Author: |berki le.com
Last significant change: 2020 June 24

THIS DOCUMENT IS WORLD-READABLE.

THIS COPY IS DEPRECATED

read https://bazel.build/contribute/codebase instead

Introduction

Client/server architecture

Directory layout

The process of executing a command
Command line options

The source tree, as seen by Bazel

Repositories

Packages
Targets and Rules

Skyframe

Starlark

The loading/analysis phase
Configurations
Transitive info providers

Configured targets
Runfiles

Aspects
Platforms and toolchains

Constraints

Visibility

Nested sets
Artifacts and Actions
Shared actions

The execution phase
The local action cache

Input discovery and input pruning

mailto:lberki@google.com

Various ways to run actions: Strategies/ActionContexts
The local resource manager

The structure of th tput director

Tests

Determining which tests to run
Running tests
Coverage collection

The query engine

The module system

The event bus

External repositories
The WORKSPACE file

Fetching repositories
Managed directories

Repository mappings
JNI bits

Console output
Profiling Bazel
Testing Bazel

Introduction

The code base of Bazel is large (~350KLOC production code and ~260 KLOC test code) and no
one is familiar with the whole landscape: everyone knows their particular valley very well, but
few know what lies over the hills in every direction.

In order for people midway upon the journey not to find themselves within a forest dark with
the straightforward pathway being lost, this document tries to give an overview of the code
base so that it's easier to get started with working on it.

The public version of the source code of Bazel lives on GitHub at
http://github.com/bazelbuild/bazel . This is not the “source of truth”; it's derived from a
Google-internal source tree that contains additional functionality that is not useful outside
Google. The long term goal is to make GitHub the source of truth.

http://github.com/bazelbuild/bazel

Contributions are accepted through the regular GitHub pull request mechanism, and manually
imported by a Googler into the internal source tree, then re-exported back out to GitHub.

The bulk of Bazel resides in a server process that stays in RAM between builds. This allows Bazel
to maintain state between builds.

This is why the Bazel command line has two kinds of options: startup and command. In a
command line like this:

bazel --host_jvm_args=-Xmx8G build -c opt //foo:bar

Some options () are before the name of the command to be run and some
are after (); the former kind is called a "startup option" and affects the server process as
a whole, whereas the latter kind, the "command option", only affects a single command.

Each server instance has a single associated source tree ("workspace") and each workspace
usually has a single active server instance. This can be circumvented by specifying a custom
output base (see the "Directory layout" section for more information).

Bazel is distributed as a single ELF executable that is also a valid .zip file. When you type ,
the above ELF executable implemented in C++ (the "client") gets control. It sets up an
appropriate server process using the following steps:

1. Checks whether it has already extracted itself. If not, it does that. This is where the
implementation of the server comes from.

2. Checks whether there is an active server instance that works: it is running, it has the
right startup options and uses the right workspace directory. It finds the running server
by looking at the directory where there is a lock file with the port
the server is listening on.

3. If needed, kills the old server process

4. If needed, starts up a new server process

After a suitable server process is ready, the command that needs to be run is communicated to
it over a gRPC interface, then the output of Bazel is piped back to the terminal. Only one
command can be running at the same time. This is implemented using an elaborate locking
mechanism with parts in C++ and parts in Java. There is some infrastructure for running
multiple commands in parallel, since the inability to run e.g. in parallel with
another command is somewhat embarrassing. The main blocker is the life cycle of

s and some state in

At the end of a command, the Bazel server transmits the exit code the client should return. An
interesting wrinkle is the implementation of : the job of this command is to run
something Bazel just built, but it can't do that from the server process because it doesn't have
a terminal. So instead it tells the client what binary it should exec() and with what arguments.

When one presses Ctrl-C, the client translates it to a Cancel call on the gRPC connection,
which tries to terminate the command as soon as possible. After the third Ctrl-C, the client
sends a SIGKILL to the server instead.

The source code of the client is under and the protocol used to communicate
with the server isin

The main entry point of the server is and the gRPC calls from the client
are handled by

Bazel creates a somewhat complicated set of directories during a build. A full description is
available here.

The "workspace" is the source tree Bazel is run in. It usually corresponds to something you
checked out from source control.

Bazel puts all of its data under the "output user root". This is usually
, but can be overridden using the
startup option.

The "install base" is where Bazel is extracted to. This is done automatically and each Bazel
version gets a subdirectory based on its checksum under the install base. It's at

by default and can be changed using the
command line option.

The "output base" is the place where the Bazel instance attached to a specific workspace
writes to. Each output base has at most one Bazel server instance running at any time. It's
usually at . It can be changed
using the startup option, which is, among other things, useful for getting around
the limitation that only one Bazel instance can be running in any workspace at any given time.

The output directory contains, among other things:
e The fetched external repositories at
e The execroot, i.e. a directory that contains symlinks to all the source code for the
current build. It's located at . During the build, the working

https://docs.bazel.build/versions/master/output_directories.html

directory is . We are planning to change this to
, although it's a long term plan because it's a very incompatible change.
e Files built during the build.

Once the Bazel server gets control and is informed about a command it needs to execute, the
following sequence of events happens:

1. is informed about the new request. It decides whether the
command needs a workspace to run in (almost every command except for ones that don't
have anything to do with source code, e.g. version or help) and whether another command is
running.

2. The right command is found. Each command must implement the interface
and must have the annotation (this is a bit of an antipattern, it would be nice if all the
metadata a command needs was described by methods on)

3. The command line options are parsed. Each command has different command line options,
which are described in the annotation.

4. An event bus is created. The event bus is a stream for events that happen during the build.
Some of these are exported to outside of Bazel under the aegis of the Build Event Protocol in
order to tell the world how the build goes.

5. The command gets control. The most interesting commands are those that run a build: build,
test, run, coverage and so on: this functionality is implemented by

6. The set of target patterns on the command line is parsed and wildcards like and
are resolved. This is implemented in
and reified in Skyframe as

7. The loading/analysis phase is run to produce the action graph (a directed acyclic graph of
commands that need to be executed for the build).

8. The execution phase is run. This means running every action required to build the top-level
targets that are requested are run.

The command line options for a Bazel invocation are described in an
object, which in turn contains a map from “option classes" to the values of the options. An

“option class" is a subclass of and groups command line options together that are
related to each other. For example:
1. Options related to a programming language (or). These should
be a subclass of and are eventually wrapped into a
object.
2. Options related to the way Bazel executes actions ()

These options are designed to be consumed in the analysis phase and (either through

in Java or in Starlark). Some of them (for example,
whether to do C++ include scanning or not) are read in the execution phase, but that always
requires explicit plumbing since is not available then. For more information,

see the section “Configurations”.

WARNING: We like to pretend that instances are immutable and use them that
way (e.g. as part of). This is not the case and modifying them is a really good way to
break Bazel in subtle ways that are hard to debug. Unfortunately, making them actually
immutable is a large endeavor. (Modifying a immediately after construction
before anyone else gets a chance to keep a reference to it and before or

is called on it is okay.)

Bazel learns about option classes in the following ways:

1. Some are hard-wired into Bazel ()
2. From the @Command annotation on each Bazel command
3. From (these are command line options related to

individual programming languages)
4. Starlark rules can also define their own options (see here)

Each option (excluding Starlark-defined options) is a member variable of a
subclass that has the annotation, which specifies the name and the type of the
command line option along with some help text.

The Java type of the value of a command line option is usually something simple (a string, an
integer, a Boolean, a label, etc.). However, we also support options of more complicated types;
in this case, the job of converting from the command line string to the data type falls to an
implementation of

https://docs.bazel.build/versions/2.0.0/skylark/config.html

Bazel is in the business of building software, which happens by reading and interpreting the
source code. The totality of the source code Bazel operates on is called "the workspace" and it
is structured into repositories, packages and rules. A description of these concepts for the
users of Bazel is available here.

A "repository" is a source tree on which a developer works; it usually represents a single
project. Bazel's ancestor, Blaze, operated on a monorepo, i.e. a single source tree that contains
all source code used to run the build. Bazel, in contrast, supports projects whose source code
spans multiple repositories. The repository from which Bazel is invoked is called the “main
repository”, the others are called “external repositories”.

A repository is marked by a file called (or) in its root directory. This
file contains information that is "global” to the whole build, for example, the set of available
external repositories. It works like a regular Starlark file which means that one can other
Starlark files. This is commonly used to pull in repositories that are needed by a repository that's
explicitly referenced (we call this the " pattern")

Code of external repositories is symlinked or downloaded under

When running the build, the whole source tree needs to be pieced together; this is done by

SymlinkForest, which symlinks every package in the main repository to and every
external repository to either or (the former of course makes
it impossible to have a package called in the main repository; that's why we are

migrating away from it)

Every repository is composed of packages, i.e. a collection of related files and a specification of
the dependencies. These are specified by a file called or . If both exist, Bazel
prefers ; the reason why BUILD files are still accepted is that Bazel's ancestor, Blaze,
used this file name. However, it turned out to be a commonly used path segment, especially on
Windows, where file names are case-insensitive.

Packages are independent of each other: changes to the BUILD file of a package cannot cause
other packages to change. The addition or removal of BUILD files can change other packages,
since recursive globs stop at package boundaries and thus the presence of a BUILD file stops
the recursion.

https://docs.bazel.build/versions/master/build-ref.html

The evaluation of a BUILD file is called "package loading". It's implemented in the class

, works by calling the Starlark interpreter and requires knowledge of the set of
available rule classes. The result of package loading is a object. It's mostly a map from
a string (the name of a target) to the target itself.

A large chunk of complexity during package loading is globbing: Bazel does not require every
source file to be explicitly listed and instead can run globs (e.g.). Unlike
the shell, it supports recursive globs that descend into subdirectories (but not into
subpackages). This requires access to the file system and since that can be slow, we implement
all sorts of tricks to make it run in parallel and as efficiently as possible.

Globbing is implemented in the following classes:
° , a fast and blissfully Skyframe-unaware globber
° , a version that uses Skyframe and reverts back to the legacy
globber in order to avoid “Skyframe restarts” (described below)

The class itself contains some members that are exclusively used to parse the
WORKSPACE file and which do not make sense for real packages. This is a design flaw because
objects describing regular packages should not contain fields that describe something else.
These include:

e The repository mappings

e The registered toolchains

e The registered execution platforms

Ideally, there would be more separation between parsing the WORKSPACE file from parsing
regular packages so that does not need to cater for the needs of both. This is
unfortunately difficult to do because the two are intertwined quite deeply.

Packages are composed of targets, which have the following types:

1. Files: things that are either the input or the output of the build. In Bazel parlance, we call
them artifacts (discussed elsewhere). Not all files created during the build are targets;
it's common for an output of Bazel not to have an associated label.

2. Rules: these describe steps to derive its outputs from its inputs. They are generally
associated with a programming language (e.g. , or

), but there are some language-agnostic ones (e.g. or)

3. Package groups: discussed in the Visibility section.

The name of a target is called a Label. The syntax of labels is , Where
is the name of the repository the Label is in, is the directory its BUILD file is in and

is the path of the file (if the label refers to a source file) relative to the directory of the package.
When referring to a target on the command line, some parts of the label can be omitted:
1. If the repository is omitted, the label is taken to be in the main repository.

2. If the package part is omitted (e.g. or), the label is taken to be in the package
of the current working directory (relative paths containing uplevel references (..) are not
allowed)

A kind of arule (e.g. "C++ library") is called a "rule class". Rule classes may be implemented
either in Starlark (the function) or in Java (so called “native rules”, type). In the
long term, every language-specific rule will be implemented in Starlark, but some legacy rule
families (e.g. Java or C++) are still in Java for the time being.

Starlark rule classes need to be imported at the beginning of BUILD files using the
statement, whereas Java rule classes are "innately" known by Bazel, by virtue of being
registered with the

Rule classes contain information such as:
1. Its attributes (e.g., ,): their types, default values, constraints, etc.
2. The configuration transitions and aspects attached to each attribute, if any
3. The implementation of the rule
4. The transitive info providers the rule "usually” creates

Terminology note: In the code base, we often use “Rule” to mean the target created by a rule
class. But in Starlark and in user-facing documentation, “Rule” should be used exclusively to
refer to the rule class itself; the target is just a “target”. Also note that despite having
“class” in its name, there is no Java inheritance relationship between a rule class and targets of
that type.

The evaluation framework underlying Bazel is called Skyframe. Its model is that everything that
needs to be built during a build is organized into a directed acyclic graph with edges pointing
from any pieces of data to its dependencies, that is, other pieces of data that need to be
known to construct it.

The nodes in the graph are called s and their names are called s. Both are
deeply immutabile, i.e. only immutable objects should be reachable from them. This invariant
almost always holds, and in case it doesn't (e.g. for the individual options classes ,
which is a member of and its) we try really hard not to change
them or to change them in only ways that are not observable from the outside. From this it
follows that everything that is computed within Skyframe (e.g. configured targets) must also be
immutable.

The most convenient way to observe the Skyframe graphis to run
, which dumps the graph, one per line. It's best to do it for tiny
builds, since it can get pretty large.

Skyframe lives in the package. The similarly-named
package contains the implementation of Bazel on
top of Skyframe. More information about Skyframe is available here.

Generating a new involves the following steps:
1. Running the associated
2. Declaring the dependencies (i.e. s) that the needs to do its job.

This is done by calling the various overloads of
3. If adependency is not available, Skyframe signals that by returning null from
.In this case, the is expected to yield control to Skyframe by
returning null, then Skyframe evaluates the dependencies that haven't been evaluated
yet and calls the again, thus going back to (1).
4. Constructing the resulting

A consequence of this is that if not all dependencies are available in (3), the function needs to
be completely restarted and thus computation needs to be re-done. This is obviously
inefficient. We work around this in a number of ways:

1. Declaring dependencies of s in groups so that if a function has, say, 10
dependencies, it only needs to restart once instead of ten times.
2. Splitting s so that one function does not need to be restarted many times.

This has the side effect of interning data into Skyframe that may be internal to the
, thus increasing memory use.

3. Using caches "behind the back of Skyframe" to keep state (e.g. the state of actions
being executed in . In the extreme, this ends up
resulting in writing code in continuation-passing style (e.g. action execution), which
does not help readability.

Of course, these are all just workarounds for the limitations of Skyframe, which is mostly a
consequence of the fact that Java doesn't support lightweight threads and that we routinely
have hundreds of thousands of in-flight Skyframe nodes.

Starlark is the domain-specific language people use to configure and extend Bazel. It's
conceived as a restricted subset of Python that has far fewer types, more restrictions on
control flow, and most importantly, strong immutability guarantees to enable concurrent reads.

https://bazel.build/designs/skyframe.html

It is not Turing-complete, which discourages some (but not all) users from trying to accomplish
general programming tasks within the language.

Starlark is implemented in the package. It also has an
independent Go implementation here. The Java implementation used in Bazel is currently an
interpreter.

Starlark is used in four contexts:

1. The BUILD language. This is where new rules are defined. Starlark code running in this
context only has access to the contents of the BUILD file itself and Starlark files loaded
by it.

2. Rule definitions. This is how new rules (e.g. support for a new language) are defined.
Starlark code running in this context has access to the configuration and data provided
by its direct dependencies (more on this later).

3. The WORKSPACE file. This is where external repositories (code that's not in the main
source tree) are defined.

4. Repository rule definitions. This is where new external repository types are defined.
Starlark code running in this context can run arbitrary code on the machine where Bazel
is running, and reach outside the workspace.

The dialects available for BUILD and .bzl files are slightly different because they express
different things. A list of differences is available here.

More information about Starlark is available here.

The loading/analysis phase is where Bazel determines what actions are needed to build a
particular rule. Its basic unit is a "configured target", which is, quite sensibly, a (target,
configuration) pair.

It's called the "loading/analysis phase" because it can be split into two distinct parts, which used
to be serialized, but they can now overlap in time:
1. Loading packages, that is, turning BUILD files into the objects that represent
them
2. Analyzing configured targets, that is, running the implementation of the rules to
produce the action graph

Each configured target in the transitive closure of the configured targets requested on the
command line must be analyzed bottom-up, i.e. leaf nodes first, then up to the ones on the
command line. The inputs to the analysis of a single configured target are:

https://github.com/google/starlark-go
https://docs.bazel.build/versions/master/skylark/language.html#differences-between-build-and-bzl-files
https://docs.bazel.build/versions/master/skylark/language.html

1. The configuration. ("how" to build that rule; for example, the target platform but also
things like command line options the user wants to be passed to the C++ compiler)

2. The direct dependencies. Their transitive info providers are available to the rule being
analyzed. They are called like that because they provide a "roll-up" of the information in
the transitive closure of the configured target, e.g. all the .jar files on the classpath or all
the .o files that need to be linked into a C++ binary)

3. The target itself. This is the result of loading the package the target is in. For rules, this
includes its attributes, which is usually what matters.

4. The implementation of the configured target. For rules, this can either be in Starlark
or in Java. All non-rule configured targets are implemented in Java.

The output of analyzing a configured target is:
1. The transitive info providers that configured targets that depend on it can access
2. The artifacts it can create and the actions that produce them.

The API offered to Java rules is , which is the equivalent of the argument of
Starlark rules. Its APl is more powerful, but at the same time, it's easier to do Bad Things™, for
example to write code whose time or space complexity is quadratic (or worse), to make the
Bazel server crash with a Java exception or to violate invariants (e.g. by inadvertently modifying
an instance or by making a configured target mutable)

The algorithm that determines the direct dependencies of a configured target lives in

Configurations are the "how" of building a target: for what platform, with what command line
options, etc.

The same target can be built for multiple configurations in the same build. This is useful, for
example, when the same code is used for a tool that's run during the build and for the target
code and we are cross-compiling or when we are building a fat Android app (one that contains
native code for multiple CPU architectures)

Conceptually, the configuration is a instance. However, in practice,

is wrapped by that provides additional sundry pieces of functionality. It
propagates from the top of the dependency graph to the bottom. If it changes, the build
needs to be re-analyzed.

This results in anomalies like having to re-analyze the whole build if e.g. the number of
requested test runs changes, even though that only affects test targets (we have plans to "trim"
configurations so that this is not the case, but it's not ready yet)

When a rule implementation needs part of the configuration, it needs to declare it in its
definition using . This is both to avoid
mistakes (e.g. Python rules using the Java fragment) and to facilitate configuration trimming so
that e.g. if Python options change, C++ targets don't need to be re-analyzed.

The configuration of a rule is not necessarily the same as that of its "parent” rule. The process of
changing the configuration in a dependency edge is called a "configuration transition”. It can
happen in two places:
1. Onadependency edge. These transitions are specified in
and are functions from a (where the transition happens) and a (the
original configuration) to one or more (the output configuration).
2. On any incoming edge to a configured target. These are specified in

The relevant classes are and

Configuration transitions are used, for example:
1. To declare that a particular dependency is used during the build and it should thus be
built in the execution architecture
2. To declare that a particular dependency must be built for multiple architectures (e.g. for
native code in fat Android APKs)

If a configuration transition results in multiple configurations, it's called a split transition.

Configuration transitions can also be implemented in Starlark (documentation here)

Transitive info providers are a way (and the only way) for configured targets to tell things about
other configured targets that depend on it. The reason why "transitive" is in their name is that
this is usually some sort of roll-up of the transitive closure of a configured target.

There is generally a 1:1 correspondence between Java transitive info providers and Starlark
ones (the exception is which is an amalgamation of ,
and because that APl was deemed to be more
Starlark-ish than a direct transliteration of the Java one). Their key is one of the following
things:
1. A Java Class object. This is only available for providers that are not accessible from
Starlark. These providers are a subclass of
2. Astring. This is legacy and heavily discouraged since it's susceptlble to name clashes.
Such transitive info providers are direct subclasses of

https://docs.bazel.build/versions/master/skylark/config.html

3. A provider symbol. This can be created from Starlark using the function and
is the recommended way to create new providers. The symbol is represented by a
instance in Java.

New providers implemented in Java should be implemented using
is deprecated (we haven't had time to remove it yet) and
subclasses cannot be accessed from Starlark.

Configured targets are implemented as . There is a subclass for
each rule class implemented in Java. Starlark configured targets are created through

Configured target factories should use to construct their return
value. It consists of the following things:
1. Their , i.e. the hazy concept of "the set of files this rule represents”. These

are the files that get built when the configured target is on the command line or in the
srcs of a genrule.

2. Their runfiles, regular and data.

3. Their output groups. These are various "other sets of files" the rule can build. They can
be accessed using the output_group attribute of the filegroup rule in BUILD and using
the provider in Java.

Some binaries need data files to run. A prominent example is tests that need input files. This is
represented in Bazel by the concept of "runfiles". A "runfiles tree" is a directory tree of the data
files for a particular binary. It is created in the file system as a symlink tree with individual
symlinks pointing to the files in the source of output trees.

A set of runfiles is represented as a instance. It is conceptually a map from the path of
a file in the runfiles tree to the instance that represents it. It's a little more complicated
than a single for two reasons:
e Most of the time, the runfiles path of a file is the same as its execpath. We use this to
save some RAM.
e There are various legacy kinds of entries in runfiles trees, which also need to be
represented.

Runfiles are collected using :an instance of this class represents the runfiles a
configured target (e.g. a library) and its transitive closure needs and they are gathered like a
nested set (in fact, they are implemented using nested sets under the cover): each target
unions the runfiles of its dependencies, adds some of its own, then sends the resulting set

upwards in the dependency graph. A instance contains two

instances, one for when the rule is depended on through the "data" attribute and one for every
other kind of incoming dependency. This is because a target sometimes presents different
runfiles when depended on through a data attribute than otherwise. This is undesired legacy
behavior that we haven't gotten around removing yet.

Runfiles of binaries are represented as an instance of . This is different from
because has the capability of actually being built (unlike ,
which is just a mapping). This necessitates the following additional components:

e The input runfiles manifest. This is a serialized description of the runfiles tree. It is used
as a proxy for the contents of the runfiles tree and Bazel assumes that the runfiles tree
changes if and only if the contents of the manifest change.

e The output runfiles manifest. This is used by runtime libraries that handle runfiles
trees, notably on Windows, which sometimes doesn't support symbolic links.

e The runfiles middleman. In order for a runfiles tree to exist, one needs to build the
symlink tree and the artifact the symlinks point to. In order to decrease the number of
dependency edges, the runfiles middleman can be used to represent all these.

e Command line arguments for running the binary whose runfiles the
object represents.

Aspects are a way to "propagate computation down the dependency graph”. They are
described for users of Bazel here. A good motivating example is protocol buffers: a

rule should not know about any particular language, but building the
implementation of a protocol buffer message (the “basic unit” of protocol buffers) in any
programming language should be coupled to the rule so that if two targets in
the same language depend on the same protocol buffer, it gets built only once.

Just like configured targets, they are represented in Skyframe as a and the way they
are constructed is very similar to how configured targets are built: they have a factory class
called that has access to a , but unlike configured target
factories, it also knows about the configured target it is attached to and its providers.

The set of aspects propagated down the dependency graph is specified for each attribute
using the function. There are a few confusingly-named classes
that participate in the process:

1. is the implementation of the aspect. It can be either in Java (in which case
it's a subclass) or in Starlark (in which case it's an instance of). It's
analogous to .

2. is the definition of the aspect; it includes the providers it requires, the
providers it provides and contains a reference to its implementation, i.e. the appropriate

instance. It's analogous to

https://docs.bazel.build/versions/master/skylark/aspects.html

3. is a way to parametrize an aspect that is propagated down the
dependency graph. It's currently a string to string map. A good example of why it's
useful is protocol buffers: if a language has multiple APIs, the information as to which
API the protocol buffers should be built for should be propagated down the

dependency graph.

4, represents all the data that's needed to compute an aspect that propagates
down the dependency graph. It consists of the aspect class, its definition and its
parameters.

5. is the function that determines which aspects a particular rule should
propagate. It's a -> function.

A somewhat unexpected complication is that aspects can attach to other aspects; for example,
an aspect collecting the classpath for a Java IDE will probably want to know about all the .jar
files on the classpath, but some of them are protocol buffers. In that case, the IDE aspect will
want to attach to the (rule + Java proto aspect) pair.

The complexity of aspects on aspects is captured in the class

Bazel supports multi-platform builds, that is, builds where there may be multiple architectures
where build actions run and multiple architectures for which code is built. These architectures
are referred to as platforms in Bazel parlance (full documentation here)

A platform is described by a key-value mapping from constraint settings (e.g. the concept of
"CPU architecture") to constraint values (e.g. a particular CPU like x86_64). We have a
"dictionary" of the most commonly used constraint settings and values in the

repository.

The concept of toolchain comes from the fact that depending on what platforms the build is
running on and what platforms are targeted, one may need to use different compilers; for
example, a particular C++ toolchain may run on a specific OS and be able to target some other
OSes. Bazel must determine the C++ compiler that is used based on the set execution and
target platform (documentation for toolchains here).

In order to do this, toolchains are annotated with the set of execution and target platform
constraints they support. In order to do this, the definition of a toolchain are split into two parts:
1. A rule that describes the set of execution and target constraints a
toolchain supports and tells what kind (e.g. C++ or Java) of toolchain it is (the latter is
represented by the rule)
2. Alanguage-specific rule that describes the actual toolchain (e.g.)

https://docs.bazel.build/versions/master/platforms.html
https://docs.bazel.build/versions/master/toolchains.html

This is done in this way because we need to know the constraints for every toolchain in order to
do toolchain resolution and language-specific rules contain much more
information than that, so they take more time to load.

Execution platforms are specified in one of the following ways:
1. In the WORKSPACE file using the function
2. Onthe command line using the --extra_execution_platforms command line option

The set of available execution platforms is computed in

The target platform for a configured target is determined by
. It's a list of platforms because we eventually want
to support multiple target platforms, but it's not implemented yet.

The set of toolchains to be used for a configured target is determined by
. Itis a function of:
The set of registered toolchains (in the WORKSPACE file and the configuration)
The desired execution and target platforms (in the configuration)
The set of toolchain types that are required by the configured target (in

e The set of execution platform constraints of the configured target (the
attribute) and the configuration

(),in

Its result is an , which is essentially a map from toolchain type
(represented as a instance) to the label of the selected toolchain. It's called
"unloaded" because it does not contain the toolchains themselves, only their labels.

Then the toolchains are actually loaded using and used by
the implementation of the configured target that requested them.

We also have a legacy system that relies on there being one single "host" configuration and
target configurations being represented by various configuration flags, e.g. .We are
gradually transitioning to the above system. In order to handle cases where people rely on the
legacy configuration values, we have implemented "platform mappings" to translate between
the legacy flags and the new-style platform constraints. Their code is in

and uses a non-Starlark "little language".

Sometimes one wants to designate a target as being compatible with only a few platforms.
Bazel has (unfortunately) multiple mechanisms to achieve this end:

https://docs.google.com/document/d/1Vg_tPgiZbSrvXcJ403vZVAGlsWhH9BUDrAxMOYnO0Ls

e Rule-specific constraints
/
e Platform constraints

Rule-specific constraints are mostly used within Google for Java rules; they are on their way

out and they are not available in Bazel, but the source code may contain references to it. The
attribute that governs this is called

These rules are a legacy mechanism and are not widely used.

All build rules can declare which "environments" they can be built for, where a "environment” is
an instance of the rule.

There are various ways supported environments can be specified for a rule:

1. Through the attribute. This is the most direct form of specification; it
declares the exact set of environments the rule supports for this group.

2. Through the attribute. This declares environments a rule supports in
addition to "standard" environments that are supported by default.

3. Through the package-level attributes and

4. Through default specifications in rules. Every environment

belongs to a group of thematically related peers (e.g. "CPU architectures”, "JDK
versions" or "mobile operating systems"). The definition of an environment group
includes which of these environments should be supported by "default” if not otherwise
specified by the / attributes. A rule with no such
attributes inherits all defaults.

5. Through a rule class default. This overrides global defaults for all instances of the given
rule class. This can be used, for example, to make all rules testable without each
instance having to explicitly declare this capability.

is implemented as a regular rule whereas is both a
subclass of but not () and a function that is available by default
from Starlark () which eventually creates an eponymous

target. This is to avoid a cyclic dependency that would arise because each environment needs
to declare the environment group it belongs to and each environment group needs to declare
its default environments.

A build can be restricted to a certain environment with the command
line option.

The implementation of the constraint checkis in and

The current "official" way to describe what platforms a target is compatible with is by using the
same constraints used to describe toolchains and platforms. It's under review in pull request
#10945.

If you work on a large codebase with a lot of developers (like at Google), you don't necessarily
want everyone else to be able to depend on your code so that you retain the liberty to change
things that you deem to be implementation details (otherwise, as per Hyrum's law, people will

come to depend on all parts of your code).

Bazel supports this by the mechanism called visibility: you can declare that a particular rule can
only be depended on using the visibility attribute (documentation here). This attribute is a little
special because unlike every other attribute, the set of dependencies it generates is not simply
the set of labels listed (yes, this is a design flaw).

This is implemented in the following places:

e The interface represents a visibility declaration. It can be either a
constant (fully public or fully private) or a list of labels.

e Labels can refer to either package groups (predefined list of packages), to packages
directly () or subtrees of packages (). This is
different from the command line syntax, which uses or

e Package groups are implemented as their own target and configured target types
(and). We could probably replace these
with simple rules if we wanted to.

e The conversion from visibility label lists to dependencies is done in

and a few other miscellaneous places.
e The actual checkis donein

Oftentimes, a configured target aggregates a set of files from its dependencies, adds its own,
and wraps the aggregate set into a transitive info provider so that configured targets that
depend on it can do the same. Examples:

e The C++ header files used for a build

e The object files that represent the transitive closure of a

e The set of jar files that need to be on the classpath for a Java rule to compile or run

https://github.com/bazelbuild/bazel/pull/10945
https://www.hyrumslaw.com/
https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes

e The set of Python files in the transitive closure of a Python rule

If we did this the naive way by using e.g. or Set, we'd end up with quadratic memory
usage: if there is a chain of N rules and each rule adds a file, we'd have 1+2+...+N collection
members.

In order to get around this problem, we came up with the concept of a .It'sadata
structure that is composed of other instances and some members of its own,
thereby forming a directed acyclic graph of sets. They are immutable and their members can
be iterated over. We define multiple iteration order (): preorder, postorder,
topological (a node always comes after its ancestors) and "don't care, but it should be the same
each time".

The same data structure is called in Starlark.

The actual build consists of a set of commands that need to be run to produce the output the
user wants. The commands are represented as instances of the class and the files are
represented as instances of the class . They are arranged in a bipartite, directed,
acyclic graph called the "action graph".

Artifacts come in two kinds: source artifacts (i.e. ones that are available before Bazel starts
executing) and derived artifacts (ones that need to be built). Derived artifacts can themselves
be multiple kinds:

1. Regular artifacts. These are checked for up-to-dateness by computing their
checksum, with mtime as a shortcut; we don't checksum the file if its ctime hasn't
changed.

2. Unresolved symlink artifacts. These are checked for up-to-dateness by calling
readlink(). Unlike regular artifacts, these can be dangling symlinks. Usually used in cases
where one then packs up some files into an archive of some sort.

3. Tree artifacts. These are not single files, but directory trees. They are checked for
up-to-dateness by checking the set of files in it and their contents. They are
represented as a .

4. Constant metadata artifacts. Changes to these artifacts don't trigger a rebuild. This is
used exclusively for build stamp information: we don't want to do a rebuild just because
the current time changed.

There is no fundamental reason why source artifacts cannot be tree artifacts or unresolved
symlink artifacts, it's just that we haven't implemented it yet (we should, though -- referencing a
source directory in a BUILD file is one of the few known long-standing incorrectness issues with
Bazel; we have an implementation that kind of works which is enabled by the

JVM property)

A notable kind of are middlemen. They are indicated by instances that are
the outputs of . They are used to special-case some things:
e Aggregating middlemen are used to group artifacts together. This is so that if a lot of
actions use the same large set of inputs, we don't have N*M dependency edges, only
N+M (they are being replaced with nested sets)
e Scheduling dependency middlemen ensure that an action runs before another. They are
mostly used for linting but also for C++ compilation (see
for an explanation)
e Runfiles middlemen are used to ensure the presence of a runfiles tree so that one does
not separately need to depend on the output manifest and every single artifact
referenced by the runfiles tree.

Actions are best understood as a command that needs to be run, the environment it needs and
the set of outputs it produces. The following things are the main components of the
description of an action:

e The command line that needs to be run

e Theinput artifacts it needs

e The environment variables that need to be set

e Annotations that describe the environment (e.g. platform) it needs to runin

There are also a few other special cases, like writing a file whose content is known to Bazel.

They are a subclass of . Most of the actions are a ora

(the same, they should arguably not be separate classes), although Java and
C++ have their own action types (, and).
We eventually want to move everything to ; is pretty close, but

C++is a bit of a special-case due to .d file parsing and include scanning.

The action graph is mostly "embedded" into the Skyframe graph: conceptually, the execution of

an action is represented as an invocation of . The mapping from an
action graph dependency edge to a Skyframe dependency edge is described in
and and has a few optimizations in
order to keep the number of Skyframe edges low:
e Derived artifacts do not have their own s. Instead,

is used to find out the key for the action that
generates it
e Nested sets have their own Skyframe key.

Some actions are generated by multiple configured targets; Starlark rules are more limited
since they are only allowed to put their derived actions into a directory determined by their

configuration and their package (but even so, rules in the same package can conflict), but rules
implemented in Java can put derived artifacts anywhere.

This is considered to be a misfeature, but getting rid of it is really hard because it produces
significant savings in execution time when e.g. a source file needs to be processed somehow
and that file is referenced by multiple rules (handwave-handwave). This comes at the cost of
some RAM: each instance of a shared action needs to be stored in memory separately.

If two actions generate the same output file, they must be exactly the same: have the same
inputs, the same outputs and run the same command line. This equivalence relation is
implemented in and it is verified between the analysis and execution
phases by looking at every Action. This is implemented in

and is one of the few places in
Bazel that requires a "global" view of the build.

This is when Bazel actually starts running build actions, i.e. commands that produce outputs.

The first thing Bazel does after the analysis phase is to determine what Artifacts need to be
built. The logic for this is encoded in ; roughly speaking, it's the

of the configured targets on the command line and the contents of a special
output group for the explicit purpose of expressing "if this target is on the command line, build
these artifacts".

The next step is creating the execution root. Since Bazel has the option to read source
packages from different locations in the file system (), it needs to provide
locally executed actions with a full source tree. This is handled by the class and
works by taking note of every target used in the analysis phase and building up a single
directory tree that symlinks every package with a used target from its actual location. An
alternative would be to pass the correct paths to commands (taking into
account). This is undesirable because:
e |t changes action command lines when a package is moved from a package path entry

to another (used to be a common occurrence)

It results in different command lines if an action is run remotely than if it's run locally

It requires a command line transformation specific to the tool in use (consider the

difference between e.g. Java classpaths and C++ include paths)

Changing the command line of an action invalidates its action cache entry

is slowly and steadily being deprecated

Then, Bazel starts traversing the action graph (the bipartite, directed graph composed of
actions and their input and output artifacts) and running actions. The execution of each action
is represented by an instance of the class

Since running an action is expensive, we have a few layers of caching that can be hit behind
Skyframe:
° contains data to make Skyframe restarts of
cheap
e The local action cache contains data about the state of the file system
e Remote execution systems usually also contain their own cache

This cache is another layer that sits behind Skyframe; even if an action is re-executed in
Skyframe, it can still be a hit in the local action cache. It represents the state of the local file
system and it's serialized to disk which means that when one starts up a new Bazel server, one
can get local action cache hits even though the Skyframe graph is empty.

This cache is checked for hits using the method

Contrary to its name, it's a map from the path of a derived artifact to the action that emitted it.
The action is described as:
1. The set of its input and output files and their checksum
2. Its "action key", which is usually the command line that was executed, but in general,
represents everything that's not captured by the checksum of the input files (e.g. for
, it's the checksum of the data that's written)

There is also a highly experimental “top-down action cache” that is still under development,
which uses transitive hashes to avoid going to the cache as many times.

Some actions are more complicated than just having a set of inputs. Changes to the set of
inputs of an action come in two forms:

e An action may discover new inputs before its execution or decide that some of its
inputs are not actually necessary. The canonical example is C++, where it's better to
make an educated guess about what header files a C++ file uses from its transitive
closure so that we don't heed to send every file to remote executors; therefore, we have
an option not to register every header file as an "input”, but scan the source file for
transitively included headers and only mark those header files as inputs that are
mentioned in statements (we overestimate so that we don't need to
implement a full C preprocessor)

e An action may realize that some files were not used during its execution. In C++, this is
called "d files": the compiler tells which header files were used after the fact, and in
order to avoid the embarrassment of having worse incrementality than Make, Bazel
makes use of this fact. This offers a better estimate than the include scanner because it
relies on the compiler.

These are implemented using methods on Action:
1. is called. It should return a nested set of Artifacts that are
determined to be required. These must be source artifacts so that there are no
dependency edges in the action graph that don't have an equivalent in the configured

target graph.
2. The action is executed by calling .
3. Attheend of , the action can call to tell Bazel

that not all of its inputs were needed. This can result in incorrect incremental builds if a
used input is reported as unused.

When an action cache returns a hit on a fresh Action instance (e.g. created after a server
restart), Bazel calls itself so that the set of inputs reflects the result of input
discovery and pruning done before.

Starlark actions can make use of the facility to declare some inputs as unused using the
argument of ctx.actions.runQ).

Some actions can be run in different ways. For example, a command line can be executed
locally, locally but in various kinds of sandboxes, or remotely. The concept that embodies this is
called an (or , since we successfully went only halfway with a rename...)

The life cycle of an action context is as follows:

1. When the execution phase is started, instances are asked what action
contexts they have. This happens in the constructor of . Action context
types are identified by a Java instance that refers to a sub-interface of

and which interface the action context must implement.

2. The appropriate action context is selected from the available ones and is forwarded to

and

3. Actions request contexts using and

(there should really be only one way to do it...)

Strategies are free to call other strategies to do their jobs; this is used, for example, in the
dynamic strategy that starts actions both locally and remotely, then uses whichever finishes
first.

https://docs.bazel.build/versions/master/skylark/lib/actions.html#run

One notable strategy is the one that implements persistent worker processes

(). The idea is that some tools have a long startup time and should
therefore be reused between actions instead of starting one anew for every action (This does
represent a potential correctness issue, since Bazel relies on the promise of the worker process
that it doesn't carry observable state between individual requests)

If the tool changes, the worker process needs to be restarted. Whether a worker can be reused
is determined by computing a checksum for the tool used using . It relies on
knowing which inputs of the action represent part of the tool and which represent inputs; this is
determined by the creator of the Action: and the runfiles of the

are counted as parts of the tool.

More information about strategies (or action contextsl!):
e Information about various strategies for running actions is available here.
e Information about the dynamic strategy, one where we run an action both locally and
remotely to see whichever finishes first is available here.
e Information about the intricacies of executing actions locally is available here.

Bazel can run many actions in parallel. The number of local actions that should be run in parallel
differs from action to action: the more resources an action requires, the less instances should
be running at the same time to avoid overloading the local machine.

This is implemented in the class : each action has to be annotated with an
estimate of the local resources it requires in the form of a instance (CPU and
RAM). Then when action contexts do something that requires local resources, they call

and are blocked until the required resources are
available.

A more detailed description of local resource management is available here.

Each action requires a separate place in the output directory where it places its outputs. The
location of derived artifacts is usually as follows:

$EXECRO0T/bazel-out/<configuration>/bin/<package>/<artifact name>

How is the name of the directory that is associated with a particular configuration determined?
There are two conflicting desirable properties:
1. If two configurations can occur in the same build, they should have different directories
so that both can have their own version of the same action; otherwise, if the two

https://jmmv.dev/2019/12/bazel-strategies.html
https://jmmv.dev/series.html#Bazel%20dynamic%20execution
https://jmmv.dev/2019/11/bazel-process-wrapper.html
https://jmmv.dev/2019/12/bazel-local-resources.html

configurations disagree about e.g. the command line of an action producing the same
output file, Bazel doesn't know which action to choose (an "action conflict")

2. If two configurations represent "roughly" the same thing, they should have the same
name so that actions executed in one can be reused for the other if the command lines
match: for example, changes to the command line options to the Java compiler should
not result in C++ compile actions being re-run.

So far, we have not come up with a principled way of solving this problem, which has similarities
to the problem of configuration trimming. A longer discussion of options is available here. The
main problematic areas are Starlark rules (whose authors usually aren't intimately familiar with
Bazel) and aspects, which add another dimension to the space of things that can produce the
"same" output file.

The current approach is that the path segment for the configuration is
with various suffixes added so that configuration transitions implemented in Java don't
result in action conflicts. In addition, a checksum of the set of Starlark configuration transitions
is added so that users can't cause action conflicts. It is far from perfect. This is implemented in
and relies on each configuration fragment adding its own
part to the name of the output directory.

Bazel has rich support for running tests. It supports:

e Running tests remotely (if a remote execution backend is available)
Running tests multiple times in parallel (for deflaking or gathering timing data)
Sharding tests (splitting test cases in same test over multiple processes for speed)
Re-running flaky tests
Grouping tests into test suites

Tests are regular configured targets that have a TestProvider, which describes how the test
should be run:
e The artifacts whose building result in the test being run. This is a "cache status” file that
contains a serialized message
The number of times the test should be run
The number of shards the test should be split into
Some parameters about how the test should be run (e.g. the test timeout)

Determining which tests are run is an elaborate process.

https://docs.google.com/document/d/1fZI7wHoaS-vJvZy9SBxaHPitIzXE_nL9v4sS4mErrG4/edit

First, during target pattern parsing, test suites are recursively expanded. The expansion is

implemented in . A somewhat surprising wrinkle is that if a test
suite declares no tests, it refers to every test in its package. This is implemented in

by adding an implicit attribute called to test suite
rules.

Then, tests are filtered for size, tags, timeout and language according to the command line
options. This is implemented in and is called from
during target parsing and the result is put into
. The reason why rule attributes which can
be filtered for are not configurable is that this happens before the analysis phase, therefore,
the configuration is not available.

This is then processed further in : targets whose analysis failed are
filtered out and tests are split into exclusive and non-exclusive tests. It's then put into
, which is how knows which tests to run.

In order to lend some transparency to this elaborate process, the query operator
(implemented in) is available to tell which tests are run when a particular target
is specified on the command line. It's unfortunately a reimplementation, so it probably deviates
from the above in multiple subtle ways.

The way the tests are run is by requesting cache status artifacts. This then results in the
execution of a , which eventually calls the chosen by the
command line option that runs the test in the requested way.

Tests are run according to an elaborate protocol that uses environment variables to tell tests
what's expected from them. A detailed description of what Bazel expects from tests and what
tests can expect from Bazel is available here. At the simplest, an exit code of O means success,
anything else means failure.

In addition to the cache status file, each test process emits a number of other files. They are
put in the "test log directory" which is the subdirectory called of the output directory
of the target configuration:
° , @ JUnit-style XML file detailing the individual test cases in the test shard
° , the console output of the test. stdout and stderr are not separated.
° , the "undeclared outputs directory"; this is used by tests that want to
output files in addition to what they print to the terminal.

There are two things that can happen during test execution that cannot during building regular
targets: exclusive test execution and output streaming.

https://docs.bazel.build/versions/master/test-encyclopedia.html

Some tests need to be executed in exclusive mode, i.e. not in parallel with other tests. This can
be elicited either by adding to the test rule or running the test with

. Each exclusive test is run by a separate Skyframe invocation
requesting the execution of the test after the "main” build. This is implemented in

Unlike regular actions, whose terminal output is dumped when the action finishes, the user can
request the output of tests to be streamed so that they get informed about the progress of a
long-running test. This is specified by the command line option and
implies exclusive test execution so that outputs of different tests are not interspersed.

This is implemented in the aptly-named class and works by polling
changes to the file of the test in question and dumping new bytes to the terminal
where Bazel rules.

Results of the executed tests are available on the event bus by observing various events (e.g.
, or). They are dumped to the Build Event
Protocol and they are emitted to the console by

Coverage is reported by the tests in LCOV format in the files

To collect coverage, each test execution is wrapped in a script called

This script sets up the environment of the test to enable coverage collection and determine
where the coverage files are written by the coverage runtime(s). It then runs the test. A test
may itself run multiple subprocesses and consist of parts written in multiple different
programming languages (with separate coverage collection runtimes). The wrapper script is
responsible for converting the resulting files to LCOV format if necessary, and merges them
into a single file.

The interposition of is done by the test strategies and requires
to be on the inputs of the test. This is accomplished by the implicit
attribute which is resolved to the value of the configuration flag
(see)

Some languages do offline instrumentation, meaning that the coverage instrumentation is
added at compile time (e.g. C++) and others do online instrumentation, meaning that coverage
instrumentation is added at execution time.

Another core concept is baseline coverage. This is the coverage of a library, binary, or test if no
code in it was run. The problem it solves is that if you want to compute the test coverage for a
binary, it is not enough to merge the coverage of all of the tests because there may be code in
the binary that is not linked into any test. Therefore, what we do is to emit a coverage file for
every binary which contains only the files we collect coverage for with no covered lines. The
baseline coverage file for a target is at

. It is also generated for binaries
and libraries in addition to tests if you pass the flag to Bazel.

Baseline coverage is currently broken.

We track two groups of files for coverage collection for each rule: the set of instrumented files
and the set of instrumentation metadata files.

The set of instrumented files is just that, a set of files to instrument. For online coverage
runtimes, this can be used at runtime to decide which files to instrument. It is also used to
implement baseline coverage.

The set of instrumentation metadata files is the set of extra files a test needs to generate the
LCOV files Bazel requires from it. In practice, this consists of runtime-specific files; for example,
gcc emits .gcno files during compilation. These are added to the set of inputs of test actions if
coverage mode is enabled.

Whether or not coverage is being collected is stored in the . This is handy
because it is an easy way to change the test action and the action graph depending on this bit,
but it also means that if this bit is flipped, all targets need to be re-analyzed (some languages,
e.g. C++ require different compiler options to emit code that can collect coverage, which
mitigates this issue somewhat, since then a re-analysis is needed anyway).

The coverage support files are depended on through labels in an implicit dependency so that
they can be overridden by the invocation policy, which allows them to differ between the
different versions of Bazel. Ideally, these differences would be removed, and we standardized
on one of them.

We also generate a “"coverage report" which merges the coverage collected for every testina
Bazel invocation. This is handled by and is called from
. It gets access to the tools it needs by looking at the
attribute of the first test that is executed.

Bazel has a little language used to ask it various things about various graphs. The following
query kinds are provided:

° is used to investigate the target graph
° is used to investigate the configured target graph
° is used to investigate the action graph
Each of these is implemented by subclassing . Additional
additional query functions can be done by subclassing . In order to allow
streaming query results, instead of collecting them to some data structure, a
is passed to , which calls it for results it wants to return.

The result of a query can be emitted in various ways: labels, labels and rule classes, XML,
protobuf and so on. These are implemented as subclasses of

A subtle requirement of some query output formats (proto, definitely) is that Bazel needs to
emit all the information that package loading provides so that one can diff the output and
determine whether a particular target has changed. As a consequence, attribute values need to
be serializable, which is why there are only so few attribute types without any attributes having
complex Starlark values. The usual workaround is to use a label, and attach the complex
information to the rule with that label. It's not a very satisfying workaround and it would be very
nice to lift this requirement.

Bazel can be extended by adding modules to it. Each module must subclass (the
name is a relic of the history of Bazel when it used to be called Blaze) and gets information
about various events during the execution of a command.

They are mostly used to implement various pieces of "non-core" functionality that only some
versions of Bazel (e.g. the one we use at Google) need:

e Interfaces to remote execution systems

e New commands

The set of extension points offers is somewhat haphazard. Don't use it as an
example of good design principles.

https://docs.bazel.build/versions/master/query-how-to.html

The main way BlazeModules communicate with the rest of Bazel is by an event bus ():
a new instance is created for every build, various parts of Bazel can post events to it and
modules can register listeners for the events they are interested in. For example, the following
things are represented as events:

The list of build targets to be built has been determined ()
The top-level configurations have been determined ()

A target was built, successfully or not ()

A test was run (,)

Some of these events are represented outside of Bazel in the Build Event Protocol (they are

s). This allows not only s, but also things outside the Bazel process to
observe the build. They are accessible either as a file that contains protocol messages or Bazel
can connect to a server (called the Build Event Service) to stream events.

This is implemented in the and
Java packages.

Whereas Bazel was originally designed to be used in a monorepo (a single source tree
containing everything one needs to build), Bazel lives in a world where this is not necessarily
true. "External repositories” are an abstraction used to bridge these two worlds: they represent
code that is necessary for the build but is not in the main source tree.

The set of external repositories is determined by parsing the WORKSPACE file. For example, a
declaration like this:

local_repository(name="foo", path="/foo/bar")

Results in the repository called being available. Where this gets complicated is that one
can define new repository rules in Starlark files, which can then be used to load new Starlark
code, which can be used to define new repository rules and so on...

To handle this case, the parsing of the WORKSPACE file (in) is split up
into chunks delineated by statements. The chunk index is indicated by

https://docs.bazel.build/versions/master/build-event-protocol.html

and computing until index X means

evaluating it until the Xth statement.

Before the code of the repository is available to Bazel, it needs to be fetched. This results in
Bazel creating a directory under

Fetching the repository happens in the following steps:

1.

realizes that it needs a repository and creates a
asa , which invokes
forwards the request to for

unclear reasons (the code says it's to avoid re-downloading things in case of Skyframe
restarts, but it's not a very solid reasoning)

finds out the repository rule it's asked to fetch by
iterating over the chunks of the WORKSPACE file until the requested repository is found
The appropriate is found that implements the repository fetching;
it's either the Starlark implementation of the repository or a hard-coded map for
repositories that are implemented in Java.

There are various layers of caching since fetching a repository can be very expensive:

1.

There is a cache for downloaded files that is keyed by their checksum

(). This requires the checksum to be available in the WORKSPACE file,
but that's good for hermeticity anyway. This is shared by every Bazel server instance on
the same workstation, regardless of which workspace or output base they are running
in.

A "marker file" is written for each repository under that contains
a checksum of the rule that was used to fetch it. If the Bazel server restarts but the
checksum does not change, it's not re-fetched. This is implemented in

The command line option designates another cache that is used to look up
artifacts to be downloaded. This is useful in enterprise settings where Bazel should not
fetch random things from the Internet. This is implemented by

Once a repository is downloaded, the artifacts in it are treated as source artifacts. This poses a
problem because Bazel usually checks for up-to-dateness of source artifacts by calling stat()
on them, and these artifacts are also invalidated when the definition of the repository they are
in changes. Thus, s for an artifact in an external repository need to depend on
their external repository. This is handled by

Sometimes, external repositories need to modify files under the workspace root (e.g. a
package manager that houses the downloaded packages in a subdirectory of the source tree).
This is at odds with the assumption Bazel makes that source files are only modified by the user
and not by itself and allows packages to refer to every directory under the workspace root. In
order to make this kind of external repository work, Bazel does two things:
1. Allows the user to specify subdirectories of the workspace Bazel is not allowed to reach
into. They are listed in a file called and the functionality is implemented in

2. We encode the mapping from the subdirectory of the workspace to the external
repository it is handled by into and handle
s referring to them in the same way as those for regular external
repositories.

It can happen that multiple repositories want to depend on the same repository, but in different
versions (this is an instance of the "diamond dependency problem"). For example, if two
binaries in separate repositories in the build want to depend on Guava, they will presumably
both refer to Guava with labels starting and expect that to mean different versions of
it.

Therefore, Bazel allows one to re-map external repository labels so that the string can
refer to one Guava repository (e.g.) in the repository of one binary and another
Guava repository (e.g.) the the repository of the other.

Alternatively, this can also be used to join diamonds. If a repository depends on ,and
another depends on , repository mapping allows one to re-map both repositories to
use a canonical repository.

The mapping is specified in the WORKSPACE file as the attribute of individual
repository definitions. It then appears in Skyframe as a member of , Where
it is plumbed to:

° which is used to transform label-valued attributes

of rules in the package by
° which is used in the analysis phase (for resolving things like
which are not parsed in the loading phase)
° for resolving labels in load() statements

The server of Bazel is mostly written in Java. The exception is the parts that Java cannot do by
itself or couldn't do by itself when we implemented it. This is mostly limited to interaction with
the file system, process control and various other low-level things.

The C++ code lives under src/main/native and the Java classes with native methods are:
° and

° and

Emitting console output seems like a simple thing, but the confluence of running multiple
processes (sometimes remotely), fine-grained caching, the desire to have a nice and colorful
terminal output and having a long-running server makes it non-trivial.

Right after the RPC call comes in from the client, two instances are created
(for stdout and stderr) that forward the data printed into them to the client. These are then
wrapped in an (an (stdout, stderr) pair). Anything that needs to be printed on the
console goes through these streams. Then these streams are handed over to

Output is by default printed with ANSI escape sequences. When these are not desired

(), they are stripped by an . In addition, and
are redirected to these output streams. This is so that debugging information can

be printed using and still end up in the terminal output of the client

(which is different from that of the server). Care is taken that if a process produces binary

output (e.g.), no munging of stdout takes place.

Short messages (errors, warnings and the like) are expressed through the
interface. Notably, these are different from what one posts to the (this is confusing).
Each has an (error, warning, info, and a few others) and they may have a

(the place in the source code that caused the event to happen).

Some implementations store the events they received. This is used to replay
information to the Ul caused by various kinds of cached processing, for example, the warnings
emitted by a cached configured target.

Some s also allow posting events that eventually find their way to the event bus
(regular s do not appear there). These are implementations of and
their main use is to replay cached events. These events all implement

, but not everything that is posted to necessarily implements this interface;
only those that are cached by an (it would be nice and most of the
things do; it's not enforced, though)

Terminal output is mostly emitted through , which is responsible for all the fancy
output formatting and progress reporting Bazel does. It has two inputs:

e Theeventbus

e The event stream piped into it through Reporter

The only direct connection the command execution machinery (i.e. the rest of Bazel) has to the
RPC stream to the client is through , which allows direct access to these
streams. It's only used when a command needs to dump large amounts of possible binary data
(e.g.).

Bazel is fast. Bazel is also slow, because builds tend to grow until just the edge of what's
bearable. For this reason, Bazel includes a profiler which can be used to profile builds and Bazel
itself. It's implemented in a class that's aptly named . It's turned on by default, although
it records only abridged data so that its overhead is tolerable; The command line

makes it record everything it can.

It emits a profile in the Chrome profiler format; it's best viewed in Chrome. It's data model is
that of task stacks: one can start tasks and end tasks and they are supposed to be neatly
nested within each other. Each Java thread gets its own task stack. TODO: How does this work
with actions and continuation-passing style?

The profiler is started and stopped in and
respectively and attempts to be live for as long as possible so
that we can profile everything. To add something to the profile, call
.Itreturns a , whose closure represents the end of
the task. It's best used with try-with-resources statements.

We also do rudimentary memory profiling in . It's also always on and it mostly
records maximum heap sizes and GC behavior.

Bazel has two main kinds of tests: ones that observe Bazel as a "black box" and ones that only
run the analysis phase. We call the former "integration tests" and the latter "unit tests", although
they are more like integration tests that are, well, less integrated. We also have some actual unit
tests, where they are necessary.

Of integration tests, we have two kinds:
1. Ones implemented using a very elaborate bash test framework under
2. Onesimplemented in Java. These are implemented as subclasses of

has the virtue that it works on Windows, too, but most of our integration
tests are written in bash.

Analysis tests are implemented as subclasses of . There is a scratch file
system you can use to write BUILD files, then various helper methods can request configured
targets, change the configuration and assert various things about the result of the analysis.

	Introduction
	Client/server architecture
	Directory layout
	The process of executing a command
	Command line options
	The source tree, as seen by Bazel
	Repositories
	Packages
	Labels, Targets and Rules

	Skyframe
	Starlark
	The loading/analysis phase
	Configurations
	Transitive info providers
	Configured targets
	Runfiles
	Aspects
	Platforms and toolchains
	Constraints
	environment_group() and environment()
	Platform constraints

	Visibility
	Nested sets
	Artifacts and Actions
	Shared actions

	The execution phase
	The local action cache
	Input discovery and input pruning
	Various ways to run actions: Strategies/ActionContexts
	The local resource manager
	The structure of the output directory

	Tests
	Determining which tests to run
	Running tests
	Coverage collection

	The query engine
	The module system
	The event bus
	External repositories
	The WORKSPACE file
	Fetching repositories
	Managed directories
	Repository mappings

	JNI bits
	Console output
	Profiling Bazel
	Testing Bazel

