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Introduction 
The code base of Bazel is large (~350KLOC production code and ~260 KLOC test code) and no 
one is familiar with the whole landscape: everyone knows their particular valley very well, but 
few know what lies over the hills in every direction. 
 
In order for people midway upon the journey not to find themselves within a forest dark with 
the straightforward pathway being lost, this document tries to give an overview of the code 
base so that it's easier to get started with working on it. 
 
The public version of the source code of Bazel lives on GitHub at 
http://github.com/bazelbuild/bazel . This is not the “source of truth”; it’s derived from a 
Google-internal source tree that contains additional functionality that is not useful outside 
Google. The long term goal is to make GitHub the source of truth. 
 

http://github.com/bazelbuild/bazel


Contributions are accepted through the regular GitHub pull request mechanism, and manually 
imported by a Googler into the internal source tree, then re-exported back out to GitHub. 

Client/server architecture 
The bulk of Bazel resides in a server process that stays in RAM between builds. This allows Bazel 
to maintain state between builds. 
 
This is why the Bazel command line has two kinds of options: startup and command. In a 
command line like this: 
 

bazel --host_jvm_args=-Xmx8G build -c opt //foo:bar 

 
Some options (--host_jvm_args=) are before the name of the command to be run and some 
are after (-c opt); the former kind is called a "startup option" and affects the server process as 
a whole, whereas the latter kind, the "command option", only affects a single command.   
 
Each server instance has a single associated source tree ("workspace") and each workspace 
usually has a single active server instance. This can be circumvented by specifying a custom 
output base (see the "Directory layout" section for more information). 
 
Bazel is distributed as a single ELF executable that is also a valid .zip file. When you type bazel, 
the above ELF executable implemented in C++ (the "client") gets control. It sets up an 
appropriate server process using the following steps: 

1.​ Checks whether it has already extracted itself. If not, it does that. This is where the 
implementation of the server comes from. 

2.​ Checks whether there is an active server instance that works: it is running, it has the 
right startup options and uses the right workspace directory. It finds the running server 
by looking at the directory $OUTPUT_BASE/server where there is a lock file with the port 
the server is listening on. 

3.​ If needed, kills the old server process 
4.​ If needed, starts up a new server process 

 
After a suitable server process is ready, the command that needs to be run is communicated to 
it over a gRPC interface, then the output of Bazel is piped back to the terminal. Only one 
command can be running at the same time. This is implemented using an elaborate locking 
mechanism with parts in C++ and parts in Java. There is some infrastructure for running 
multiple commands in parallel, since the inability to run e.g. bazel version in parallel with 
another command is somewhat embarrassing. The main blocker is the life cycle of 
BlazeModules and some state in BlazeRuntime. 
 



At the end of a command, the Bazel server transmits the exit code the client should return. An 
interesting wrinkle is the implementation of bazel run: the job of this command is to run 
something Bazel just built, but it can't do that from the server process because it doesn't have 
a terminal. So instead it tells the client what binary it should exec() and with what arguments. 
 
When one presses Ctrl-C, the client translates it to a Cancel call on the gRPC connection, 
which tries to terminate the command as soon as possible. After the third Ctrl-C, the client 
sends a SIGKILL to the server instead. 
 
The source code of the client is under src/main/cpp and the protocol used to communicate 
with the server is in src/main/protobuf/command_server.proto .  
 
The main entry point of the server is BlazeRuntime.main() and the gRPC calls from the client 
are handled by GrpcServerImpl.run(). 

Directory layout 
Bazel creates a somewhat complicated set of directories during a build. A full description is 
available here. 
 
The "workspace" is the source tree Bazel is run in. It usually corresponds to something you 
checked out from source control. 
 
Bazel puts all of its data under the "output user root". This is usually 
$HOME/.cache/bazel/_bazel_${USER}, but can be overridden using the --output_user_root 
startup option.  
 
The "install base" is where Bazel is extracted to. This is done automatically and each Bazel 
version gets a subdirectory based on its checksum under the install base. It's at 
$OUTPUT_USER_ROOT/install by default and can be changed using the --install_base 
command line option. 
 
The "output base" is the place where the Bazel instance attached to a specific workspace 
writes to. Each output base has at most one Bazel server instance running at any time. It's 
usually at $OUTPUT_USER_ROOT/<checksum of the path to the workspace>. It can be changed 
using the --output_base startup option, which is, among other things, useful for getting around 
the limitation that only one Bazel instance can be running in any workspace at any given time. 
 
The output directory contains, among other things: 

●​ The fetched external repositories at $OUTPUT_BASE/external . 
●​ The exec root, i.e. a directory that contains symlinks to all the source code for the 

current build. It's located at $OUTPUT_BASE/execroot. During the build, the working 

https://docs.bazel.build/versions/master/output_directories.html


directory is $EXECROOT/<name of main repository>. We are planning to change this to 
$EXECROOT, although it's a long term plan because it's a very incompatible change. 

●​ Files built during the build. 

The process of executing a command 
Once the Bazel server gets control and is informed about a command it needs to execute, the 
following sequence of events happens: 
 
1. BlazeCommandDispatcher is informed about the new request. It decides whether the 
command needs a workspace to run in (almost every command except for ones that don't 
have anything to do with source code, e.g. version or help) and whether another command is 
running. 
 
2. The right command is found. Each command must implement the interface BlazeCommand 
and must have the @Command annotation (this is a bit of an antipattern, it would be nice if all the 
metadata a command needs was described by methods on BlazeCommand) 
 
3. The command line options are parsed. Each command has different command line options, 
which are described in the @Command annotation.  
 
4. An event bus is created. The event bus is a stream for events that happen during the build. 
Some of these are exported to outside of Bazel under the aegis of the Build Event Protocol in 
order to tell the world how the build goes. 
 
5. The command gets control. The most interesting commands are those that run a build: build, 
test, run, coverage and so on: this functionality is implemented by BuildTool. 
 
6. The set of target patterns on the command line is parsed and wildcards like //pkg:all and 
//pkg/... are resolved. This is implemented in 
AnalysisPhaseRunner.evaluateTargetPatterns() and reified in Skyframe as 
TargetPatternPhaseValue. 
 
7. The loading/analysis phase is run to produce the action graph (a directed acyclic graph of 
commands that need to be executed for the build). 
 
8. The execution phase is run. This means running every action required to build the top-level 
targets that are requested are run. 



Command line options 
The command line options for a Bazel invocation are described in an OptionsParsingResult 
object, which in turn contains a map from "option classes" to the values of the options. An 
"option class" is a subclass of OptionsBase and groups command line options together that are 
related to each other. For example: 

1.​ Options related to a programming language (CppOptions or JavaOptions). These should 
be a subclass of FragmentOptions and are eventually wrapped into a BuildOptions 
object. 

2.​ Options related to the way Bazel executes actions (ExecutionOptions) 
 
These options are designed to be consumed in the analysis phase and (either through 
RuleContext.getFragment() in Java or ctx.fragments in Starlark). Some of them (for example, 
whether to do C++ include scanning or not) are read in the execution phase, but that always 
requires explicit plumbing since BuildConfiguration is not available then. For more information, 
see the section “Configurations”. 
 
WARNING: We like to pretend that OptionsBase instances are immutable and use them that 
way (e.g. as part of SkyKeys). This is not the case and modifying them is a really good way to 
break Bazel in subtle ways that are hard to debug. Unfortunately, making them actually 
immutable is a large endeavor. (Modifying a FragmentOptions immediately after construction 
before anyone else gets a chance to keep a reference to it and before equals() or hashCode() 
is called on it is okay.) 
 
Bazel learns about option classes in the following ways: 

1.​ Some are hard-wired into Bazel (CommonCommandOptions) 
2.​ From the @Command annotation on each Bazel command 
3.​ From ConfiguredRuleClassProvider (these are command line options related to 

individual programming languages) 
4.​ Starlark rules can also define their own options (see here) 

 
Each option (excluding Starlark-defined options) is a member variable of a FragmentOptions 
subclass that has the @Option annotation, which specifies the name and the type of the 
command line option along with some help text. 
 
The Java type of the value of a command line option is usually something simple (a string, an 
integer, a Boolean, a label, etc.). However, we also support options of more complicated types; 
in this case, the job of converting from the command line string to the data type falls to an 
implementation of  com.google.devtools.common.options.Converter . 

https://docs.bazel.build/versions/2.0.0/skylark/config.html


The source tree, as seen by Bazel 
Bazel is in the business of building software, which happens by reading and interpreting the 
source code. The totality of the source code Bazel operates on is called "the workspace" and it 
is structured into repositories, packages and rules. A description of these concepts for the 
users of Bazel is available here. 

Repositories 
A "repository" is a source tree on which a developer works; it usually represents a single 
project. Bazel's ancestor, Blaze, operated on a monorepo, i.e. a single source tree that contains 
all source code used to run the build. Bazel, in contrast, supports projects whose source code 
spans multiple repositories. The repository from which Bazel is invoked is called the “main 
repository”, the others are called “external repositories”.  
 
A repository is marked by a file called WORKSPACE (or WORKSPACE.bazel) in its root directory. This 
file contains information that is "global" to the whole build, for example, the set of available 
external repositories. It works like a regular Starlark file which means that one can load() other 
Starlark files. This is commonly used to pull in repositories that are needed by a repository that's 
explicitly referenced (we call this the "deps.bzl pattern") 
 
Code of external repositories is symlinked or downloaded under $OUTPUT_BASE/external. 
 
When running the build, the whole source tree needs to be pieced together; this is done by 
SymlinkForest, which symlinks every package in the main repository to $EXECROOT and every 
external repository to either $EXECROOT/external or $EXECROOT/.. (the former of course makes 
it impossible to have a package called external in the main repository; that's why we are 
migrating away from it) 

Packages 
Every repository is composed of packages, i.e. a collection of related files and a specification of 
the dependencies. These are specified by a file called BUILD or BUILD.bazel. If both exist, Bazel 
prefers BUILD.bazel; the reason why BUILD files are still accepted is that Bazel’s ancestor, Blaze, 
used this file name. However, it turned out to be a commonly used path segment, especially on 
Windows, where file names are case-insensitive. 
 
Packages are independent of each other: changes to the BUILD file of a package cannot cause 
other packages to change. The addition or removal of BUILD files can change other packages, 
since recursive globs stop at package boundaries and thus the presence of a BUILD file stops 
the recursion. 

https://docs.bazel.build/versions/master/build-ref.html


 
The evaluation of a BUILD file is called "package loading". It's implemented in the class 
PackageFactory, works by calling the Starlark interpreter and requires knowledge of the set of 
available rule classes. The result of package loading is a Package object. It's mostly a map from 
a string (the name of a target) to the target itself. 
 
A large chunk of complexity during package loading is globbing: Bazel does not require every 
source file to be explicitly listed and instead can run globs (e.g. glob(["**/*.java"])). Unlike 
the shell, it supports recursive globs that descend into subdirectories (but not into 
subpackages). This requires access to the file system and since that can be slow, we implement 
all sorts of tricks to make it run in parallel and as efficiently as possible.  
 
Globbing is implemented in the following classes: 

●​ LegacyGlobber, a fast and blissfully Skyframe-unaware globber 
●​ SkyframeHybridGlobber, a version that uses Skyframe and reverts back to the legacy 

globber in order to avoid “Skyframe restarts” (described below) 
 
The Package class itself contains some members that are exclusively used to parse the 
WORKSPACE file and which do not make sense for real packages. This is a design flaw because 
objects describing regular packages should not contain fields that describe something else. 
These include: 

●​ The repository mappings 
●​ The registered toolchains 
●​ The registered execution platforms 

 
Ideally, there would be more separation between parsing the WORKSPACE file from parsing 
regular packages so that Package does not need to cater for the needs of both. This is 
unfortunately difficult to do because the two are intertwined quite deeply. 

Labels, Targets and Rules 
Packages are composed of targets, which have the following types: 

1.​ Files: things that are either the input or the output of the build. In Bazel parlance, we call 
them artifacts (discussed elsewhere). Not all files created during the build are targets; 
it’s common for an output of Bazel not to have an associated label. 

2.​ Rules: these describe steps to derive its outputs from its inputs. They are generally 
associated with a programming language (e.g. cc_library, java_library or 
py_library), but there are some language-agnostic ones (e.g. genrule or filegroup) 

3.​ Package groups: discussed in the Visibility section. 
 
The name of a target is called a Label. The syntax of labels is @repo//pac/kage:name, where repo 
is the name of the repository the Label is in, pac/kage is the directory its BUILD file is in and name 



is the path of the file (if the label refers to a source file) relative to the directory of the package. 
When referring to a target on the command line, some parts of the label can be omitted: 

1.​ If the repository is omitted, the label is taken to be in the main repository. 
2.​ If the package part is omitted (e.g. name or :name), the label is taken to be in the package 

of the current working directory (relative paths containing uplevel references (..) are not 
allowed) 

 
A kind of a rule (e.g. "C++ library") is called a "rule class". Rule classes may be implemented 
either in Starlark (the rule() function) or in Java (so called “native rules”, type RuleClass). In the 
long term, every language-specific rule will be implemented in Starlark, but some legacy rule 
families (e.g. Java or C++) are still in Java for the time being. 
 
Starlark rule classes need to be imported at the beginning of BUILD files using the load() 
statement, whereas Java rule classes are "innately" known by Bazel, by virtue of being 
registered with the ConfiguredRuleClassProvider. 
 
Rule classes contain information such as: 

1.​ Its attributes (e.g., srcs, deps): their types, default values, constraints, etc. 
2.​ The configuration transitions and aspects attached to each attribute, if any 
3.​ The implementation of the rule 
4.​ The transitive info providers the rule "usually" creates 

 
Terminology note: In the code base, we often use “Rule” to mean the target created by a rule 
class. But in Starlark and in user-facing documentation, “Rule” should be used exclusively to 
refer to the rule class itself; the target is just a “target”. Also note that despite RuleClass having 
“class” in its name, there is no Java inheritance relationship between a rule class and targets of 
that type. 

Skyframe 
The evaluation framework underlying Bazel is called Skyframe. Its model is that everything that 
needs to be built during a build is organized into a directed acyclic graph with edges pointing 
from any pieces of data to its dependencies, that is, other pieces of data that need to be 
known to construct it. 
 
The nodes in the graph are called SkyValues and their names are called SkyKeys. Both are 
deeply immutable, i.e. only immutable objects should be reachable from them. This invariant 
almost always holds, and in case it doesn't (e.g. for the individual options classes BuildOptions, 
which is a member of BuildConfigurationValue and its SkyKey) we try really hard not to change 
them or to change them in only ways that are not observable from the outside. From this it 
follows that everything that is computed within Skyframe (e.g. configured targets) must also be 
immutable. 



 
The most convenient way to observe the Skyframe graph is to run bazel dump 
--skyframe=detailed, which dumps the graph, one SkyValue per line. It's best to do it for tiny 
builds, since it can get pretty large. 
 
Skyframe lives in the com.google.devtools.build.skyframe package. The similarly-named 
package com.google.devtools.build.lib.skyframe contains the implementation of Bazel on 
top of Skyframe. More information about Skyframe is available here.  
 
Generating a new SkyValue involves the following steps: 

1.​ Running the associated SkyFunction 
2.​ Declaring the dependencies (i.e. SkyValues) that the SkyFunction needs to do its job. 

This is done by calling the various overloads of SkyFunction.Environment.getValue(). 
3.​ If a dependency is not available, Skyframe signals that by returning null from 

getValue(). In this case, the SkyFunction is expected to yield control to Skyframe by 
returning null, then Skyframe evaluates the dependencies that haven't been evaluated 
yet and calls the SkyFunction again, thus going back to (1). 

4.​ Constructing the resulting SkyValue 
 
A consequence of this is that if not all dependencies are available in (3), the function needs to 
be completely restarted and thus computation needs to be re-done. This is obviously 
inefficient. We work around this in a number of ways: 

1.​ Declaring dependencies of SkyFunctions in groups so that if a function has, say, 10 
dependencies, it only needs to restart once instead of ten times. 

2.​ Splitting SkyFunctions so that one function does not need to be restarted many times. 
This has the side effect of interning data into Skyframe that may be internal to the 
SkyFunction, thus increasing memory use. 

3.​ Using caches "behind the back of Skyframe" to keep state (e.g. the state of actions 
being executed in ActionExecutionFunction.stateMap . In the extreme, this ends up 
resulting in writing code in continuation-passing style (e.g. action execution), which 
does not help readability. 

 
Of course, these are all just workarounds for the limitations of Skyframe, which is mostly a 
consequence of the fact that Java doesn't support lightweight threads and that we routinely 
have hundreds of thousands of in-flight Skyframe nodes. 

Starlark 
Starlark is the domain-specific language people use to configure and extend Bazel. It's 
conceived as a restricted subset of Python that has far fewer types, more restrictions on 
control flow, and most importantly, strong immutability guarantees to enable concurrent reads. 

https://bazel.build/designs/skyframe.html


It is not Turing-complete, which discourages some (but not all) users from trying to accomplish 
general programming tasks within the language. 
 
Starlark is implemented in the com.google.devtools.build.lib.syntax package. It also has an 
independent Go implementation here. The Java implementation used in Bazel is currently an 
interpreter. 
 
Starlark is used in four contexts: 

1.​ The BUILD language. This is where new rules are defined. Starlark code running in this 
context only has access to the contents of the BUILD file itself and Starlark files loaded 
by it. 

2.​ Rule definitions. This is how new rules (e.g. support for a new language) are defined. 
Starlark code running in this context has access to the configuration and data provided 
by its direct dependencies (more on this later). 

3.​ The WORKSPACE file. This is where external repositories (code that's not in the main 
source tree) are defined. 

4.​ Repository rule definitions. This is where new external repository types are defined. 
Starlark code running in this context can run arbitrary code on the machine where Bazel 
is running, and reach outside the workspace. 

 
The dialects available for BUILD and .bzl files are slightly different because they express 
different things. A list of differences is available here. 
 
More information about Starlark is available here. 

The loading/analysis phase 
The loading/analysis phase is where Bazel determines what actions are needed to build a 
particular rule. Its basic unit is a "configured target", which is, quite sensibly, a (target, 
configuration) pair. 
 
It's called the "loading/analysis phase" because it can be split into two distinct parts, which used 
to be serialized, but they can now overlap in time: 

1.​ Loading packages, that is, turning BUILD files into the Package objects that represent 
them 

2.​ Analyzing configured targets, that is, running the implementation of the rules to 
produce the action graph 

 
Each configured target in the transitive closure of the configured targets requested on the 
command line must be analyzed bottom-up, i.e. leaf nodes first, then up to the ones on the 
command line. The inputs to the analysis of a single configured target are: 

https://github.com/google/starlark-go
https://docs.bazel.build/versions/master/skylark/language.html#differences-between-build-and-bzl-files
https://docs.bazel.build/versions/master/skylark/language.html


1.​ The configuration. ("how" to build that rule; for example, the target platform but also 
things like command line options the user wants to be passed to the C++ compiler) 

2.​ The direct dependencies. Their transitive info providers are available to the rule being 
analyzed. They are called like that because they provide a "roll-up" of the information in 
the transitive closure of the configured target, e.g. all the .jar files on the classpath or all 
the .o files that need to be linked into a C++ binary) 

3.​ The target itself. This is the result of loading the package the target is in. For rules, this 
includes its attributes, which is usually what matters. 

4.​ The implementation of the configured target. For rules, this can either be in Starlark 
or in Java. All non-rule configured targets are implemented in Java. 

 
The output of analyzing a configured target is: 

1.​ The transitive info providers that configured targets that depend on it can access 
2.​ The artifacts it can create and the actions that produce them. 

 
The API offered to Java rules is RuleContext, which is the equivalent of the ctx argument of 
Starlark rules. Its API is more powerful, but at the same time, it's easier to do Bad Things™, for 
example to write code whose time or space complexity is quadratic (or worse), to make the 
Bazel server crash with a Java exception or to violate invariants (e.g. by inadvertently modifying 
an Options instance or by making a configured target mutable) 
 
The algorithm that determines the direct dependencies of a configured target lives in 
DependencyResolver.dependentNodeMap(). 

Configurations 
Configurations are the "how" of building a target: for what platform, with what command line 
options, etc. 
 
The same target can be built for multiple configurations in the same build. This is useful, for 
example, when the same code is used for a tool that's run during the build and for the target 
code and we are cross-compiling or when we are building a fat Android app (one that contains 
native code for multiple CPU architectures) 
 
Conceptually, the configuration is a BuildOptions instance. However, in practice, BuildOptions 
is wrapped by BuildConfiguration that provides additional sundry pieces of functionality. It 
propagates from the top of the dependency graph to the bottom.  If it changes, the build 
needs to be re-analyzed. 
 
This results in anomalies like having to re-analyze the whole build if e.g. the number of 
requested test runs changes, even though that only affects test targets (we have plans to "trim" 
configurations so that this is not the case, but it's not ready yet) 
 



When a rule implementation needs part of the configuration, it needs to declare it in its 
definition using RuleClass.Builder.requiresConfigurationFragments() . This is both to avoid 
mistakes (e.g. Python rules using the Java fragment) and to facilitate configuration trimming  so 
that e.g. if Python options change, C++ targets don't need to be re-analyzed. 
 
The configuration of a rule is not necessarily the same as that of its "parent" rule. The process of 
changing the configuration in a dependency edge is called a "configuration transition". It can 
happen in two places: 

1.​ On a dependency edge. These transitions are specified in Attribute.Builder.cfg() 
and are functions from a Rule (where the transition happens) and a BuildOptions (the 
original configuration) to one or more BuildOptions (the output configuration).  

2.​ On any incoming edge to a configured target. These are specified in 
RuleClass.Builder.cfg(). 
 

The relevant classes are TransitionFactory and ConfigurationTransition. 
 
Configuration transitions are used, for example: 

1.​ To declare that a particular dependency is used during the build and it should thus be 
built in the execution architecture 

2.​ To declare that a particular dependency must be built for multiple architectures (e.g. for 
native code in fat Android APKs) 

 
If a configuration transition results in multiple configurations, it's called a split transition. 
 
Configuration transitions can also be implemented in Starlark (documentation here) 

Transitive info providers 
Transitive info providers are a way (and the only way) for configured targets to tell things about 
other configured targets that depend on it. The reason why "transitive" is in their name is that 
this is usually some sort of roll-up of the transitive closure of a configured target. 
 
There is generally a 1:1 correspondence between Java transitive info providers and Starlark 
ones (the exception is DefaultInfo which is an amalgamation of FileProvider, 
FilesToRunProvider and RunfilesProvider because that API was deemed to be more 
Starlark-ish than a direct transliteration of the Java one). Their key is one of the following 
things: 

1.​ A Java Class object. This is only available for providers that are not accessible from 
Starlark. These providers are a subclass of TransitiveInfoProvider. 

2.​ A string. This is legacy and heavily discouraged since it's susceptible to name clashes. 
Such transitive info providers are direct subclasses of build.lib.packages.Info . 

https://docs.bazel.build/versions/master/skylark/config.html


3.​ A provider symbol. This can be created from Starlark using the provider() function and 
is the recommended way to create new providers. The symbol is represented by a 
Provider.Key instance in Java. 

 
New providers implemented in Java should be implemented using BuiltinProvider. 
NativeProvider is deprecated (we haven't had time to remove it yet) and 
TransitiveInfoProvider subclasses cannot be accessed from Starlark. 

Configured targets 
Configured targets are implemented as RuleConfiguredTargetFactory. There is a subclass for 
each rule class implemented in Java. Starlark configured targets are created through 
SkylarkRuleConfiguredTargetUtil.buildRule() . 
 
Configured target factories should use RuleConfiguredTargetBuilder to construct their return 
value. It consists of the following things: 

1.​ Their filesToBuild, i.e. the hazy concept of "the set of files this rule represents". These 
are the files that get built when the configured target is on the command line or in the 
srcs of a genrule. 

2.​ Their runfiles, regular and data. 
3.​ Their output groups. These are various "other sets of files" the rule can build. They can 

be accessed using the output_group attribute of the filegroup rule in BUILD and using 
the OutputGroupInfo provider in Java. 

Runfiles 
Some binaries need data files to run. A prominent example is tests that need input files. This is 
represented in Bazel by the concept of "runfiles". A "runfiles tree" is a directory tree of the data 
files for a particular binary. It is created in the file system as a symlink tree with individual 
symlinks pointing to the files in the source of output trees. 
 
A set of runfiles is represented as a Runfiles instance. It is conceptually a map from the path of 
a file in the runfiles tree to the Artifact instance that represents it. It's a little more complicated 
than a single Map for two reasons: 

●​ Most of the time, the runfiles path of a file is the same as its execpath. We use this to 
save some RAM. 

●​ There are various legacy kinds of entries in runfiles trees, which also need to be 
represented. 

 
Runfiles are collected using RunfilesProvider: an instance of this class represents the runfiles a 
configured target (e.g. a library) and its transitive closure needs and they are gathered like a 
nested set (in fact, they are implemented using nested sets under the cover): each target 
unions the runfiles of its dependencies, adds some of its own, then sends the resulting set 



upwards in the dependency graph. A RunfilesProvider instance contains two Runfiles 
instances, one for when the rule is depended on through the "data" attribute and one for every 
other kind of incoming dependency. This is because a target sometimes presents different 
runfiles when depended on through a data attribute than otherwise. This is undesired legacy 
behavior that we haven't gotten around removing yet. 
 
Runfiles of binaries are represented as an instance of RunfilesSupport. This is different from 
Runfiles because RunfilesSupport has the capability of actually being built (unlike Runfiles, 
which is just a mapping). This necessitates the following additional components: 

●​ The input runfiles manifest. This is a serialized description of the runfiles tree. It is used 
as a proxy for the contents of the runfiles tree and Bazel assumes that the runfiles tree 
changes if and only if the contents of the manifest change. 

●​ The output runfiles manifest. This is used by runtime libraries that handle runfiles 
trees, notably on Windows, which sometimes doesn't support symbolic links. 

●​ The runfiles middleman. In order for a runfiles tree to exist, one needs to build the 
symlink tree and the artifact the symlinks point to. In order to decrease the number of 
dependency edges, the runfiles middleman can be used to represent all these. 

●​ Command line arguments for running the binary whose runfiles the RunfilesSupport 
object represents. 

Aspects 
Aspects are a way to "propagate computation down the dependency graph". They are 
described for users of Bazel here. A good motivating example is protocol buffers: a 
proto_library rule should not know about any particular language, but building the 
implementation of a protocol buffer message (the “basic unit” of protocol buffers) in any 
programming language should be coupled to the proto_library rule so that if two targets in 
the same language depend on the same protocol buffer, it gets built only once. 
 
Just like configured targets, they are represented in Skyframe as a SkyValue and the way they 
are constructed is very similar to how configured targets are built: they have a factory class 
called ConfiguredAspectFactory that has access to a RuleContext, but unlike configured target 
factories, it also knows about the configured target it is attached to and its providers. 
 
The set of aspects propagated down the dependency graph is specified for each attribute 
using the Attribute.Builder.aspects() function. There are a few confusingly-named classes 
that participate in the process: 

1.​ AspectClass is the implementation of the aspect. It can be either in Java (in which case 
it's a subclass) or in Starlark (in which case it's an instance of SkylarkAspectClass). It's 
analogous to RuleConfiguredTargetFactory.  

2.​ AspectDefinition is the definition of the aspect; it includes the providers it requires, the 
providers it provides and contains a reference to its implementation, i.e. the appropriate 
AspectClass instance. It's analogous to RuleClass. 

https://docs.bazel.build/versions/master/skylark/aspects.html


3.​ AspectParameters is a way to parametrize an aspect that is propagated down the 
dependency graph. It's currently a string to string map. A good example of why it's 
useful is protocol buffers: if a language has multiple APIs, the information as to which 
API the protocol buffers should be built for should be propagated down the 
dependency graph. 

4.​ Aspect represents all the data that's needed to compute an aspect that propagates 
down the dependency graph. It consists of the aspect class, its definition and its 
parameters. 

5.​ RuleAspect is the function that determines which aspects a particular rule should 
propagate. It's a Rule -> Aspect function. 

 
A somewhat unexpected complication is that aspects can attach to other aspects; for example, 
an aspect collecting the classpath for a Java IDE will probably want to know about all the .jar 
files on the classpath, but some of them are protocol buffers. In that case, the IDE aspect will 
want to attach to the (proto_library rule + Java proto aspect) pair. 
 
The complexity of aspects on aspects is captured in the class AspectCollection.  

Platforms and toolchains 
Bazel supports multi-platform builds, that is, builds where there may be multiple architectures 
where build actions run and multiple architectures for which code is built. These architectures 
are referred to as platforms in Bazel parlance (full documentation here) 
 
A platform is described by a key-value mapping from constraint settings (e.g. the concept of 
"CPU architecture") to constraint values (e.g. a particular CPU like x86_64). We have a 
"dictionary" of the most commonly used constraint settings and values in the @platforms 
repository. 
 
The concept of toolchain comes from the fact that depending on what platforms the build is 
running on and what platforms are targeted, one may need to use different compilers; for 
example, a particular C++ toolchain may run on a specific OS and be able to target some other 
OSes. Bazel must determine the C++ compiler that is used based on the set execution and 
target platform (documentation for toolchains here). 
 
In order to do this, toolchains are annotated with the set of execution and target platform 
constraints they support. In order to do this, the definition of a toolchain are split into two parts: 

1.​ A toolchain() rule that describes the set of execution and target constraints a 
toolchain supports and tells what kind (e.g. C++ or Java) of toolchain it is (the latter is 
represented by the toolchain_type() rule) 

2.​ A language-specific rule that describes the actual toolchain (e.g. cc_toolchain()) 
 

https://docs.bazel.build/versions/master/platforms.html
https://docs.bazel.build/versions/master/toolchains.html


This is done in this way because we need to know the constraints for every toolchain in order to 
do toolchain resolution and  language-specific *_toolchain() rules contain much more 
information than that, so they take more time to load. 
 
Execution platforms are specified in one of the following ways: 

1.​ In the WORKSPACE file using the register_execution_platforms() function 
2.​ On the command line using the --extra_execution_platforms command line option 

 
The set of available execution platforms is computed in 
RegisteredExecutionPlatformsFunction . 
 
The target platform for a configured target is determined by 
PlatformOptions.computeTargetPlatform() . It's a list of platforms because we eventually want 
to support multiple target platforms, but it's not implemented yet.  
 
The set of toolchains to be used for a configured target is determined by 
ToolchainResolutionFunction. It is a function of: 

●​ The set of registered toolchains (in the WORKSPACE file and the configuration) 
●​ The desired execution and target platforms (in the configuration) 
●​ The set of toolchain types that are required by the configured target (in 

UnloadedToolchainContextKey) 
●​ The set of execution platform constraints of the configured target (the 

exec_compatible_with attribute) and the configuration 
(--experimental_add_exec_constraints_to_targets), in UnloadedToolchainContextKey 

 
Its result is an UnloadedToolchainContext, which is essentially a map from toolchain type 
(represented as a ToolchainTypeInfo instance) to the label of the selected toolchain. It's called 
"unloaded" because it does not contain the toolchains themselves, only their labels. 
 
Then the toolchains are actually loaded using ResolvedToolchainContext.load() and used by 
the implementation of the configured target that requested them. 
 
We also have a legacy system that relies on there being one single "host" configuration and 
target configurations being represented by various configuration flags, e.g. --cpu . We are 
gradually transitioning to the above system. In order to handle  cases where people rely on the 
legacy configuration values, we have implemented "platform mappings" to translate between 
the legacy flags and the new-style platform constraints. Their code is in 
PlatformMappingFunction and uses a non-Starlark "little language". 

Constraints 
Sometimes one wants to designate a target as being compatible with only a few platforms. 
Bazel has (unfortunately) multiple mechanisms to achieve this end: 

https://docs.google.com/document/d/1Vg_tPgiZbSrvXcJ403vZVAGlsWhH9BUDrAxMOYnO0Ls


●​ Rule-specific constraints 
●​ environment_group() / environment() 
●​ Platform constraints 

 
Rule-specific constraints are mostly used within Google for Java rules; they are on their way 
out and they are not available in Bazel, but the source code may contain references to it. The 
attribute that governs this is called constraints= . 

environment_group() and environment() 
These rules are a legacy mechanism and are not widely used.  
 
All build rules can declare which "environments" they can be built for, where a "environment" is 
an instance of the environment() rule.  
 
There are various ways supported environments can be specified for a rule: 

1.​ Through the restricted_to= attribute. This is the most direct form of specification; it 
declares the exact set of environments the rule supports for this group. 

2.​ Through the compatible_with= attribute. This declares environments a rule supports in 
addition to "standard" environments that are supported by default. 

3.​ Through the package-level attributes default_restricted_to= and 
default_compatible_with=. 

4.​ Through default specifications in environment_group() rules. Every environment 
belongs to a group of thematically related peers (e.g. "CPU architectures", "JDK 
versions" or "mobile operating systems"). The definition of an environment group 
includes which of these environments should be supported by "default" if not otherwise 
specified by the restricted_to= / environment() attributes. A rule with no such 
attributes inherits all defaults. 

5.​ Through a rule class default. This overrides global defaults for all instances of the given 
rule class. This can be used, for example, to make all *_test rules testable without each 
instance having to explicitly declare this capability. 

 
environment() is implemented as a regular rule whereas environment_group() is both a 
subclass of Target but not Rule (EnvironmentGroup) and a function that is available by default 
from Starlark (StarlarkLibrary.environmentGroup()) which eventually creates an eponymous 
target. This is to avoid a cyclic dependency that would arise because each environment needs 
to declare the environment group it belongs to and each environment group needs to declare 
its default environments. 
 
A build can be restricted to a certain environment with the --target_environment command 
line option. 
 



The implementation of the constraint check is in RuleContextConstraintSemantics and 
TopLevelConstraintSemantics. 

Platform constraints 
The current "official" way to describe what platforms a target is compatible with is by using the 
same constraints used to describe toolchains and platforms. It's under review in pull request 
#10945. 

Visibility 
If you work on a large codebase with a lot of developers (like at Google), you don't necessarily 
want everyone else to be able to depend on your code so that you retain the liberty to change 
things that you deem to be implementation details (otherwise, as per Hyrum's law, people will 
come to depend on all parts of your code). 
 
Bazel supports this by the mechanism called visibility: you can declare that a particular rule can 
only be depended on using the visibility attribute (documentation here). This attribute is a little 
special because unlike every other attribute, the set of dependencies it generates is not simply 
the set of labels listed (yes, this is a design flaw). 
 
This is implemented in the following places: 

●​ The RuleVisibility interface represents a visibility declaration. It can be either a 
constant (fully public or fully private) or a list of labels. 

●​ Labels can refer to either package groups (predefined list of packages), to packages 
directly (//pkg:__pkg__) or subtrees of packages (//pkg:__subpackages__). This is 
different from the command line syntax, which uses //pkg:* or //pkg/.... 

●​ Package groups are implemented as their own target and configured target types 
(PackageGroup and PackageGroupConfiguredTarget). We could probably replace these 
with simple rules if we wanted to. 

●​ The conversion from visibility label lists to dependencies is done in 
DependencyResolver.visitTargetVisibility and a few other miscellaneous places. 

●​ The actual check is done in 
CommonPrerequisiteValidator.validateDirectPrerequisiteVisibility() 

Nested sets 
Oftentimes, a configured target aggregates a set of files from its dependencies, adds its own, 
and wraps the aggregate set into a transitive info provider so that configured targets that 
depend on it can do the same. Examples: 

●​ The C++ header files used for a build 
●​ The object files that represent the transitive closure of a cc_library 
●​ The set of .jar files that need to be on the classpath for a Java rule to compile or run  

https://github.com/bazelbuild/bazel/pull/10945
https://www.hyrumslaw.com/
https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes


●​ The set of Python files in the transitive closure of a Python rule 
 
If we did this the naive way by using e.g. List or Set, we'd end up with quadratic memory 
usage: if there is a chain of N rules and each rule adds a file, we'd have 1+2+...+N collection 
members. 
 
In order to get around this problem, we came up with the concept of a NestedSet. It's a data 
structure that is composed of other NestedSet instances and some members of its own, 
thereby forming a directed acyclic graph of sets. They are immutable and their members can 
be iterated over. We define multiple iteration order (NestedSet.Order): preorder, postorder, 
topological (a node always comes after its ancestors) and "don't care, but it should be the same 
each time".  
 
The same data structure is called depset in Starlark. 

Artifacts and Actions 
The actual build consists of a set of commands that need to be run to produce the output the 
user wants. The commands are represented as instances of the class Action and the files are 
represented as instances of the class Artifact. They are arranged in a bipartite, directed, 
acyclic graph called the "action graph". 
 
Artifacts come in two kinds: source artifacts (i.e. ones that are available before Bazel starts 
executing) and derived artifacts (ones that need to be built). Derived artifacts can themselves 
be multiple kinds: 

1.​ Regular artifacts. These are checked for up-to-dateness by computing their 
checksum, with mtime as a shortcut; we don't checksum the file if its ctime hasn't 
changed.  

2.​ Unresolved symlink artifacts. These are checked for up-to-dateness by calling 
readlink(). Unlike regular artifacts, these can be dangling symlinks. Usually used in cases 
where one then packs up some files into an archive of some sort. 

3.​ Tree artifacts. These are not single files, but directory trees. They are checked for 
up-to-dateness by checking the set of files in it and their contents. They are 
represented as a TreeArtifact. 

4.​ Constant metadata artifacts. Changes to these artifacts don't trigger a rebuild. This is 
used exclusively for build stamp information: we don't want to do a rebuild just because 
the current time changed. 
 

There is no fundamental reason why source artifacts cannot be tree artifacts or unresolved 
symlink artifacts, it's just that we haven't implemented it yet (we should, though -- referencing a 
source directory in a BUILD file is one of the few known long-standing incorrectness issues with 
Bazel; we have an implementation that kind of works which is enabled by the 
BAZEL_TRACK_SOURCE_DIRECTORIES=1 JVM property) 



 
A notable kind of Artifact are middlemen. They are indicated by Artifact instances that are 
the outputs of MiddlemanAction. They are used to special-case some things: 

●​ Aggregating middlemen are used to group artifacts together. This is so that if a lot of 
actions use the same large set of inputs, we don't have N*M dependency edges, only 
N+M (they are being replaced with nested sets) 

●​ Scheduling dependency middlemen ensure that an action runs before another. They are 
mostly used for linting but also for C++ compilation (see 
CcCompilationContext.createMiddleman() for an explanation) 

●​ Runfiles middlemen are used to ensure the presence of a runfiles tree so that one does 
not separately need to depend on the output manifest and every single artifact 
referenced by the runfiles tree. 

 
Actions are best understood as a command that needs to be run, the environment it needs and 
the set of outputs it produces. The following things are the main components of the 
description of an action: 

●​ The command line that needs to be run 
●​ The input artifacts it needs 
●​ The environment variables that need to be set  
●​ Annotations that describe the environment (e.g. platform) it needs to run in​

 
There are also a few other special cases, like writing a file whose content is known to Bazel. 
They are a subclass of AbstractAction. Most of the actions are a SpawnAction or a 
StarlarkAction (the same, they should arguably not be separate classes), although Java and 
C++ have their own action types (JavaCompileAction, CppCompileAction and CppLinkAction). 
 
We eventually want to move everything to SpawnAction; JavaCompileAction is pretty close, but 
C++ is a bit of a special-case due to .d file parsing and include scanning. 
 
The action graph is mostly "embedded" into the Skyframe graph: conceptually, the execution of 
an action is represented as an invocation of ActionExecutionFunction. The mapping from an 
action graph dependency edge to a Skyframe dependency edge is described in 
ActionExecutionFunction.getInputDeps() and Artifact.key() and has a few optimizations in 
order to keep the number of Skyframe edges low: 

●​ Derived artifacts do not have their own SkyValues. Instead, 
Artifact.getGeneratingActionKey() is used to find out the key for the action that 
generates it 

●​ Nested sets have their own Skyframe key. 

Shared actions 
Some actions are generated by multiple configured targets; Starlark rules are more limited 
since they are only allowed to put their derived actions into a directory determined by their 



configuration and their package (but even so, rules in the same package can conflict), but rules 
implemented in Java can put derived artifacts anywhere. 
 
This is considered to be a misfeature, but getting rid of it is really hard because it produces 
significant savings in execution time when e.g. a source file needs to be processed somehow 
and that file is referenced by multiple rules (handwave-handwave). This comes at the cost of 
some RAM: each instance of a shared action needs to be stored in memory separately. 
 
If two actions generate the same output file, they must be exactly the same: have the same 
inputs, the same outputs and run the same command line. This equivalence relation is 
implemented in Actions.canBeShared() and it is verified between the analysis and execution 
phases by looking at every Action. This is implemented in 
SkyframeActionExecutor.findAndStoreArtifactConflicts() and is one of the few places in 
Bazel that requires a "global" view of the build. 

The execution phase 
This is when Bazel actually starts running build actions, i.e. commands that produce outputs.  
 
The first thing Bazel does after the analysis phase is to determine what Artifacts need to be 
built. The logic for this is encoded in TopLevelArtifactHelper; roughly speaking, it's the 
filesToBuild of the configured targets on the command line and the contents of a special 
output group for the explicit purpose of expressing "if this target is on the command line, build 
these artifacts". 
 
The next step is creating the execution root. Since Bazel has the option to read source 
packages from different locations in the file system (--package_path), it needs to provide 
locally executed actions with a full source tree. This is handled by the class SymlinkForest and 
works by taking note of every target used in the analysis phase and building up a single 
directory tree that symlinks every package with a used target from its actual location.  An 
alternative would be to pass the correct paths to commands (taking --package_path into 
account). This is undesirable because: 

●​ It changes action command lines when a package is moved from a package path entry 
to another (used to be a common occurrence) 

●​ It results in different command lines if an action is run remotely than if it's run locally 
●​ It requires a command line transformation specific to the tool in use (consider the 

difference between e.g. Java classpaths and C++ include paths) 
●​ Changing the command line of an action invalidates its action cache entry 
●​ --package_path is slowly and steadily being deprecated 

 



Then, Bazel starts traversing the action graph (the bipartite, directed graph composed of 
actions and their input and output artifacts) and running actions. The execution of each action 
is represented by an instance of the SkyValue class ActionExecutionValue. 
 
Since running an action is expensive, we have a few layers of caching that can be hit behind 
Skyframe: 

●​ ActionExecutionFunction.stateMap contains data to make Skyframe restarts of 
ActionExecutionFunction cheap 

●​ The local action cache contains data about the state of the file system 
●​ Remote execution systems usually also contain their own cache 

The local action cache 
This cache is another layer that sits behind Skyframe; even if an action is re-executed in 
Skyframe, it can still be a hit in the local action cache. It represents the state of the local file 
system and it's serialized to disk which means that when one starts up a new Bazel server, one 
can get local action cache hits even though the Skyframe graph is empty. 
 
This cache is checked for hits using the method 
ActionCacheChecker.getTokenIfNeedToExecute() . 
 
Contrary to its name, it's a map from the path of a derived artifact to the action that emitted it. 
The action is described as: 

1.​ The set of its input and output files and their checksum 
2.​ Its "action key", which is usually the command line that was executed, but in general, 

represents everything that's not captured by the checksum of the input files (e.g. for 
FileWriteAction, it's the checksum of the data that's written) 

 
There is also a highly experimental “top-down action cache” that is still under development, 
which uses transitive hashes to avoid going to the cache as many times. 

Input discovery and input pruning 
Some actions are more complicated than just having a set of inputs. Changes to the set of 
inputs of an action come in two forms: 

●​ An action may discover new inputs before its execution or decide that some of its 
inputs are not actually necessary. The canonical example is C++, where it's better to 
make an educated guess about what header files a C++ file uses from its transitive 
closure so that we don't heed to send every file to remote executors; therefore, we have 
an option not to register every header file as an "input", but scan the source file for 
transitively included headers and only mark those header files as inputs that are 
mentioned in #include statements (we overestimate so that we don't need to 
implement a full C preprocessor) 



●​ An action may realize that some files were not used during its execution. In C++, this is 
called ".d files": the compiler tells which header files were used after the fact, and in 
order to avoid the embarrassment of having worse incrementality than Make, Bazel 
makes use of this fact. This offers a better estimate than the include scanner because it 
relies on the compiler. 

 
These are implemented using methods on Action: 

1.​ Action.discoverInputs() is called. It should return a nested set of Artifacts that are 
determined to be required. These must be source artifacts so that there are no 
dependency edges in the action graph that don't have an equivalent in the configured 
target graph. 

2.​ The action is executed by calling Action.execute(). 
3.​ At the end of Action.execute(), the action can call Action.updateInputs() to tell Bazel 

that not all of its inputs were needed. This can result in incorrect incremental builds if a 
used input is reported as unused. 

 
When an action cache returns a hit on a fresh Action instance (e.g. created after a server 
restart), Bazel calls updateInputs() itself so that the set of inputs reflects the result of input 
discovery and pruning done before. 
 
Starlark actions can make use of the facility to declare some inputs as unused using the 
unused_inputs_list= argument of ctx.actions.run(). 

Various ways to run actions: Strategies/ActionContexts 
Some actions can be run in different ways. For example, a command line can be executed 
locally, locally but in various kinds of sandboxes, or remotely. The  concept that embodies this is 
called an ActionContext (or Strategy, since we successfully went only halfway with a rename...) 
 
The life cycle of an action context is as follows: 

1.​ When the execution phase is started, BlazeModule instances are asked what action 
contexts they have. This happens in the constructor of ExecutionTool.  Action context 
types are identified by a Java Class instance that refers to a sub-interface of 
ActionContext and which interface the action context must implement. 

2.​ The appropriate action context is selected from the available ones and is forwarded to 
ActionExecutionContext and BlazeExecutor . 

3.​ Actions request contexts using ActionExecutionContext.getContext() and 
BlazeExecutor.getStrategy() (there should really be only one way to do it…) 

 
Strategies are free to call other strategies to do their jobs; this is used, for example, in the 
dynamic strategy that starts actions both locally and remotely, then uses whichever finishes 
first. 
 

https://docs.bazel.build/versions/master/skylark/lib/actions.html#run


One notable strategy is the one that implements persistent worker processes 
(WorkerSpawnStrategy). The idea is that some tools have a long startup time and should 
therefore be reused between actions instead of starting one anew for every action (This does 
represent a potential correctness issue, since Bazel relies on the promise of the worker process 
that it doesn't carry observable state between individual requests) 
 
If the tool changes, the worker process needs to be restarted. Whether a worker can be reused 
is determined by computing a checksum for the tool used using WorkerFilesHash. It relies on 
knowing which inputs of the action represent part of the tool and which represent inputs; this is 
determined by the creator of the Action: Spawn.getToolFiles() and the runfiles of the Spawn 
are counted as parts of the tool. 
 
More information about strategies (or action contexts!): 

●​ Information about various strategies for running actions is available here. 
●​ Information about the dynamic strategy, one where we run an action both locally and 

remotely to see whichever finishes first is available here. 
●​ Information about the intricacies of executing actions locally is available here. 

The local resource manager 
Bazel can run many actions in parallel. The number of local actions that should be run in parallel 
differs from action to action: the more resources an action requires, the less instances should 
be running at the same time to avoid overloading the local machine. 
 
This is implemented in the class ResourceManager: each action has to be annotated with an 
estimate of the local resources it requires in the form of a ResourceSet instance (CPU and 
RAM). Then when action contexts do something that requires local resources, they call 
ResourceManager.acquireResources() and are blocked until the required resources are 
available. 
 
A more detailed description of local resource management is available here. 

The structure of the output directory 
Each action requires a separate place in the output directory where it places its outputs. The 
location of derived artifacts is usually as follows: 
 
$EXECROOT/bazel-out/<configuration>/bin/<package>/<artifact name> 
 
How is the name of the directory that is associated with a particular configuration determined? 
There are two conflicting desirable properties: 

1.​ If two configurations can occur in the same build, they should have different directories 
so that both can have their own version of the same action; otherwise, if the two 

https://jmmv.dev/2019/12/bazel-strategies.html
https://jmmv.dev/series.html#Bazel%20dynamic%20execution
https://jmmv.dev/2019/11/bazel-process-wrapper.html
https://jmmv.dev/2019/12/bazel-local-resources.html


configurations disagree about e.g. the command line of an action producing the same 
output file, Bazel doesn't know which action to choose (an "action conflict") 

2.​ If two configurations represent "roughly" the same thing, they should have the same 
name so that actions executed in one can be reused for the other if the command lines 
match: for example, changes to the command line options to the Java compiler should 
not result in C++ compile actions being re-run. 

 
So far, we have not come up with a principled way of solving this problem, which has similarities 
to the problem of configuration trimming. A longer discussion of options is available here. The 
main problematic areas are Starlark rules (whose authors usually aren't intimately familiar with 
Bazel) and aspects, which add another dimension to the space of things that can produce the 
"same" output file. 
 
The current approach is that the path segment for the configuration is <CPU>-<compilation 
mode> with various suffixes added so that configuration transitions implemented in Java don't 
result in action conflicts. In addition, a checksum of the set of Starlark configuration transitions 
is added so that users can't cause action conflicts. It is far from perfect. This is implemented in 
OutputDirectories.buildMnemonic() and relies on each configuration fragment adding its own 
part to the name of the output directory. 

Tests 
Bazel has rich support for running tests. It supports: 

●​ Running tests remotely (if a remote execution backend is available) 
●​ Running tests multiple times in parallel (for deflaking or gathering timing data) 
●​ Sharding tests (splitting test cases in same test over multiple processes for speed) 
●​ Re-running flaky tests 
●​ Grouping tests into test suites 

 
Tests are regular configured targets that have a TestProvider, which describes how the test 
should be run:  

●​ The artifacts whose building result in the test being run. This is a "cache status" file that 
contains a serialized TestResultData message 

●​ The number of times the test should be run  
●​ The number of shards the test should be split into 
●​ Some parameters about how the test should be run (e.g. the test timeout) 

Determining which tests to run 
Determining which tests are run is an elaborate process. 
 

https://docs.google.com/document/d/1fZI7wHoaS-vJvZy9SBxaHPitIzXE_nL9v4sS4mErrG4/edit


First, during target pattern parsing, test suites are recursively expanded. The expansion is 
implemented in TestsForTargetPatternFunction. A somewhat surprising wrinkle is that if a test 
suite declares no tests, it refers to every test in its package. This is implemented in 
Package.beforeBuild() by adding an implicit attribute called $implicit_tests to test suite 
rules. 
 
Then, tests are filtered for size, tags, timeout and language according to the command line 
options. This is implemented in TestFilter and is called from 
TargetPatternPhaseFunction.determineTests() during target parsing and the result is put into 
TargetPatternPhaseValue.getTestsToRunLabels(). The reason why rule attributes which can 
be filtered for are not configurable is that this happens before the analysis phase, therefore, 
the configuration is not available. 
 
This is then processed further in BuildView.createResult(): targets whose analysis failed are 
filtered out and tests are split into exclusive and non-exclusive tests. It's then put into 
AnalysisResult, which is how ExecutionTool knows which tests to run. 
 
In order to lend some transparency to this elaborate process, the tests() query operator 
(implemented in TestsFunction) is available to tell which tests are run when a particular target 
is specified on the command line. It's unfortunately a reimplementation, so it probably deviates 
from the above in multiple subtle ways. 

Running tests 
The way the tests are run is by requesting cache status artifacts. This then results in the 
execution of a TestRunnerAction, which eventually calls the TestActionContext chosen by the 
--test_strategy command line option that runs the test in the requested way. 
 
Tests are run according to an elaborate protocol that uses environment variables to tell tests 
what's expected from them. A detailed description of what Bazel expects from tests and what 
tests can expect from Bazel is available here. At the simplest, an exit code of 0 means success, 
anything else means failure. 
 
In addition to the cache status file, each test process emits a number of other files. They are 
put in the "test log directory" which is the subdirectory called testlogs of the output directory 
of the target configuration: 

●​ test.xml, a JUnit-style XML file detailing the individual test cases in the test shard 
●​ test.log, the console output of the test. stdout and stderr are not separated. 
●​ test.outputs, the "undeclared outputs directory"; this is used by tests that want to 

output files in addition to what they print to the terminal. 
 
There are two things that can happen during test execution that cannot during building regular 
targets: exclusive test execution and output streaming. 

https://docs.bazel.build/versions/master/test-encyclopedia.html


 
Some tests need to be executed in exclusive mode, i.e. not in parallel with other tests. This can 
be elicited either by adding tags=["exclusive"] to the test rule or running the test with 
--test_strategy=exclusive . Each exclusive test is run by a separate Skyframe invocation 
requesting the execution of the test after the "main" build. This is implemented in 
SkyframeExecutor.runExclusiveTest(). 
 
Unlike regular actions, whose terminal output is dumped when the action finishes, the user can 
request the output of tests to be streamed so that they get informed about the progress of a 
long-running test. This is specified by the --test_output=streamed command line option and 
implies exclusive test execution so that outputs of different tests are not interspersed. 
 
This is implemented in the aptly-named StreamedTestOutput class and works by polling 
changes to the test.log file of the test in question and dumping new bytes to the terminal 
where Bazel rules. 
 
Results of the executed tests are available on the event bus by observing various events (e.g. 
TestAttempt, TestResult or TestingCompleteEvent). They are dumped to the Build Event 
Protocol and they are emitted to the console by AggregatingTestListener. 

Coverage collection 
Coverage is reported by the tests in LCOV format in the files 
bazel-testlogs/$PACKAGE/$TARGET/coverage.dat . 
 
To collect coverage, each test execution is wrapped in a script called collect_coverage.sh . 
 
This script sets up the environment of the test to enable coverage collection and determine 
where the coverage files are written by the coverage runtime(s). It then runs the test. A test 
may itself run multiple subprocesses and consist of parts written in multiple different 
programming languages (with separate coverage collection runtimes). The wrapper script is 
responsible for  converting the resulting files to LCOV format if necessary, and merges them 
into a single file. 
 
The interposition of collect_coverage.sh is done by the test strategies and requires 
collect_coverage.sh to be on the inputs of the test. This is accomplished by the implicit 
attribute :coverage_support which is resolved to the value of the configuration flag 
--coverage_support (see TestConfiguration.TestOptions.coverageSupport) 
 
Some languages do offline instrumentation, meaning that the coverage instrumentation is 
added at compile time (e.g. C++) and others do online instrumentation, meaning that coverage 
instrumentation is added at execution time. 
 



Another core concept is baseline coverage. This is the coverage of a library, binary, or test if no 
code in it was run. The problem it solves is that if you want to compute the test coverage for a 
binary, it is not enough to merge the coverage of all of the tests because there may be code in 
the binary that is not linked into any test. Therefore, what we do is to emit a coverage file for 
every binary which contains only the files we collect coverage for with no covered lines. The 
baseline coverage file for a target is at 
bazel-testlogs/$PACKAGE/$TARGET/baseline_coverage.dat . It is also generated for binaries 
and libraries in addition to tests if you pass the --nobuild_tests_only flag to Bazel.  
 
Baseline coverage is currently broken. 
 
We track two groups of files for coverage collection for each rule: the set of instrumented files 
and the set of instrumentation metadata files. 
 
The set of instrumented files is just that, a set of files to instrument. For online coverage 
runtimes, this can be used at runtime to decide which files to instrument. It is also used to 
implement baseline coverage. 
 
The set of instrumentation metadata files is the set of extra files a test needs to generate the 
LCOV files Bazel requires from it. In practice, this consists of runtime-specific files; for example, 
gcc emits .gcno files during compilation. These are added to the set of inputs of test actions if 
coverage mode is enabled. 
 
Whether or not coverage is being collected is stored in the BuildConfiguration. This is handy 
because it is an easy way to change the test action and the action graph depending on this bit, 
but it also means that if this bit is flipped, all targets need to be re-analyzed (some languages, 
e.g. C++ require different compiler options to emit code that can collect coverage, which 
mitigates this issue somewhat, since then a re-analysis is needed anyway). 
 
The coverage support files are depended on through labels in an implicit dependency so that 
they can be overridden by the invocation policy, which allows them to differ between the 
different versions of Bazel. Ideally, these differences would be removed, and we standardized 
on one of them. 
 
We also generate a "coverage report" which merges the coverage collected for every test in a 
Bazel invocation. This is handled by CoverageReportActionFactory and is called from 
BuildView.createResult() . It gets access to the tools it needs by looking at the 
:coverage_report_generator attribute of the first test that is executed. 



The query engine 
Bazel has a little language used to ask it various things about various graphs. The following 
query kinds are provided: 

●​ bazel query is used to investigate the target graph 
●​ bazel cquery is used to investigate the configured target graph 
●​ bazel aquery is used to investigate the action graph 

 
Each of these is implemented by subclassing AbstractBlazeQueryEnvironment. Additional 
additional query functions can be done by subclassing QueryFunction . In order to allow 
streaming query results, instead of collecting them to some data structure, a 
query2.engine.Callback is passed to QueryFunction, which calls it for results it wants to return. 
 
The result of a query can be emitted in various ways: labels, labels and rule classes, XML, 
protobuf and so on. These are implemented as subclasses of OutputFormatter. 
 
A subtle requirement of some query output formats (proto, definitely) is that Bazel needs to 
emit all the information that package loading provides so that one can diff the output and 
determine whether a particular target has changed. As a consequence, attribute values need to 
be serializable, which is why there are only so few attribute types without any attributes having 
complex Starlark values. The usual workaround is to use a label, and attach the complex 
information to the rule with that label. It's not a very satisfying workaround and it would be very 
nice to lift this requirement. 

The module system 
Bazel can be extended by adding modules to it. Each module must subclass BlazeModule (the 
name is a relic of the history of Bazel when it used to be called Blaze) and gets information 
about various events during the execution of a command. 
 
They are mostly used to implement various pieces of "non-core" functionality that only some 
versions of Bazel (e.g. the one we use at Google) need: 

●​ Interfaces to remote execution systems 
●​ New commands 

 
The set of extension points BlazeModule offers is somewhat haphazard. Don't use it as an 
example of good design principles. 

https://docs.bazel.build/versions/master/query-how-to.html


The event bus 
The main way BlazeModules communicate with the rest of Bazel is by an event bus (EventBus): 
a new instance is created for every build, various parts of Bazel can post events to it and 
modules can register listeners for the events they are interested in. For example, the following 
things are represented as events: 

●​ The list of build targets to be built has been determined (TargetParsingCompleteEvent) 
●​ The top-level configurations have been determined (BuildConfigurationEvent) 
●​ A target was built, successfully or not (TargetCompleteEvent) 
●​ A test was run (TestAttempt, TestSummary) 

 
Some of these events are represented outside of Bazel in the Build Event Protocol (they are 
BuildEvents). This allows not only BlazeModules, but also things outside the Bazel process to 
observe the build. They are accessible either as a file that contains protocol messages or Bazel 
can connect to a server (called the Build Event Service) to stream events. 
 
This is implemented in the build.lib.buildeventservice and build.lib.buildeventstream 
Java packages. 

External repositories 
Whereas Bazel was originally designed to be used in a monorepo (a single source tree 
containing everything one needs to build), Bazel lives in a world where this is not necessarily 
true. "External repositories" are an abstraction used to bridge these two worlds: they represent 
code that is necessary for the build but is not in the main source tree. 

The WORKSPACE file 
The set of external repositories is determined by parsing the WORKSPACE file. For example, a 
declaration like this: 
 

local_repository(name="foo", path="/foo/bar") 

 
Results in the repository called @foo being available.  Where this gets complicated is that one 
can define new repository rules in Starlark files, which can then be used to load new Starlark 
code, which can be used to define new repository rules and so on… 
 
To handle this case, the parsing of the WORKSPACE file (in WorkspaceFileFunction) is split up 
into chunks delineated by load() statements. The chunk index is indicated by 

https://docs.bazel.build/versions/master/build-event-protocol.html


WorkspaceFileKey.getIndex() and computing WorkspaceFileFunction until index X means 
evaluating it until the Xth load() statement. 

Fetching repositories 
Before the code of the repository is available to Bazel, it needs to be fetched. This results in 
Bazel creating a directory under $OUTPUT_BASE/external/<repository name>.  
 
Fetching the repository happens in the following steps: 

1.​ PackageLookupFunction realizes that it needs a repository and creates a RepositoryName 
as a SkyKey, which invokes RepositoryLoaderFunction 

2.​ RepositoryLoaderFunction forwards the request to RepositoryDelegatorFunction for 
unclear reasons (the code says it's to avoid re-downloading things in case of Skyframe 
restarts, but it's not a very solid reasoning)  

3.​ RepositoryDelegatorFunction finds out the repository rule it's asked to fetch by 
iterating over the chunks of the WORKSPACE file until the requested repository is found 

4.​ The appropriate RepositoryFunction is found that implements the repository fetching; 
it's either the Starlark implementation of the repository or a hard-coded map for 
repositories that are implemented in Java. 

 
There are various layers of caching since fetching a repository can be very expensive: 

1.​ There is a cache for downloaded files that is keyed by their checksum 
(RepositoryCache). This requires the checksum to be available in the WORKSPACE file, 
but that's good for hermeticity anyway. This is shared by every Bazel server instance on 
the same workstation, regardless of which workspace or output base they are running 
in. 

2.​ A "marker file" is written for each repository under $OUTPUT_BASE/external that contains 
a checksum of the rule that was used to fetch it. If the Bazel server restarts but the 
checksum does not change, it's not re-fetched. This is implemented in 
RepositoryDelegatorFunction.DigestWriter . 

3.​ The --distdir command line option designates another cache that is used to look up 
artifacts to be downloaded. This is useful in enterprise settings where Bazel should not 
fetch random things from the Internet. This is implemented by DownloadManager . 

 
Once a repository is downloaded, the artifacts in it are treated as source artifacts. This poses a 
problem because Bazel usually checks for up-to-dateness of source artifacts by calling stat() 
on them, and these artifacts are also invalidated when the definition of the repository they are 
in changes. Thus, FileStateValues for an artifact in an external repository need to depend on 
their external repository. This is handled by ExternalFilesHelper. 



Managed directories 
Sometimes, external repositories need to modify files under the workspace root (e.g.  a 
package manager that houses the downloaded packages in a subdirectory of the source tree). 
This is at odds with the assumption Bazel makes that source files are only modified by the user 
and not by itself and allows packages to refer to every directory under the workspace root. In 
order to make this kind of external repository work, Bazel does two things: 

1.​ Allows the user to specify subdirectories of the workspace Bazel is not allowed to reach 
into. They are listed in a file called .bazelignore and the functionality is implemented in 
BlacklistedPackagePrefixesFunction. 

2.​ We encode the mapping from the subdirectory of the workspace to the external 
repository it is handled by into ManagedDirectoriesKnowledge and handle 
FileStateValues referring to them in the same way as those for regular external 
repositories. 

Repository mappings 
It can happen that multiple repositories want to depend on the same repository, but in different 
versions (this is an instance of the "diamond dependency problem"). For example, if two 
binaries in separate repositories in the build want to depend on Guava, they will presumably 
both refer to Guava with labels starting @guava// and expect that to mean different versions of 
it. 
 
Therefore, Bazel allows one to re-map external repository labels so that the string @guava// can 
refer to one Guava repository (e.g. @guava1//) in the repository of one binary and another 
Guava repository (e.g. @guava2//) the the repository of the other. 
 
Alternatively, this can also be used to join diamonds. If a repository depends on @guava1//, and 
another depends on @guava2//, repository mapping allows one to re-map both repositories to 
use a canonical @guava// repository. 
 
The mapping is specified in the WORKSPACE file as the repo_mapping attribute of individual 
repository definitions. It then appears in Skyframe as a member of WorkspaceFileValue, where 
it is plumbed to: 

●​ Package.Builder.repositoryMapping which is used to transform label-valued attributes 
of rules in the package by RuleClass.populateRuleAttributeValues() 

●​ Package.repositoryMapping which is used in the analysis phase (for resolving things like 
$(location) which are not parsed in the loading phase) 

●​ SkylarkImportLookupFunction for resolving labels in load() statements 



JNI bits 
The server of Bazel is mostly written in Java. The exception is the parts that Java cannot do by 
itself or couldn't do by itself when we implemented it. This is mostly limited to interaction with 
the file system, process control and various other low-level things. 
 
The C++ code lives under src/main/native and the Java classes with native methods are: 

●​ NativePosixFiles and NativePosixFileSystem 
●​ ProcessUtils 
●​ WindowsFileOperations and WindowsFileProcesses 
●​ com.google.devtools.build.lib.platform 

Console output 
Emitting console output seems like a simple thing, but the confluence of running multiple 
processes (sometimes remotely), fine-grained caching, the desire to have a nice and colorful 
terminal output and having a long-running server makes it non-trivial. 
 
Right after the RPC call comes in from the client, two RpcOutputStream instances are created 
(for stdout and stderr) that forward the data printed into them to the client. These are then 
wrapped in an OutErr (an (stdout, stderr) pair). Anything that needs to be printed on the 
console goes through these streams. Then these streams are handed over to 
BlazeCommandDispatcher.execExclusively(). 
 
Output is by default printed with ANSI escape sequences. When these are not desired 
(--color=no), they are stripped by an AnsiStrippingOutputStream. In addition, System.out and 
System.err are redirected to these output streams. This is so that debugging information can 
be printed using System.err.println() and still end up in the terminal output of the client 
(which is different from that of the server). Care is taken that if a process produces binary 
output (e.g. bazel query --output=proto), no munging of stdout takes place. 
 
Short messages (errors, warnings and the like) are expressed through the EventHandler 
interface. Notably, these are different from what one posts to the EventBus (this is confusing). 
Each Event has an EventKind (error, warning, info, and a few others) and they may have a 
Location (the place in the source code that caused the event to happen).   
 
Some EventHandler implementations store the events they received. This is used to replay 
information to the UI caused by various kinds of cached processing, for example, the warnings 
emitted by a cached configured target. 
 



Some EventHandlers also allow posting events that eventually find their way to the event bus 
(regular Events do not appear there). These are implementations of ExtendedEventHandler and 
their main use is to replay cached EventBus events. These EventBus events all implement 
Postable, but not everything that is posted to EventBus necessarily implements this interface; 
only those that are cached by an ExtendedEventHandler (it would be nice and most of the 
things do; it's not enforced, though) 
 
Terminal output is mostly emitted through UiEventHandler, which is responsible for all the fancy 
output formatting and progress reporting Bazel does. It has two inputs: 

●​ The event bus 
●​ The event stream piped into it through Reporter 

 
The only direct connection the command execution machinery (i.e. the rest of Bazel) has to the 
RPC stream to the client is through Reporter.getOutErr(), which allows direct access to these 
streams. It's only used when a command needs to dump large amounts of possible binary data 
(e.g. bazel query).  

Profiling Bazel 
Bazel is fast. Bazel is also slow, because builds tend to grow until just the edge of what's 
bearable. For this reason, Bazel includes a profiler which can be used to profile builds and Bazel 
itself. It's implemented in a class that's aptly named Profiler. It's turned on by default, although 
it records only abridged data so that its overhead is tolerable; The command line 
--record_full_profiler_data makes it record everything it can. 
 
It emits a profile in the Chrome profiler format; it's best viewed in Chrome. It's data model is 
that of task stacks: one can start tasks and end tasks and they are supposed to be neatly 
nested within each other. Each Java thread gets its own task stack. TODO: How does this work 
with actions and continuation-passing style? 
 
The profiler is started and stopped in BlazeRuntime.initProfiler() and 
BlazeRuntime.afterCommand() respectively and attempts to be live for as long as possible so 
that we can profile everything.  To add something to the profile, call 
Profiler.instance().profile(). It returns a Closeable, whose closure represents the end of 
the task. It's best used with try-with-resources statements. 
 
We also do rudimentary memory profiling in MemoryProfiler. It's also always on and it mostly 
records maximum heap sizes and GC behavior. 



Testing Bazel 
Bazel has two main kinds of tests: ones that observe Bazel as a "black box" and ones that only 
run the analysis phase. We call the former "integration tests" and the latter "unit tests", although 
they are more like integration tests that are, well, less integrated. We also have some actual unit 
tests, where they are necessary. 
 
Of integration tests, we have two kinds: 

1.​ Ones implemented using a very elaborate bash test framework under src/test/shell 
2.​ Ones implemented in Java. These are implemented as subclasses of 

AbstractBlackBoxTest. 
 
AbstractBlackBoxTest has the virtue that it works on Windows, too, but most of our integration 
tests are written in bash. 
 
Analysis tests are implemented as subclasses of BuildViewTestCase. There is a scratch file 
system you can use to write BUILD files, then various helper methods can request configured 
targets, change the configuration and assert various things about the result of the analysis. 
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