
re: discussion 9/25
compareTo, type conversions, & Map/Set methods

jump to:
compareTo
type conversions
Map/Set methods

compareTo
Sorry for giving that poor elaboration/example of compareTo in discussion! Hoping that this
doc all about the compareTo method will help clear things up.

For more information, please see the Docs!
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-
Tutorials Point is a lil less intimidating :)
https://www.tutorialspoint.com/java/java_string_compareto.htm

Why use compareTo?

●​ as a tiebreaker (recall Question #1 from the 9/25 discussion)
●​ to specify ordering for Collections.sort, Arrays.sort, TreeSet, TreeMap, etc.c

What does it return?

●​ stringA.compareTo(stringB)
○​ priority for comparison: alphabetical/lexicographical -- compareTo will go

through and compare each character of each string until it finds a difference in
characters (i.e. not just the first characters of each string will be compared)

■​ return negative int if stringA comes before stringB alphabetically
●​ e.g. stringA is “cat” and stringB is “dog”
●​ e.g. stringA is “hologram” and stringB is “zoo”
●​ e.g. stringA is “January” and stringB is “jump”

■​ return positive int if stringA comes after stringB
■​ return 0 (zero) if stringA.equals(stringB)

○​ tiebreaker: length -- if the strings do not differ at any character up to the entire
length of the shorter string, compareTo will break ties based on the strings’
lengths

■​ returns negative int if stringA is longer than stringB
●​ e.g. stringA is “dogma” and stringB is “dog”

■​ returns positive int if stringA is shorter than string B ​
●​ e.g. stringA is “hot” and stringB is “hottest”

What if/why would I want to make my own compareTo method?

●​ You may want to create your own compareTo method to define the ordering of an object
you create

●​ All classes with a compareTo method must implement the Comparable interface
●​ Here’s a screenshotted example, based on a “Student” class I made up:

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-
https://www.tutorialspoint.com/java/java_string_compareto.htm

●​ I now have the power to sort ArrayLists, Arrays, TreeMaps, TreeSets, etc. with my

ordering, like:
○​ Collections.sort(arrayListWithStudentObjects, new Student());
○​ Arrays.sort(arrayWithStudentObjects, new Student());
○​ TreeMap<Student, Integer> map = new TreeMap<Student,Integer>(new

Student());
○​ TreeSet<Student> set = new TreeSet<Student>(new Student());

type conversions
Converting between arrays, ArrayLists, and Sets was, for me, one of the greatest pains of Java.
Here’s a table that may help:

 to array to ArrayList to Set

from
array

X For arrays containing objects
(e.g. String):
ArrayList<Type> myList = new
ArrayList<Type>(Arrays.asList(myA
rray));

*For primitives (e.g. int):
Must loop through and add to
ArrayList manually.

For arrays containing
objects:
HashSet<Type> mySet =
new
HashSet<Type>(Arrays.asLi
st(myArray));

from
ArrayList

Type[] myArray =
myList.toArray(new
Type[0]);

X HashSet<Type> mySet =
new
HashSet<Type>(myList);

from Set Type[] myArray =
mySet.toArray(new Type[0]);

new ArrayList<Type>(mySet); X

* Dealing with Object data types (e.g. String, Integer) vs. primitive data types (e.g. int) can be a
challenge when you’re doing conversions. Here are a few rules:

●​ You cannot turn an array of ints into an ArrayList or Set of Integers with a single method.
(Remember that ArrayLists and Sets can only hold Object data types, so you would
have to turn those ints into Integers.) Thus, you would have to loop through each int in
the array of ints, and put it in the ArrayList or Set of Integers you want to create. Here’s
a StackOverflow post with a working example/elaboration:
https://stackoverflow.com/questions/1073919/how-to-convert-int-into-listinteger-in-jav
a

●​ Similarly, you cannot turn an ArrayList or Set of Integers to an array of ints, since there
is no way the ArrayList or Set could have contained the primitive int values you want in
the first place. If you wanted this conversion, you would have to loop through each
Integer in the ArrayList or Set, and put it in an array of ints (initialized to the size of the
ArrayList or Set)

https://stackoverflow.com/questions/1073919/how-to-convert-int-into-listinteger-in-java
https://stackoverflow.com/questions/1073919/how-to-convert-int-into-listinteger-in-java

●​ Note that Java will wrap/unwrap variables appropriately for you if you put them into an
ArrayList/array one by one, e.g:

Map/Set methods

I took the tables about important HashMap and HashSet methods from TutorialsPoint
(https://www.tutorialspoint.com/java/java_hashmap_class.htm and
https://www.tutorialspoint.com/java/java_hashset_class.htm), and listed the ones that I think
are the most important below, as I know that the Docs can be kind of overwhelming. (Though I
encourage you to try and take a look at them here:
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html and
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html)

Note: addAll was mentioned in class when we talked about HashSets but is not listed in the
HashSet methods table. If you’re wondering why, it’s because addAll is a Collections method
(meaning that both ArrayList and Sets can utilize it, yay). You can read more about addAll here,
as it will definitely save you some keystrokes in the future:
https://www.tutorialspoint.com/java/util/collections_addall.htm

●​ tl;dr thingOne.addAll(thingTwo) will add all elements of thingTwo into thingOne, and
return “true” if thingOne changed as a result -- thingOne and thingTwo will probably be
ArrayLists or Sets, but do not need to be of the same type

HashMap

boolean containsKey(Object key)

Returns true if this map contains a mapping for the specified key.

boolean containsValue(Object value)

Returns true if this map maps one or more keys to the specified value.

https://www.tutorialspoint.com/java/java_hashmap_class.htm
https://www.tutorialspoint.com/java/java_hashset_class.htm
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://www.tutorialspoint.com/java/util/collections_addall.htm

Set entrySet()

Returns a collection view of the mappings contained in this map.

Object get(Object key)

Returns the value to which the specified key is mapped in this identity

hash map, or null if the map contains no mapping for this key.

boolean isEmpty()

Returns true if this map contains no key-value mappings.

Set keySet()

Returns a set view of the keys contained in this map.

Object put(Object key, Object value)

Associates the specified value with the specified key in this map.

Object remove(Object key)

Removes the mapping for this key from this map if present.

int size()

Returns the number of key-value mappings in this map.

Collection values()

Returns a collection view of the values contained in this map.

HashSet

boolean add(Object o)

Adds the specified element to this set if it is not already present.

boolean contains(Object o)

Returns true if this set contains the specified element.

boolean isEmpty()

Returns true if this set contains no elements.

boolean remove(Object o)

Removes the specified element from this set if it is present.

int size()

Returns the number of elements in this set (its cardinality).

	re: discussion 9/25
	
	
	compareTo
	type conversions
	
	Map/Set methods

