| Name | Date              | Period |  |
|------|-------------------|--------|--|
|      | Free Body Diagram |        |  |

## Nov.6 Free Body Diagram (FBD) Chapter 4.3 of CK12.org

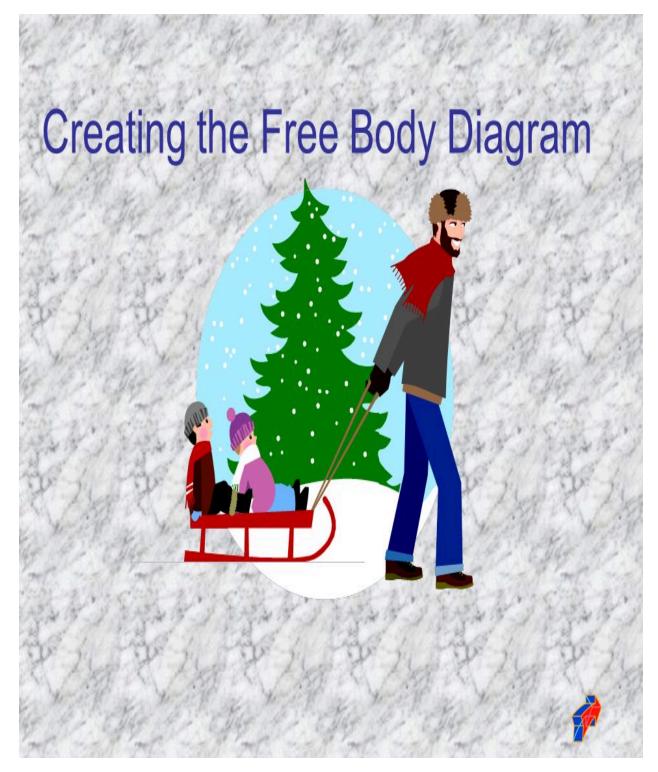
Instruction(s): Draw a FBD in each picture, and show each force acting on the object (or the system). List of forces: Normal Force  $(F_N)$ ; Weight Force  $(F_w)$ ; Friction Force  $(F_F)$ ; Gravity Force  $(F_G)$ ; Applied Force  $(F_A)$ 

- 1. A book is at rest on a tabletop. Diagram the forces acting on the book.
- 2. A gymnast holding onto a bar, is suspended motionless in mid-air. The bar is supported by two ropes that attach to the ceiling. Diagram the forces acting on the combination of gymnast and bar.
- 3. An egg is free-falling from a nest in a tree. Neglect air resistance. Diagram the forces acting on the egg as it is falling.b
- 4. A flying squirrel is gliding (no *wing flaps*) from a tree to the ground at constant velocity. Consider air resistance. Diagram the forces acting on the squirrel.
- A rightward force is applied to a book in order to move it across a desk with a rightward acceleration. Consider frictional forces. Neglect air resistance.
  Diagram the forces acting on the book.

| Name | Date              | Period |  |
|------|-------------------|--------|--|
|      | Free Body Diagram |        |  |

## Free Body Diagram (FBD) Chapter 4.3 of CK12.org

Instruction(s): Draw a FBD in each picture, and show each force acting on the object (or the system). List of forces: Normal Force  $(F_N)$ ; Weight Force  $(F_w)$ ; Friction Force  $(F_F)$ ; Gravity Force  $(F_G)$ ; Applied Force  $(F_A)$ 


- 1. A rightward force is applied to a book in order to move it across a desk at constant velocity. Consider frictional forces. Neglect air resistance. Diagram the forces acting on the book.
- 2. A college student rests a backpack upon his shoulder. The pack is suspended motionless by one strap from one shoulder. Diagram the vertical forces acting on the backpack.
- 3. A skydiver is descending with a constant velocity. Consider air resistance. Diagram the forces acting upon the skydiver.
- 4. A force is applied to the right to drag a sled across loosely packed snow with a rightward acceleration. Neglect air resistance. Diagram the forces acting upon the sled.
- 5. A football is moving upwards towards its peak after having been *booted* by the punter. Neglect air resistance. Diagram the forces acting upon the football as it rises upward towards its peak.
- 6. A car is coasting to the right and slowing down. Neglect air resistance. Diagram the forces acting upon the car.

| Name | Date              | Period |  |
|------|-------------------|--------|--|
| ·    | Free Body Diagram |        |  |

Nov.8 DAY 3/ DAY 4 Activity - Number of forces acted on the object? Which forces are acting on the object?



| Name | <br>Date | Period |
|------|----------|--------|
|      |          |        |



| Name | Date | Period |
|------|------|--------|
|      |      |        |





| Name | Date | Period |
|------|------|--------|
|      |      |        |



| Name | Date | Period |
|------|------|--------|
|------|------|--------|



| Name | Date | Period |
|------|------|--------|
|------|------|--------|



| Name | <br>Date | Period |
|------|----------|--------|
|      |          |        |

The system (sleigh and Santa) are coasting (or sleigh set to cruise control). Neglect air resistance.









| Name | Date | Period |
|------|------|--------|
|      |      |        |



| Name | Date | Period |
|------|------|--------|
|      |      |        |



| Name    | Date | Period  |
|---------|------|---------|
| INGILIC | Date | 1 01100 |



| Name                                      | Date                         | Period |
|-------------------------------------------|------------------------------|--------|
| Fr                                        | ee Body Diagram              |        |
| Nov.8 - Complete the activity using the G | Gizmo - Free Fall Laboratory |        |

Nov.8 - Complete the activity using the Gizmo - Free Fall Laboratory Collect the data.

| Rock   | Mass (m) = 1 g         | Mass (m) = 50 g            | Mass (m) = 100 g           |
|--------|------------------------|----------------------------|----------------------------|
| Air    | F <sub>Net</sub> = 0 N | F <sub>Net</sub> = -0.42 N | F <sub>Net</sub> = -0.9068 |
| No Air | F <sub>Net</sub> = N   | F <sub>Net</sub> = N       | F <sub>Net</sub> = N       |

## o Draw the Free Body Diagram

| Mass (m) = 1 g | Mass (m) = 50 g | Mass (m) = 100 g |
|----------------|-----------------|------------------|
|                |                 |                  |
|                |                 |                  |
|                |                 |                  |
|                |                 |                  |
|                | Mass (m) = 1 g  | Mass (m) = 1 g   |

0

## Real World -

 $\underline{http://www.engr.uconn.edu/\sim} cassenti/ME1166/ENGR1166\%20Lecture\%2003\%20-\%20Statics.p\\ \underline{df}$ 

https://www.real-world-physics-problems.com/amusement-park-physics.html

Catapult - https://www.real-world-physics-problems.com/catapult-physics.html