Google Sites Blog- Comments, RSS,
and Automatic Publishing Guide

The purpose of this document is to be a guide for users who want to host a blog on Google
Sites and still have access to features such as comments and RSS as well as a guide on how to
use Forms and Apps Script to automate the publishing of posts to RSS since Google Sites has
no native functionality of this sort.

Creating your site

Creating a site with Google Sites is outside the scope of this document. However you can easily
create a new site by visiting sites.new and choosing a template. Create a page named “Blog” to
use as your index, new blog posts can be created as subpages. | recommend hiding new pages
from navigation, otherwise they will be added as a link under the Blog menu item and will clutter
the site navigation. | created a_Google Sheet that can be embedded in a page and can act as an
automatically updating index by pasting the link to an RSS feed in the Feed Setting worksheet.
Here is the customized embed code to make it look like part of your website natively.

<iframe src="https://docs.google.com/spreadsheets/d/[docld of the google
sheet]/pubhtmli?gid=0&widget=false&headers=false&chrome=false" width="100%"
height="100%" frameBorder="0"</iframe>

Embedded Google Sheets are not responsive to screen size and do not look great on mobile so
| decided to just manually update the index page on my blog instead.

Adding a comment section

Using Disqus

Create a publishing account for disqus and follow the instructions for the Universal Embed Code

At the bottom of your blog post, create a new embed. This can be done by double-clicking a
blank section of the page and choosing embed, or by choosing embed from the Insert menu.

Insert Pages Themes
Tr (]
TT D Text box Images

€3 , &

Embed Drive

https://sites.new/
https://docs.google.com/spreadsheets/d/18rPtEE4Rgemyc0rFHRk1vZBMoSGdpJ-jH1itC39ldTM/edit?usp=share_link
https://help.disqus.com/en/articles/1717056-publisher-quick-start-guide

Copy and paste the universal embed code into the Embed Code section of the Embed from the
web pop-up that opens when you insert a new embed element. Click next to see a preview and
click Insert

Embed from the web

By URL Embed code

<div id="disqus_thread"></div>
<script>

[ax

* RECOMMENDED CONFIGURATION VARIABLES: EDIT AND UNCOMMENT
THE SECTION BELOW TO INSERT DYMAMIC VALUES FROM YOUR PLATFORM
OR CMS.

" ACETUTLS we Tam. ¢ Te TunanwauT 4

Paste the HTML code from the site you want to embed

Replace the PAGE_URL with the full URL of the published page (that is, the URL the page will
have when visited by a user, not the URL to the edited page, eqg.
https://www.kmstrube.net/blog/11) and PAGE_IDENTIFIER (the portion of the URL following the
domain (the portion after https://sites.google.com for a default site, or after your custom domain
if your site is set up with a custom domain, eg. blog/11)

Remove the /* above the var disqus_config = function () { line. And remove the */ below the };
line. An example of my embed code is below:<div id="disqus_thread"></div>

<script>

[ox

* RECOMMENDED CONFIGURATION VARIABLES: EDIT AND UNCOMMENT THE
SECTION BELOW TO INSERT DYNAMIC VALUES FROM YOUR PLATFORM OR
CMS.

* LEARN WHY DEFINING THESE VARIABLES IS IMPORTANT:
https://disqus.com/admin/universalcode/#configuration-variables */

var disqus_config = function () {

this.page.url = 'https://www.kmstrube.net/blog/11"; // Replace PAGE_URL with your
page's canonical URL variable

this.page.identifier = 'blog/11'; // Replace PAGE_IDENTIFIER with your page's unique
identifier variable

|3

(function() { // DON'T EDIT BELOW THIS LINE
var d = document, s = d.createElement('script');
s.src = 'https://[redacted].disqus.com/embed.js";
s.setAttribute('data-timestamp’, +new Date());
(d.head || d.body).appendChild(s);

DO;

</script>

Using Mastodon

Daniel Pecos, has a good post about using mastodon posts as a comment section. For Google
sites embeds, including the CSS in a style tag isn’t respected when the site is rendered. The
style needs to be included in the style attribute of every element. Some time | may attempt to
refactor Dan’s code so that the styling works with Google Sites but be aware that that isn’t
working for now.

Publishing with RSS

RSS requires a XML file that is filled out according to the RSS or Atom spec. Create a new
Google Doc and fill out the feed settings according to the RSS 2.0 spec. The RSS feed will
always start like this

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmiIns:atom="http://www.w3.0rg/2005/Atom">

<channel>

The most essential elements in the channel section are <title>, <link>, and <description>.
Hopefully it's somewhat self explanatory but <title> is the Title of your Blog, <link> is the URL to
the homepage, and <description> is a short description of your blog as seen in feed readers.
There are other optional elements for the channel section, check out the spec linked above for a
description of each optional element. See the example below to get started.

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmins:atom="http://www.w3.0rg/2005/Atom">
<channel>
<title>[Title of Blog]</title>
<link>[Link to Home Page]</link>
<description>[short description]</description>
<category>[arbitrary category, can have multiple]</category>
<copyright>[copyright info]</copyright>
</channel>
</rss>

To add posts to the feed you need to add an <item> element within the <channel> element. An
item just needs either a <title> or a <description>. <link>, <guid>, and <pubDate> are essential
for properly organizing content in the feed reader though. <title> is your post title. <description>
can be either the full content encoded in |[CDATA] tags or just a teaser to get readers to click
the full content posted on your blog. <link> is the URL to your post on your blog. <guid> is a
unique identifier. Typically this is just the link with the isPermaLink attribute set to true.
<pubDate> is the date the post was published, formatted according to the RFC 3339 spec. See
the example of an item below.

https://danielpecos.com/2022/12/25/mastodon-as-comment-system-for-your-static-blog/
https://danielpecos.com/2022/12/25/mastodon-as-comment-system-for-your-static-blog/
https://www.rssboard.org/rss-profile
https://www.rssboard.org/rss-profile

<item>
<title>[Blog Post Title]</title>
<link>[link to post]</link>
<description>
[A short text description or entire HTML of blog post wrapped in |[CDATA] tag]
</description>
<category>[arbitrary category, can have multiple]</category>
<guid isPermaLink="true">[unique ID, link to post if isPermalLink is set to true]</guid>

<pubDate>[RFC 3339 Formatted Date String (DDD, DD MMM YYYY hh:mm:ss
Z)]</pubDate>

</item>

You can insert the item inside the channel section, anywhere below the title is fine. In my
example | do it below the <copyright> element. Additional items can be inserted below the latest
item and they do not need to be in chronological order if you are using the <pubDate> element.
Be sure to close the XML with the closing </channel> and </rss> tags.

</channel>
</rss>

To get you started, here is an example of my RSS feed with a single item.

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0" xmiIns:atom="http://www.w3.0rg/2005/Atom">
<channel>

<titte>KMSTRUBE.NET Blog</title>

<link>https://www.kmstrube.net/blog</link>

<description>Reviews and Ramblings from yours truly</description>

<category>Technology</category>

<copyright>Copyright 2024 KMSTRUBE.NET</copyright>

<item>

<title>Review: Super Mario Bros.</title>
<link>https://www.kmstrube.net/blog/2</link>
<description>In this post | give my review of the classic NES
game.</description>
<guid isPermaLink="true">https://www.kmstrube.net/blog/2</guid>
<category>Retro Gaming</category>
<category>Review</category>
<pubDate>Thu, 01 Sep 2022 13:00:00 CST</pubDate>

</item>
</channel>
</rss>

Once you are ready to publish your RSS Feed, share the document using the “Anyone with the
link” option. Leave the permission level at viewer and click “Done”.

Share "Google Sites Blog- Comments, @ @&
RSS, and Automatic P..."

Add people, groups, and calendar events

People with access
Kasey Strube (you)

kasey.kmstrube@gmail.com

General access

@ Restricted =

+~ Restricted
'ci Anyone with the link m
I

Open the URL in the address bar and take note of the Google Doc ID, the section between
“...d/” and “/edit” highlighted below.

= https://docs.google.com/document/d/1oPMIGDFENkyXRfhnRaNkPgljdzkADOMZWSNITPA2Qds/edit 0

The link to your RSS feed with the txt extension is as follows, replacing [googledocid] with the
Google Doc ID as determined above.
https://docs.google.com/feeds/download/documents/export/Export?id=[googledocid]&exportFor
mat=txt

Automating RSS Publishing with Google Forms and App Script

Create the Form

Create a new form in Google Drive. Use my form as an example for the kind of fields your form
will need.

Post Title = = short answer -

Short answer text

|_|:|]E Required .

Post URL *

Short answer text

Thumbnail Image

Category
Technology
Web
Fediverse
Retro Gaming
Review

Other..

Republish? *
Yes

No

After section 1 Go to section 2 (Original Publish Date and Time) ~

Section 2 of 2

Original Publish Date and Time v

Description (optional)

Original Publish Date *

Month, day, year

Original Publish Time

Time

https://forms.gle/JGf9r3WShajcB8Lg8

Using my form as an example, | take the post title as a required “short answer” input with no
validation.

F‘ost Title El = Short answer -

B I U o ¥

Short answer text

0 Required ~)

| take the post URL as a required “short answer” input with URL validation. | do additional
validation based on domain in the script that runs on submission.

Post URL |;| = Short answer - D
Short answer text Tr
Text URL Must be a URL @ hitps://kmstrube.net/blog
&
=
=
0O Required ~ ()
Show
Description

Thumbnail Image

~~ Response validation
& view

| have a “File Upload” input for Thumbnails. This is for prepending a thumbnail to the description
field to make it look nice in feed readers and to give the post a bit more life since images are
stripped by Google Sites automatically when exporting the HTML. | set the file type to Image
and number of files to 1. | set the file limit to 10MB and total limit to 1GB.

Thumbnail Image [& Fileupload -

B I U o= ¥

Allow only specific file types ®

D Document D Presentation

D Spreadsheet D Drawing

D PDF Image

[J video [Audie

Maximum number of files 1 -

Maximum file size 10MB ~

This form can accept up to 1 GB of files. Change ‘} View folder

|_|:|]E[Required

For setting the post category(ies), | have a checkboxes input field. | just set arbitrary categories
of things I'd like to write about as well as including an “Other..” option in case | want to add a
new category at the time of submission.

Category = Checkboxes -

Technology

Web

Fediverse

Retro Gaming

Review

Afterplay.io Help

X X X X X X X

Other.

Add option

|_|:|]E Required

Finally for determining pubDate, | have a bit of navigation logic using a Yes/No field. If
Re-publish? is marked “Yes” the form navigates to section 2. If marked “No” it submits the form
and the submission time is used as the post’s pubDate.

Republish? & @ wultiple choice - o
Yes x Continue to next section - TT
No X Submit form v =

=
Add option or add "Other”
=
=
0 m Required ~) i
" Show
After section 1 Go to section 2 - e
Description

~" Go to section based on answer

Section title (optional) Shuffle option order

~

For posts that are being updated or republished, section 2 consists of a single Date/Time field
with the Year and Time options set.

Original Publish Date E G pate = 0
Month, day, year Tr
Time Show

Description
0 Required @) Include time

~ Include year

Once you have your form configured to your liking, set the form to collect email addresses as
“verified” (used for email verification so that the internet as a whole can’t spam your feed with
invalid updates). And enable the script editor to create a Google Apps Script project that runs on
form submission.

S

|_|:| Make a copy

[i] Move to trash

G2 Get pre-filled link
Questions Responses @ Settings

= Print

Settings

2hF Add collaborators

Make this a quiz

Assign point values, set answers, and automatically provide feedback]
<> Script editor
Responses N m Get add-ons
Manage how responses are collected and protected
Collect email addresses Verified Keyboard shortcuts

Respondents will be required to sign in to Google

Create the Script

To parse the HTML of the blog post, the Cheerio library is needed. Select the + symbol to the
right of "Libraries" and pasting in the Script ID for Cheerio
(1ReeQ6WO8KKNxoaA_OO0XEQ589cIrRVEBA9qcWpNqdOP17i47u6N9M5Xh0)

Add a Library

You can look up libraries available to you by their |D. Learn More

Script ID *
((KNxoaA_ODXEQSBQcIerEBAQchqudOP1 7i4?u6N9M5XhC|

A library's script |D which can be found in the library’s project settings

Look up

Cancel

Copy and Paste the code included below into your code editor window. Edit the 6 global
variables to fit your enviroment.

const id = "[googledocid]"; //DocID for Doc containing RSS XML

const approvedSubmitters = new Array("email@example.com",
"example@email.net"); //array of emails for sanity check to prevent spam
const approvedDomains = new Array("www.kmstrube.net"); //array of
approved domains that are hosted on Google sites. to prevent code
breaking on html that doesn't match spec.

const localTimeZone = "CST"; //The 3 digit timezone code or timezone
offset eg +0200

const parentDiv = "div.JNdkSc-SmKAyb.LkDMRd";

const contentSection = ".yaq0zd";

id is the DoclD of the Google Doc containing the feed XML that we determined earlier. As a
refresher you can find it by opening the document, grabbing the URL and copy-pasting the part
between “https://docs.google.com/document/d/“ and “/edit”. approvedSubmitters is an array of
email addresses of the users allowed to contribute to the RSS feed. approvedDomains is an
array of domains that are hosted on Google Sites and are approved to be posted to the RSS
feed. localTimeZone is for properly appending the timeZone code to the pubDate. It is off by an
hour for 3 quarters of the year because of Daylight Savings Time but | don't care enough to
implement a fix since not all locales have daylight savings time and it doesn't bother me that
much if the time is off 1 hour. parentDiv is a class selector for the parent div that holds images
in the blogHTML, needed to drop the broken images from the HTML. contentSection is a class
sector for the content blocks in the blog page, ensuring that only content and not the page
header or footers are in the blog HTML. parentDiv and contentSection were always the same
for all the sites | created in my testing. It should be fine to leave it static for yours but | can’t
confirm. In my onFormSubmit function there is a switch statement that loads answers from the
form into variables. If you reworded the questions on the form, make sure the case statements
in that switch match the questions exactly as they are worded in your form. Here is the full code
of my script below.

const id = "[googledocid]"; //DocID for Doc containing RSS XML

const approvedSubmitters = new Array("email@example.com",
"example@email.net"); //array of emails for sanity check to prevent spam
const approvedDomains = new Array("www.kmstrube.net"); //array of
approved domains that are hosted on Google sites. to prevent code

breaking on html that doesn't match spec.

const localTimeZone = "CST"; //The 3 digit timezone code or timezone
offset eg +0200

const parentDiv = "div.JNdkSc-SmKAyb.LkDMRd";

const contentSection = ".yaq0zd";

//load URI code
eval(UrlFetchApp.fetch('https://cdnjs.cloudflare.com/ajax/1libs/URI.js/1.
19.11/URI.min.js"').getContentText());

function onFormSubmit(e) {

// for tests

if (le) {

// test object

var form = FormApp.getActiveForm()

var responses = form.getResponses();

e = {"authMode" :"FULL",

"response": responses|responses.length - 1], // last response
"source": form,

"triggerUid":"5125265"};

3
// do your job here
try {

//email sanity check

var mail = e.response.getRespondentEmail();

var errFlag = true;

for(var n = 0; n < approvedSubmitters.length; n++)
{
if (approvedSubmitters[n] == mail)
errFlag = false;

}

if(errFlag) throw new Error("Non approved submitter.");

var i; //init i as counter

var url; //"Post URL" => url

var title; //"Post Title" => title

var thumb; //"Thumbnail Image" => inject into blog HTML

var category; //"Category" = > categories

var source; //Not currently part of form, for reposts

var sourceUrl; //Not currently part of form, for reposts

var date; //"Original Publish Date" = for pubDate

var author; //Not currently part of the form, all posts are authored by
me

var enclosure; //Not currently part of the form, not podcasting.

var timeFlag = false; //set flag for republishing old content to false

answers = e.response.getItemResponses(); //get responses
for(i = ©; i < answers.length; i++){ //loop through responses and save
them to vars

//load responses into vars
switch(answers[i].getItem().getTitle()){

case "Post URL":

url = answers[i].getResponse();

break;

case "Post Title":

title = answers[i].getResponse();

break;

case "Thumbnail Image":

thumb = answers[i].getResponse();

break;

case "Category":

category = answers[i].getResponse();

break;

case "Republish?":

if(answers[i].getResponse()=="Yes") timeFlag = true; else timeFlag =
false;

break;

case "Original Publish Date":

date = answers[i].getResponse();
break;

default: break;

}
}

//domain sanity check

errFlag = true;

for(n = 0; n < approvedDomains.length; n++)
{
if(new URL(url).hostname.tolLowerCase() ===
approvedDomains[n].toLowerCase())

errFlag = false;

}

if(errFlag) throw new Error("Non approved domain.");

//process vars

var blog = getBlogHTML(url, true); //get blog HTML

if(!blog) throw new Error ("Page not found");

var blogHtml;

//create HTML for uploaded thumbnail

if (thumb){

var img = DriveApp.getFileById(thumb);
img.setSharing(DriveApp.Access.ANYONE, DriveApp.Permission.VIEW);
var imgHtml = '<img src="https://1h3.googleusercontent.com/d/' + thumb +
"" style="max-width:560px;max-height:560px" alt="Thumbnail"/>";
blogHtml = imgHtml + blog;

} else blogHtml = blog;

//create pubDate

var pubDate;

if(timeFlag){

pubDate = buildRFC822Date(date);

} else {

pubDate = buildRFC822Date(new Date());
}

var item = formatItemForRSS(title, blogHtml, author, category, url,

enclosure, url, pubDate, source, sourceUrl);

updateRSS(id, item);
}

catch (err) {

throw err;
}
return 0;
}

function getBlogHTML(url, pop = false){ //URL: url to blog post on
google sites; pop: if set to true then pop off last section of post. IE
if there comment section.

const htmlContent = UrlFetchApp.fetch(url).getContentText(); //get blog
post from URL

const $ = Cheerio.load(htmlContent); //load blogpost into cheerio object

//sanity checks

if(!$) return false;

var error404 = '<div class="ZQSezd"><h1 class="NVoTp">404</h1><p
class="nsUy4b">The page you have entered does not exist</p><p>Go to site home</p></div>";

if ($.html().toString().includes(error404)) return false;

var blog = new Array(); //save the blog contents to array

var i = 0; //init counter

var html = $(contentSection).first(); //load first section of content
var bloghtml; var temp;

var img; var breakimg; var removeme; //init working vars

do { //loop trhough post sections while html is valid
img = html.find('img').first(); //get first image

do{ //loop until all images are removed from post section

removeme = img.parentsUntil(parentDiv).last().html();
temphtml = html.html();
bloghtml = temphtml.replace(removeme,"");

img = img.next();

} while (img.html() !'== null)
blog[i] = bloghtml; // write current section to array

html = html.next(); //load next section
i++; //increment counter

} while (html.html() '== null && i < 100)
if(pop) blog.pop(); //pop last section

i=1; //reinit counter, start at 1 because we don't care about the
title card

var post = ""; //var for flattened blog array

while(i < blog.length){ //loop through array to flatten it

post += blog[i];

it++;
}

return post;

}

function formatItemForRSS(title, description, author, category, 1link,
enclosure, guid, pubDate, source, sourceUrl) {

/*

var title; //post title <title> element

var description; //post content <description> element

var author; //post author <author> element, probably unused.

var categories; //post categories. may be multiple, passed as an array
<category> element

var link; //link to post on website <link> element

var enclosure; //video or audio file for use in the feed, passed as an
arrary 0@ => length of file in bytes 1 => file mime type 2=> file URL.
<enclosure> element used for podcasting. probably unused

var guid; //unique identifier for the element. url to item usually.
<guid> element

var pubDate; //date that item was published to the site. RFC3339 Format
<pubDate> element

var source; //link to original URL if it was reposted from another site.
<source> element. probably unused.

var sourceUrl; //link to original URL if it was reposted from another
site. <source> element. probably unused. */

var item; //xml string for inserting into the RSS feed.

var i = 0; //init i as counter

item = " <item>\n";
item += " <title>" + title + "</title>\n";
item += " <link>" + link + "</link>\n";

item += " <description><![CDATA[" + description + "]]></description>\n";

if (author) item += " <author>" + author + "</author>\n";

if(category) { while(i < category.length) {

item += " <category>" + category[i] + "</category>\n";

it++;
}}

if(enclosure) item +=

<enclosure length=\"" + enclosure[0] +"\"

type=\"" + enclosure[1] + "\" url=\"" + enclosure[2] + "\" />\n";
item += " <guid isPermalLink=\"true\">" + guid + "</guid>\n";
item += " <pubDate>" + pubDate + "</pubDate>\n";

if(source) item += " <source url="+ sourceUrl + "\">" + source +

"</source>\n";

item += </item>\n";

return item;

}

function updateRSS(id, item) { //id: document id of Google Doc

containing rss xml; item: formatted xml item of latest post

const doc = DocumentApp.openById(id).getBody();
var text = doc.getText();

var offset = text.length - 17; //insert point is 17 characters from end

of document

text = doc.editAsText();

text.insertText(offset, item);

return;

}

/*Date Formatting functions taken from

https://github.com/whitep4nth3r/rfc-822 Thanks

MIT License Copyright (c) 2022 Salma Alam-Naylor

Permission is hereby granted,

free of charge, to any person obtaining a copy of this software and
associated

documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and

to

permit persons to whom the Software is furnished to do so, subject to
the

following conditions:

The above copyright notice and this permission notice
(including the next paragraph) shall be included in all copies or
substantial

portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT .
IN NO

EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN

THE SOFTWARE.

*/

function buildRFC822Date(dateString) {

const dayStrings = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"l];
const monthStrings = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",

"Aug", "Sep", noctn' "NOV", "DeC"];

const timeStamp = Date.parse(dateString);

const date = new Date(timeStamp);

const day = dayStrings[date.getDay()];
const dayNumber = addlLeadingZero(date.getDate());
const month = monthStrings[date.getMonth()];

const year = date.getFullYear();

const time
*${addLeadingZero(date.getHours())}:S${addLeadingZero(date.getMinutes())}
100" ;

const timezone = date.getTimezoneOffset() === @ ? "GMT" : localTimeZone;

//Wed, 02 Oct 2002 13:00:00 GMT

return ~${day}, S${dayNumber} S{month} S${year} S{time} S{timezone}’;
}
// add a leading @ to a number if it is only one digit
function addLeadingZero(num) {

num = num.toString();

while (num.length < 2) num = "0" + num;

return num;

}

After pasting in the code, click the “Clock” icon and “Add a trigger”. Change “Choose which
function to run” to onFormSubmit and change “Select event type to “On form submit”

Edit Trigger for Update RSS Form Submit

Choose which function to run Failure notification settings =+

onFormSubmit Notify me daily

Which runs at deployment

Head

Select event source

From form

Select event type

On form submit

Once saved you will need to give the script permission to edit files in your Google Drive and to
connect to external applications. You will now be able to use the form to update your feed
automatically. There is still work that can be done with this script, such as adding the
functionality for updating posts by deleting an existing post if the link already exists and

replacing the content with the new submission but for now. This works good enough for me. Ill
update this guide when | take on that functionality. Thank you for reading. Be sure to leave a
comment on this blog post if you need some help getting this to work in your environment.

https://www.kmstrube.net/blog/11

	Google Sites Blog- Comments, RSS, and Automatic Publishing Guide
	Creating your site
	Adding a comment section
	Using Disqus
	Using Mastodon

	Publishing with RSS
	Automating RSS Publishing with Google Forms and App Script
	Create the Form
	Create the Script

