
All-in-one Kubeflow Training Operator

Authors: Jiaxin Shan(@Jeffwan) Bytedance,
Wang Zhang(@zw0610) Tencent

Create Date: April, 12th, 2021
Last Update: May, 18th, 2021

Background
The Kubeflow project is a complex project that aims at simplifying the provisioning of a Machine
Learning infrastructure. It is built on top of Kubernetes and adapts lots of kubernetes core
components for ML use cases.

Kubeflow training is a group of Kubernetes operators that add to Kubeflow support for
distributed training of Machine Learning models using different frameworks.

There are two major distributed training strategies: one based on parameter servers (tf-operator,
etc) and the other based on collective communication primitives such as allreduce
(mpi-operator).

The latest Kubeflow release supports eight different operators. See Appendix A for details.

https://github.com/Jeffwan
https://github.com/zw0610


(credits Bachir@ https://dzlab.github.io/ml/2020/07/18/kubeflow-training/)
As the community continued to grow and support other distributed training frameworks, the
community did some refactoring and made common types available in a standalone repo
(kubeflow/common) to reduce code duplication and provide a clear pattern for long-term API
governance. See appendix B for more details.

Kubeflow/common in the past year helps a lot in sharing common types and implementations.
At the same time, Job API becomes fairly stable and most operator implementations look pretty
close. However, project maintenance is still an outstanding problem these days. Some
challenges are

● Hard to keep framework independent features (sdks, metrics) and bug fixes
consistent between operators.

● Hard to reuse shared testing and release infrastructure.
● Duplicate efforts to interact with Kubeflow components like KFP LauncherOp,

Katib as well external orchestra schemes like knowledge distilling, job queue and
actor-learner rl training

● Maintainers efforts increases linearly with the number of supported frameworks
● High cost for new developers to learn difference between operators

There’re also some user facing challenges

https://dzlab.github.io/ml/2020/07/18/kubeflow-training/
https://github.com/kubeflow/common/


● Users who use multiple frameworks have to install different operators. Duplicate
efforts on logs, metrics, and api interactions.

● JobSpec looks slightly different and it doesn’t give user consistency experience

Proposal 1 - Monolithic

Build a unified operator that supports multiple DL/ML frameworks.
(TF/PyTorch/MPI/MXNet/XGBoost)

High Level Design
Kubebuilder can be used to generate skeletons. It creates a single binary that contains all the
controllers.

Only one manager is needed and it will contain all the controllers defined in that project. Each
framework will have a corresponding job controller. This enables performance enhancements
such as only having one shared informer cache for all the controllers, reducing the number of
requests to k8s API. At the same time, user specified controllers can register themselves to the
manager in a configurable way. This helps users scope down frameworks they like to use
instead of enabling all controllers.

Each job controller setup with unified manager

mgr, err := ctrl.NewManager(ctrl.GetConfigOrDie(), ctrl.Options{})

if IsJobRegistered(tfjob_controller.GetSchema()) {

tfjob_controller.SetupWithManager(mgr)

}

if IsJobRegistered(pytorchjob_controller.GetSchema()) {

pytorch_controller.SetupWithManager(mgr)

}

...

Advantages

https://github.com/kubernetes-sigs/kubebuilder


1. Share the same testing and release infrastructure.
2. Unlock more production grade features like manifests/metadata supports.
3. Save huge efforts in each kubeflow release.
4. One source of truth for other kubeflow components to interact with.

Remaining Challenges
1. What’s the process to add a new framework?
2. Community loses granular control to graduate/release a single operator.
3. Can we guarantee all operators' implementations following the same pattern?

Mpi-operator is a little bit different from those built on Parameter Servers.
4. The future plan for kubeflow/common? Kubernetes sync staging components to separate

repo, we should probably learn that pattern.

Proposal 2 - Duo-Deck
The principle idea of this proposal is to force training operators to use the kubeflow/common,
which no longer presents itself as a golang package (sdk), instead as a service accepting
requests via (declarative) API.

1. Convert kubeflow/common into a (common-)role-operator that supports a new CRD:
`Role`. The conceptual struct of `Role` is listed below.

2. Convert existing training operators to ‘front-end’ operators, generating corresponding
role CRs and auxiliary resources like service, configMap or serviceAccount.



High Level Design

type Role struct {

// Standard Kubernetes type metadata.

metav1.TypeMeta `json:",inline"`

// Standard Kubernetes object's metadata.

// +optional

metav1.ObjectMeta `json:"metadata,omitempty"`

// Specification of the desired state of the Role.

// +optional

Spec *commonv1.ReplicaSpec `json:"spec,omitempty"`



// Most recently observed status of the Role.

// Populated by the system.

// Read-only.

// +optional

Status commonv1.ReplicaStatus `json:"status,omitempty"`

}

1. End-users still submit existing CRs like TFJob, MPIJob
2. ‘Frontend’ operators creates auxiliary job-level Kubernetes resources like Service,

ConfigMap
3. ‘Frontend’ operators decompose Job CR into different Role CRs, defining PodTemplate

as well as features like Fault-Tolerant, Elastic Training, etc.
4. ‘Backend’ operator watches all Role CRs and manages Pods performance
5. ‘Backend’ operator has decorator plugins processing decorators defined in each Role

CRs and use the corresponding plugins to maintain role-level Kubernetes resources like
Service, ConfigMap

Advantages
1. Force all operators to use the unified meta API (Role CRD)
2. Sharing advantages from proposal 1

Remaining Challenges
1. Operator developers switch from programming with sdk to programming with API
2. Community loses granular control to graduate/release a single operator
3. The design is not compatible with all or guaranteed compatible with all operators design

Appendixes

Appendix A: Existing Kubeflow Training Operators

Framework Project Repo Status

Tensorflow https://github.com/kubeflow/tf-operator

PyTorch https://github.com/kubeflow/pytorch-operator

MPI https://github.com/kubeflow/mpi-operator

https://github.com/kubeflow/tf-operator
https://github.com/kubeflow/pytorch-operator
https://github.com/kubeflow/mpi-operator


MXNet https://github.com/kubeflow/mxnet-operator

XGBoost https://github.com/kubeflow/xgboost-operator

Fate https://github.com/kubeflow/fate-operator

Chainer https://github.com/kubeflow/chainer-operator Plan to archive

Caffe2 https://github.com/kubeflow/caffe2-operator Plan to archive

PaddlePaddle https://github.com/kubeflow/community/pull/502 Reviewing

DGL https://github.com/kubeflow/community/pull/512 Reviewing

Appendix B: Kubeflow/common History

Community kicks off kubeflow/common project in early 2019 and finishes first version around
mid 2019. (see issue Proposal for a Common Operator). The first draft doesn’t provide enough
flexibility and maturity and most operators at that time still import tf-operator as a dependency to
leverage common tools.

After some enhancements and refactoring in mid 2020 (see issue Enhance maintainability of
operator common module), it becomes stable and can be easily adapted into operators written
by kubebuilder/operator-sdk or low level client sets. Currently, tf-operator, mxnet-operator,
xgboost-operator are all built with kubeflow/common library.

https://github.com/kubeflow/mxnet-operator
https://github.com/kubeflow/xgboost-operator
https://github.com/kubeflow/fate-operator
https://github.com/kubeflow/chainer-operator
https://github.com/kubeflow/caffe2-operator
https://github.com/kubeflow/community/pull/502
https://github.com/kubeflow/community/pull/512
https://github.com/kubeflow/tf-operator/issues/960
https://github.com/kubeflow/common/issues/54
https://github.com/kubeflow/common/issues/54

