be applied to all accesses for both U mode and S mode, depending on the
values in the configuration registers. M-mode accesses are not affected. MPU registers can
always be modified by M-mode and S-mode software. MPU registers can grant permissions to
U-mode, which has none by default, and revoke permissions from S-mode, which has full
permissions by default.

2.1. Requirements
a)​ S mode should be implemented

2.2. Memory Protection Unit CSRs
Like PMP, MPU entries are described by an 8-bit configuration register and one XLEN-bit
address register. Some MPU settings additionally use the address register associated with the
preceding MPU entry. The number of MPU entries can vary by implementation, and up to 64
MPU entries are supported in standard.

The MPU configuration registers are packed into CSRs in the same way as PMP does. For
RV32, 16 CSRs, mpucfg0-mpucfg15, hold the configurations mpu0cfg-mpu63cfg for the 64 MPU
entries. For RV64, even numbered CSRs (i.e., mpucfg0, mpucfg2, … , mpucfg14) hold the
configurations for the 64 MPU entries; odd numbered CSRs (e.g., mpucfg1) are illegal. Figure 2
and 3 demonstrate the first 16 entries of MPU, the layout of rest entries is similar.

Figure 2: RV32 MPU configuration CSR layout

Figure 3: RV64 MPU configuration CSR layout

The MPU address registers are CSRs named mpuaddr0-mpuaddr63. Each MPU address register
encodes bits 33-2 of 34-bit physical address for RV32, as shown in Figure 4. For RV64, each
MPU address encodes bits 55–2 of a 56-bit physical address, as shown in Figure 5. Fewer
address bits may be implemented for systems with a smaller physical address space.
Implemented address bits must be contiguous and have to go from lower to higher bits.

Figure 4: MPU address register format, RV32

Figure 5: MPU address register format, RV64

The layout of MPU configuration registers is similar to PMP configuration registers, as is shown
in Figure 6. The whole register is WARL.

The S bit marks a rule as S-mode-only when set and U-mode-only when unset. The reserved
encoding of mpucfg.RW=01, and the encoding mpucfg.SRWX=1111, now encode a
Shared-Region. The rules and encodings for permission are explained in section 2.4, which
resembles the encoding of ePMP (except MPU doesn't use locked rules).

Bit 5 and 6 are reserved for future use.

The A bit will be described in the following sections (2.3).

The X/W/R bits control instruction execution, write and read permissions.

Figure 6: MPU configuration register format

The number of MPU entries: The proposal advocates 64 MPU entries, which can provide 64
isolated regions concurrently. To provide more isolation regions, the software in S-mode (usually
an OS) can virtualize more isolated regions and schedule them by switching the values in MPU
entries.

The reset state: On system reset, the A field of mpuicfg should be zero.

2.3. Address Matching
The A field in an MPU entry’s configuration register encodes the address-matching mode of the
associated MPU address register. It is the same as PMP/ePMP.

2.4. Encoding of Permissions
MPU has three kinds of rules: U-mode-only, S-mode-only, and Shared-Region rules. The S bit
marks a rule as S-mode-only when set and U-mode-only when unset. The encoding
mpucfg.SRWX=1000 is reserved and the encoding mpucfg.RW=01 and the encoding
mpucfg.SRWX=1111 encode a Shared-Region.

An S-mode-only rule is enforced on Supervisor mode and denied on User mode.

A U-mode-only rule is enforced on User modes and denied/enforced on Supervisor mode
depending on the value of sstatus.SUM bit:

1.​ If sstatus.SUM is set, a U-mode-only rule is enforced yet non-executable on Supervisor
mode in order to ensure SMEP.

2.​ If sstatus.SUM is unset, a U-mode-only rule is denied on Supervisor mode.

A Shared-Region rule is enforced on both Supervisor and User modes, with restrictions
depending on the mpucfg.S and mpucfg.X bits:

1.​ If mpucfg.S is not set the region can be used for sharing data between S-mode and
U-mode so is not executable. S-mode has RW access to that region and U-mode has
read access if mpucfg.X is not set, or RW access if mpucfg.X is set.

2.​ If mpucfg.S is set the region can be used for sharing code between S-mode and U-mode
so is not writeable. Both S-mode and U-mode have execute access on the region and
S-mode may also have read access if mpucfg.X is set.

3.​ The encoding mpucfg.SRWX=1111 can be used for sharing data between S-mode and U
mode, where both modes only have read-only access to the region.

The encoding and results are shown in the table:

Bits on mpucfg
register

Result

S

R

W

X

S Mode U Mode

SUM=0 SUM=1 SUM=0/1

0 0 0 0 Inaccessible region (Access Exception)

0 0 0 1 Access Exception Execute-only region

0 0 1 0 Shared data region: Read/write on S mode, read-only on U mode

0 0 1 1 Shared data region: Read/write for both S and U modes

0 1 0 0 Access Exception Read-only region Read-only region

0 1 0 1 Access Exception Read-only region Read/Execute region

0 1 1 0 Access Exception Read/Write region Read/Write region

0 1 1 1 Access Exception Read/Write region Read/Write/Execute region

1 0 0 0 Reserved

1 0 0 1 Execute-only region Access Exception

1 0 1 0 Shared code region: Execute only on both S and U mode.

1 0 1 1 Shared code region: Execute only on U mode, read/execute on S mode.

1 1 0 0 Read-only region Access Exception

1 1 0 1 Read/Execute region Access Exception

1 1 1 0 Read/Write region Access Exception

1 1 1 1 Shared data region: Read only on both S and U mode.

SUM bit: We re-use the sstatus.SUM (permit Supervisor User Memory access) bit to modify the
privilege with which S-mode loads and stores access physical memory. The semantics of SUM
in MPU is consistent with it in paging.

2.5. Priority and Matching Logic
The PMP checks only take effect after the memory access passes the MPU permission checks.
An M-mode access will not be checked by MPU property.

Like PMP entries, MPU entries are also statically prioritized. The lowest-numbered MPU entry
that matches any byte of an access determines whether that access is allowed or fails. The
matching MPU entry must match all bytes of an access, or the access fails, irrespective of the S,
R, W, and X bits.

1.​ If the privilege mode of the access is M, the access is allowed. If the privilege mode of
the access is S and no MPU entry matches, the access is allowed; If the privilege mode
of the access is U and no MPU entry matches, but at least one MPU entry is
implemented, the access fails.

2.​ Otherwise, the access is checked according to the permission bits in the matching MPU
entry and is allowed only if it satisfies the permission checking with the S, R, W, or X bit
corresponding to the access type.

2.6. MPU and Paging
The table below shows which mechanism to use. Assume both MMU and MPU are
implemented.

Value in satp Isolation mechanism

0 (bare mode) MPU only

non-zero MMU only

We do not enable both MPU and MMU now because:

(1)​ It will introduce one more layer to check permission for each memory access. This issue
will be more serious for guest OS which may have host MPU and guest MPU.

(2)​MMU can provide sufficient protection.

That means, MPU is enabled when satp.mode=Bare and MPU is implemented.

Note: If page-based virtual memory is not implemented, or when it is disabled, memory
accesses check the MPU settings synchronously, so no fence is needed.

2.7. Exceptions
Failed accesses generate an exception. MPU follows the strategy that uses different exception
codes for different cases, i.e., load, store/AMO, instruction faults for memory load, memory
store/AMO and instruction fetch respectively.

The MPU reuses exception codes of page fault for MPU fault. This is because page fault is
typically delegated to S-mode, and so does MPU, so we can benefit from reusing page fault.
S-mode software(i.e., OS) can distinguish MMU fault from MPU fault by checking satp.mode.
(as mentioned in 2.6, MPU and MMU will not be activated simultaneously) The MPU is
proposing to rename page fault to MPU/MMU fault for clarity.

Note that a single instruction may generate multiple accesses, which may not be mutually
atomic.

Table of renamed exception codes:

Interrupt Exception Code Description

0 12 Instruction MPU/MMU fault

0 13 Load MPU/MMU fault

0 15 Store/AMO MPU/MMU fault

Note: You can refer to the Table 3.6 in riscv-privileged spec.

Delegation: Unlike PMP which uses access faults for violations, MPU uses MPU/MMU faults for
violations. The benefit of using MPU/MMU faults is that we can delegate the violations caused
by MPU to S-mode, while the access violations caused by PMP can still be handled by machine
mode.

2.8. Context Switching Optimization
With MPU, each context switch requires the OS to store 64 address registers and 8
configuration registers (RV64), which is costly and unnecessary. So the MPU is proposing an
optimization to minimize the overhead caused by context switching.

We add two CSRs called mpuswitch0 and mpuswitch1, which are XLEN-bit read/write
registers, formatted as shown in Figure 7. For RV64, only mpuswitch0 is used. Each bit of this
register holds on/off status of the corresponding MPU entry respectively. During context switch,
the OS can simply store and restore mpuswitch as part of the context. An MPU entry is
activated only when both corresponding bits in mpuswitch and A field of mpuicfg are set. (i.e.,
mpuswitch[i] &mpuicfg.A)

Figure 7: MPU domain switch register format (RV64)

3. Summary of Hardware Changes
CSRs for MPU address: ​ ​ 64 new CSRs
CSRs for MPU configuration: ​ 16 new CSRs for RV32 and 8 for RV64
Renamed exception code:​ ​ Instruction page fault -> Instruction MPU/MMU fault
​ ​ ​ ​ ​ Load page fault -> Load MPU/MMU fault
​ ​ ​ ​ ​ Store/AMO page fault -> Store/AMO MPU/MMU fault
CSR for Domain switch:​ ​ 2 new CSRs for RV32 and 1 for RV64

4. Interaction with hypervisor extension
To support both MPU and hypervisor extension, there are some further changes.

4.1 vMPU extension
This extension describes how MPU is used in a guest VM.

1.​ A set of vMPU CSRs for the VS-mode are required, including 64 vmpu address registers

and 16 configuration registers(RV32). When V=1, vmpu CSR substitutes for the usual
mpu CSR, so instructions that normally read or modify mpu CSR actually access vmpu
CSR instead. This is consistent with the paging in VS-mode (i.e., vsatp).

2.​ For HLV, HLVX, and HSV instructions, the hardware should perform vMPU checking
before G-stage address translation (or hgMPU protection when hgatp in BARE mode).

3.​ The vMPU checking is performed in the guest physical addresses, before G-stage
address translation (or hgMPU protection when hgatp in BARE mode).

4.2 hgMPU extension
This extension describes how MPU is used for protecting a hypervisor from guests (only
enabled when hgatp is set to BARE mode).

1.​ When hgMPU is enabled, all guest memory accesses will be checked by hgMPU; while
hypervisor (in HS mode) and HU mode applications will not be affected.

2.​ A set of hgMPU CSRs for the HS-mode are required, including 64 hgmpuaddr address
registers and 16 hgmpucfg configuration registers (RV32). When V=1, and
hgatp.MODE=Bare, hgmpu is used to provide isolation between hypervisor and
guest VMs.

3.​ XLEN-bit read/write hgmpuswitch0 and hgmpuswitch1 CSRs are also provided in
hgMPU, which are identical to mpuswitch0 and mpuswitch1 shown in Figure 7.
Only hgmpuswitch0 is used for RV64. During context switch, the hypervisor can
simply store and restore hgmpuswitch (we use hgmpuswitch to represent either
hgmpuswitch0 or hgmpuswitch1) as part of the context. An hgMPU entry is
activated only when both corresponding bits in hgmpuswitch and A field of
hgmpuicfg are set. (i.e., hgmpuswitch[i] & hgmpuicfg.A)

4.​ The hgMPU checking is performed after the guest address translation (or vMPU
checking), before PMP checking.

As hgMPU does not apply on hypervisor, the encodings of configuration registers are
simplified as the following table.

The encodings of hgmpucfg are shown in the table:

Bits on hgmpucfg
register

Result

S R W X V Mode (VS + VU)

0 0 0 0 Inaccessible region (Access Exception)

0 0 0 1 Execute-only region

0 1 0 0 Read-only region

0 1 0 1 Read/Execute region

0 1 1 0 Read/Write region

0 1 1 1 Read/Write/Execute region

Others Reserved

5. Interaction with other proposals
This section discusses how MPU interacts with other proposals.

RISC-V PMP enhancements: MPU is compatible with ePMP proposal, and uses almost the
same encoding as ePMP.

J-extension pointer masking proposal: When both PM and MPU are used, MPU checking
should be performed using the actual addresses generated by PM (pointer masking).

	Proposal of MPU: RISC-V Memory Protection Unit
	Dong Du, Xu Lu, Bicheng Yang, Wenhao Li, Yubin Xia, Shanghai Jiao Tong University and RISC-V TEE Task Group
	1. Motivation
	2. Memory Protection Unit (MPU)
	2.1. Requirements
	2.2. Memory Protection Unit CSRs
	2.3. Address Matching
	2.4. Encoding of Permissions
	2.5. Priority and Matching Logic
	
	2.6. MPU and Paging
	2.7. Exceptions
	2.8. Context Switching Optimization

	3. Summary of Hardware Changes
	4. Interaction with hypervisor extension
	4.1 vMPU extension
	4.2 hgMPU extension

	5. Interaction with other proposals

