
Lecture note 5: word2vec + manage experiments 
CS 20: TensorFlow for Deep Learning Research 
cs20.stanford.edu 
Prepared by Chip Huyen (chiphuyen@cs.stanford.edu) 
 
We’ve built several simple models and they all take only a few minutes to train. To build and train more 
complex models, we’d need a little bit more tools. In this lecture, we will go over the concept of model 
base, variable sharing, model sharing, and how to manage our experiments. We will use word2vec as an 
example to showcase this. 

Word2vec 
Most of you are probably already familiar with word embedding and understand the importance of a 
model like word2vec. For those who aren’t, Stanford CS 224N’s lecture on word vectors is a great 
resource. When you’re at it, it might be a good idea to check out the following two papers: 
Distributed Representations of Words and Phrases and their Compositionality (Mikolov et al., 2013) 
Efficient Estimation of Word Representations in Vector Space (Mikolov et al., 2013) 
 
At a high level, we need to find an efficient way to represent textual data (in this case, words) so that we 
can use this representation to solve natural language tasks. Word embeddings form the backbone in the 
solutions to many tasks such as language modeling, machine translation, sentiment analysis, etc. 
 
Created by a team of researchers led by Tomas Mikolov, word2vec is a group of models that are used to 
produce word embeddings. There are two main models used in word2vec: skip-gram and CBOW.  
 

Skip-gram vs CBOW (Continuous Bag-of-Words) 
 
Algorithmically, these models are similar, except that CBOW predicts center words from 
context words, while the skip-gram does the inverse and predicts source context-words from 
the center words. For example, if we have the sentence: ""The quick brown fox jumps"", then 
CBOW tries to predict ""brown"" from ""the"", ""quick"", ""fox"", and ""jumps"", while 
skip-gram tries to predict ""the"", ""quick"", ""fox"", and ""jumps"" from ""brown"". 
 
Statistically it has the effect that CBOW smoothes over a lot of the distributional 
information (by treating an entire context as one observation). For the most part, this 
turns out to be a useful thing for smaller datasets. However, skip-gram treats each 
context-target pair as a new observation, and this tends to do better when we have larger 
datasets. 

 
In this lecture, we will build word2vec, the skip-gram model. In this model, to get the vector 
representations of words, we train a simple neural network with a single hidden layer to perform a 

http://web.stanford.edu/class/cs224n/lectures/lecture2.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1301.3781.pdf


certain task, but then we don’t use that neural network for the task we train it on. Instead, we care 
about the weights of the hidden layer. These weights are actually the “word vectors”, or “embedding 
matrix” that we’re trying to learn. 
 
The certain, fake task we’re going to train our model on is predicting the neighboring (context) words 
given the center word. Given a specific word in a sentence (the center word), look at the words nearby 
and pick one at random. The network is going to tell us the probability for every word in our 
vocabulary of being a neighbor to a specific word. Chris McCormick wrote a tutorial that explains the 
skip-gram model wonderfully if you want more details. 
 
Vector representations of words visualized with t-SNE projected on a 3D space, using TensorBoard. 
 

 
 
 
 

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Softmax, Negative Sampling, and Noise Contrastive Estimation 
To get the distribution of the possible neighboring words, in theory, we often use softmax. Softmax 
maps arbitrary values  to a probability distribution . In this case, is the probability 𝑥
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 However, the normalization term in the denominator requires us to perform exp on all words in the 
dictionary and sum the results up, which could be millions of words. Even if you disregard uncommon 
words, a natural language model doesn’t perform well unless you consider at least tens of thousands of 
the most common words. The normalization term causes softmax to be computationally prohibitive. 
 
There are two main approaches to circumvent this bottleneck: hierarchical softmax and sample-based 
softmax. Mikolov et al. have shown in their paper Distributed Representations of Words and Phrases 
and their Compositionality that for training the skip-gram model, negative sample results in faster 
training and better vector representations for frequent words, compared to more complex hierarchical 
softmax. 
 
Negative sampling, as the name suggests, belongs to the family of sample-based approaches. This 
family also includes importance sampling and target sampling. Negative sampling is actually a 
simplified model of an approach called Noise Contrastive Estimation (NCE), e.g. negative sampling 
makes certain assumption about the number of noise samples to generate -- let’s call it  -- and the 𝑘
distribution of noise samples -- let’s call it  -- such that  to simplify computation. For 𝑄 𝑘𝑄(𝑤) =  1
more details, please see Sebastian Rudder’s On word embeddings - Part 2: Approximating the Softmax 
and Chris Dyer’s Notes on Noise Contrastive Estimation and Negative Sampling.  
 
While negative sampling is useful for the learning word embeddings, it doesn’t have the theoretical 
guarantee that its derivative tends towards the gradient of the softmax function. NCE, on the contrary, 
offers this guarantee as the number of noise samples increases. Mnih and Teh (2012) reported that 25 
noise samples are sufficient to match the performance of the regular softmax, with an expected 
speed-up factor of about 45. For this reason, in this example, we will be using NCE. 
 
Note that sample-based approaches, whether it’s negative sampling or NCE, are only useful at training 
time -- during inference, the full softmax still needs to be computed to obtain a normalized probability. 

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://ruder.io/word-embeddings-softmax/
http://demo.clab.cs.cmu.edu/cdyer/nce_notes.pdf
https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf


Dataset 
text8 is the first 100 MB of cleaned text of the English Wikipedia dump on Mar. 3, 2006 (whose link is 
no longer available). We use text that has already been pre-processed because it takes a lot of time to 
process the raw text and we’d rather use the time in this class to focus on TensorFlow. We can 
download the dataset here. The file word_utils.py on our GitHub repo has a script to download and 
read the text 
 
100MB is not enough to train really good word embeddings, but enough to see some interesting 
relations. There are 17,005,207 tokens if you count tokens by splitting the text by blank space. For 

better results, you should use the dataset fil9 of the first bytes of the Wikipedia dump, as described 109

on Matt Mahoney’s website. 

Implementing word2vec 
In this example, we implement skip-gram without eager execution. For example with eager execution, 
please see examples/04_word2vec_eager.py. If you want to give it a try first, use 
examples/04_word2vec_eager_starter.py. 

Phase 1: Assemble the graph 

1. Create dataset and generate samples from them 
Input is the center word and output is the neighboring (context) word. Instead of feeding words into 
our model, we create a dictionary of the most common words, and feed the indices of those words. For 

example, if the center word is the word in the vocabulary, we input the number 999.  1000𝑡ℎ

 
Each sample input is a scalar, so BATCH_SIZE of sample inputs have shape [BATCH_SIZE] 
Similarly, BATCH_SIZE of sample outputs have shape [BATCH_SIZE, 1]. 
 

dataset = tf.data.Dataset.from_generator(gen,  
                            (tf.int32, tf.int32),  
                            (tf.TensorShape([BATCH_SIZE]), tf.TensorShape([BATCH_SIZE, 1]))) 
iterator = dataset.make_initializable_iterator() 
center_words, target_words = iterator.get_next() 

 
2. Define the weight (in this case, embedding matrix) 
Each row corresponds to the representation vector of one word. If one word is represented with a 
vector of size EMBED_SIZE, then the embedding matrix will have shape [VOCAB_SIZE, 
EMBED_SIZE]. We initialize the embedding matrix to value from a random distribution. In this case, 
let’s choose uniform distribution. 
 

http://mattmahoney.net/dc/text8.zip
https://cs.fit.edu/~mmahoney/compression/textdata.html
https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/04_word2vec_eager.py
https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/04_word2vec_eager_starter.py


embed_matrix = tf.get_variable('embed_matrix',  
                                shape=[VOCAB_SIZE, EMBED_SIZE], 
                                initializer=tf.random_uniform_initializer()) 

 
3. Inference (compute the forward path of the graph) 
Our goal is to get the vector representations of words in our dictionary. Remember that the 
embed_matrix has dimension VOCAB_SIZE x EMBED_SIZE, with each row of the embedding 
matrix corresponds to the vector representation of the word at that index. So to get the representation 
of all the center words in the batch, we get the slice of all corresponding rows in the embedding matrix. 
TensorFlow provides a convenient method to do so. 
 
tf.nn.embedding_lookup( 
    params, 
    ids, 
    partition_strategy='mod', 
    name=None, 
    validate_indices=True, 
    max_norm=None 
) 

This method is really useful when it comes to matrix multiplication with one-hot vectors because it 
saves us from doing a bunch of unnecessary computation that will return 0 anyway. An illustration 
from Chris McCormick for multiplication of a one-hot vector with a matrix. 
 
 

 
 
 
So, to get the embedding (or vector representation) of the input center words, we use this: 
 
embed = tf.nn.embedding_lookup(embed_matrix, center_words, name='embed') 

 
4. Define the loss function 
While NCE is cumbersome to implement in pure Python, TensorFlow already implemented it for us.  

tf.nn.nce_loss( 
    weights, 
    biases, 
    labels, 
    inputs, 
    num_sampled, 

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


    num_classes, 
    num_true=1, 
    sampled_values=None, 
    remove_accidental_hits=False, 
    partition_strategy='mod', 
    name='nce_loss' 
) 

 
Note that by the way the function is implemented, the third argument is actually inputs, and the 
fourth is labels. This ambiguity can be quite troubling sometimes, but keep in mind that TensorFlow is 
still new and growing and therefore might not be perfect. Nce_loss source code can be found here.  
 
For nce_loss, we need weights and biases for the hidden layer to calculate NCE loss. They will be 
updated by optimizer during training. After sampling, the final output score will be computed as 
followed. This computation is done internally in tf.nn.nce_loss operation.  
 

tf.matmul(embed, tf.transpose(nce_weight)) + nce_bias 

 

nce_weight = tf.get_variable('nce_weight', ​
       shape=[VOCAB_SIZE, EMBED_SIZE],​
       initializer=tf.truncated_normal_initializer(stddev=1.0 / (EMBED_SIZE ** 0.5)))​
nce_bias = tf.get_variable('nce_bias', initializer=tf.zeros([VOCAB_SIZE])) 

 
Then we define loss:  
 
loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weight,  
​ ​ ​ ​ ​ biases=nce_bias,  
​ ​ ​ ​ ​ labels=target_words,  
​ ​ ​ ​ ​ inputs=embed,  
​ ​ ​ ​ ​ num_sampled=NUM_SAMPLED,  
​ ​ ​ ​ ​ num_classes=VOCAB_SIZE)) 

 
5. Define optimizer 
We will use the good old gradient descent. 
 

optimizer = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(loss) 

Phase 2: Execute the computation 

We will create a good old session to run the optimizer to minimize the loss, and report the loss value 
back to us. Don’t forget to reinitialize your iterator! 
 

with tf.Session() as sess: 

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/nn_impl.py


        sess.run(iterator.initializer) 
        sess.run(tf.global_variables_initializer()) 
 
        writer = tf.summary.FileWriter('graphs/word2vec_simple', sess.graph) 
 
        for index in range(NUM_TRAIN_STEPS): 
            try: 
                loss_batch, _ = sess.run([loss, optimizer]) 
            except tf.errors.OutOfRangeError: 
                sess.run(iterator.initializer) 
        writer.close() 

 
You can see the full basic model on the class’s GitHub repo under the name word2vec.py. 

Interface: How to structure your TensorFlow model 
All models we’ve built so far have more or less have the same structure: 
  
Phase 1: assemble your graph 
1. Import data (either with tf.data or with placeholders) 
2. Define the weights 
3. Define the inference model 
4. Define loss function 
5. Define optimizer 
  
Phase 2: execute the computation 
Which is basically training your model. There are a few steps: 
1. Initialize all model variables for the first time. 
2. Initialize iterator / feed in the training data. 
3. Execute the inference model on the training data, so it calculates for each training input example the 
output with the current model parameters. 
4. Compute the cost 
5. Adjust the model parameters to minimize/maximize the cost depending on the model. 
 
Here is a visualization of training loop from the book TensorFlow for Machine Intelligence (Abrahams 
et al., 2016). 



 
 
 
It took us about 20 lines of code to build a word embedding model! It’s fast but … “what happened to 
decomposition?” After we’ve spent an ungodly amount of time building a model, we’d like to use it 
more than once.  
 
Question: how do we make our model most easy to reuse?  
Hint: take advantage of Python’s object-oriented-ness. 
Answer: build our model as a class! 
 
Our model base class should follow the interface. We combined step 3 and 4 because we want to put 
embed under the name scope of “NCE loss”.  
 

class SkipGramModel: 
    """ Build the graph for word2vec model """ 
    def __init__(self, params): 
        pass 
 
    def _import_data(self): 
        """ Step 1: import data """ 
        pass 
 
    def _create_embedding(self): 
        """ Step 2: in word2vec, it's actually the weights that we care about """ 
        pass 
 
    def _create_loss(self): 
        """ Step 3 + 4: define the inference + the loss function """ 
        pass 
 
    def _create_optimizer(self): 
        """ Step 5: define optimizer """ 
        pass 



Visualize embeddings 
Now let’s see what our model finds after training it for 100,000 iterations. If we visualize our 
embedding with t-SNE, we will see something like this.  

 
It’s hard to see in 2D, but we’ll see in class in 3D that all the number (one, two, …, zero) are grouped in 
a line on the bottom right, next to all the alphabet (a, b, …, z) and names (john, james, david, and such). 
All the months are grouped together. “Do”, “does”, “did” are also grouped together and so on. 
 
If you print out the closest words to ‘american’, you will find its closest cosine neighbors are ‘british’ 
and ‘english’. Fair enough. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
How about words closest to ‘government’? 
 

 
 

t-SNE (from Wikipedia) 
 
t-distributed stochastic neighbor embedding (t-SNE) is a machine learning algorithm for 
dimensionality reduction developed by Geoffrey Hinton and Laurens van der Maaten. It is a 
nonlinear dimensionality reduction technique that is particularly well-suited for embedding 
high-dimensional data into a space of two or three dimensions, which can then be visualized 
in a scatter plot. Specifically, it models each high-dimensional object by a two- or 
three-dimensional point in such a way that similar objects are modeled by nearby points and 
dissimilar objects are modeled by distant points.  
 
The t-SNE algorithm comprises two main stages. First, t-SNE constructs a probability 
distribution over pairs of high-dimensional objects in such a way that similar objects have 



a high probability of being picked, whilst dissimilar points have an extremely small 
probability of being picked. Second, t-SNE defines a similar probability distribution over 
the points in the low-dimensional map, and it minimizes the Kullback–Leibler divergence 
between the two distributions with respect to the locations of the points in the map. Note 
that whilst the original algorithm uses the Euclidean distance between objects as the base 
of its similarity metric, this should be changed as appropriate. 

 
If you haven’t used t-SNE, you should start using it! It’s super cool.  
 
You can visualize more than word embeddings, aka, you can visualize any vector representations of 
anything! Have you read Chris Olah’s blog post about visualizing MNIST? t-SNE made MNIST 
desirable! Image below is from Olah’s blog.  
 

 
 
We can also visualize our embeddings using PCA too. 
 

http://colah.github.io/posts/2014-10-Visualizing-MNIST/


 
 
 
And we did all that visualization with less than 10 lines of code using TensorFlow projector with 
TensorBoard! The tool is super useful, albeit a bit finicky to use. The visualization will be stored in 
visualization folder. To see it, run  "'tensorboard --logdir='visualization'". 
 

from tensorflow.contrib.tensorboard.plugins import projector 
 
def visualize(self, visual_fld, num_visualize): 
        # create the list of num_variable most common words to visualize 
        word2vec_utils.most_common_words(visual_fld, num_visualize) 
 
        saver = tf.train.Saver() 
        with tf.Session() as sess: 
            sess.run(tf.global_variables_initializer()) 
            ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint')) 
 
            # if that checkpoint exists, restore from checkpoint 
            if ckpt and ckpt.model_checkpoint_path: 
                saver.restore(sess, ckpt.model_checkpoint_path) 
 
            final_embed_matrix = sess.run(self.embed_matrix) 
             
            # you have to store embeddings in a new variable 



            embedding_var = tf.Variable(final_embed_matrix[:num_visualize], name='embeded') 
            sess.run(embedding_var.initializer) 
 
            config = projector.ProjectorConfig() 
            summary_writer = tf.summary.FileWriter(visual_fld) 
 
            # add embedding to the config file 
            embedding = config.embeddings.add() 
            embedding.tensor_name = embedding_var.name 
             
            # link this tensor to the file with the first NUM_VISUALIZE words of vocab 
            embedding.metadata_path = os.path.join(visual_fld,[file_of_most_common_words]) 
 
            # saves a configuration file that TensorBoard will read during startup. 
            projector.visualize_embeddings(summary_writer, config) 
            saver_embed = tf.train.Saver([embedding_var]) 
            saver_embed.save(sess, os.path.join(visual_fld, 'model.ckpt'), 1) 

 
To see the full code, please see examples/04_word2vec_visualize.py on the class’s GitHub repo. 

Variable sharing 

Name scope 
Let’s give the tensors name and see how our word2vec model looks like on TensorBoard. 
 

https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/04_word2vec_visualize.py


 
As you can see in the graph, the nodes are scattering all over, rendering the graph difficult to read. 
TensorBoard doesn’t know which nodes are similar to which nodes and should be grouped together. 
This can make debugging your graph daunting when you build complex models with hundreds of ops.  
 
How can we let TensorBoard know which nodes should be grouped together? For example, we would 
like to group all ops related to input/output together, and group all ops related to NCE loss together. 
TensorFlow lets us do that with name_scope. You can put all the ops that you want to group together 
under the block:  
 

with tf.name_scope(name_of_that_scope): 
​ # declare op_1 
​ # declare op_2 
​ # ... 

 
For example, our graph can have four name scopes: “data”, “embed”, “loss”, and “optimizer”. 
 

with tf.name_scope('data'): 
    iterator = dataset.make_initializable_iterator() 



    center_words, target_words = iterator.get_next() 
 
with tf.name_scope('embed'): 
    embed_matrix = tf.get_variable('embed_matrix',  
                                    shape=[VOCAB_SIZE, EMBED_SIZE], 
                                    initializer=tf.random_uniform_initializer()) 
    embed = tf.nn.embedding_lookup(embed_matrix, center_words, name='embedding') 
 
with tf.name_scope('loss'): 
    nce_weight = tf.get_variable('nce_weight', shape=[VOCAB_SIZE, EMBED_SIZE], 
                                initializer=tf.truncated_normal_initializer()) 
    nce_bias = tf.get_variable('nce_bias', initializer=tf.zeros([VOCAB_SIZE])) 
 
    loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weight,  
                                        biases=nce_bias,  
                                        labels=target_words,  
                                        inputs=embed,  
                                        num_sampled=NUM_SAMPLED,  
                                        num_classes=VOCAB_SIZE), name='loss') 
 
with tf.name_scope('optimizer'): 
    optimizer = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(loss) 

 
When you visualize that on TensorBoard, you will see your nodes are grouped into neat blocks. 

 
 
 
You can click on the plus sign on top of each name scope block to see all the ops inside that block. Take 
your time to play around with it. 

 
TensorBoard has three kinds of edges: the solid grey 
arrows, the solid orange arrows, and the dotted 
arrows. The solid grey arrows represent data flow 



edges. For example, the op tf.add(x + y) get the values from x and y. The solid orange arrows are 
reference edges which represent which ops can mutate which ops. In this graph, it means that our 
optimizer can mutate -- in this case, update through backprop -- nce_weights, nce_bias, and 
embed_matrix.The dotted arrows represent control dependence edges. For example, nce_weight can 
only be executed after init -- a variable can only be used after being initialized. Control dependencies 
can be declared using tf.Graph.control_dependencies(control_inputs). 
To see the full model of word2vec with name scope defined, see examples/04_word2vec_visualize.py on 
the class’s GitHub repo. 

Variable scope 
One of the questions I’m often asked is: “So what’s the difference between name_scope and 
variable_scope”. While both create namespaces, the main thing variable_scope does is to facilitate 
variable sharing. Let’s explore why we need variable sharing. 
 
Assume that we want to create a neural network with two hidden layers as followed. We then called 
that two hidden layers network on two different input x1 and x2. 
 

x1 = tf.truncated_normal([200, 100], name='x1') 
x2 = tf.truncated_normal([200, 100], name='x2') 

 

def two_hidden_layers(x): 
    assert x.shape.as_list() == [200, 100] 
    w1 = tf.Variable(tf.random_normal([100, 50]), name="h1_weights") 
    b1 = tf.Variable(tf.zeros([50]), name="h1_biases") 
    h1 = tf.matmul(x, w1) + b1 
    assert h1.shape.as_list() == [200, 50]   
    w2 = tf.Variable(tf.random_normal([50, 10]), name="h2_weights") 
    b2 = tf.Variable(tf.zeros([10]), name="h2_biases") 
    logits = tf.matmul(h1, w2) + b2 
    return logits 
 
logits1 = two_hidden_layers(x1) 
logits2 = two_hidden_layers(x2) 

 
If we visualize this on TensorBoard, this is what we see. 

https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/04_word2vec_visualize.py


 
 
Each time you call two network, TensorFlow creates a different set of variables, while in fact, you want 
the network to share the same variables for all inputs, whether it’s x1, x2, or more. To do this, we first 
need to use tf.get_variable(). When we create a variable with tf.get_variable(), it first checks whether 
that variable exists. If it does, reuse it. If not, create a new one. However, if we simply replace 
tf.Variable() with tf.get_variable() such as the following: 

def two_hidden_layers_2(x): 
    assert x.shape.as_list() == [200, 100] 
    w1 = tf.get_variable("h1_weights", [100, 50], initializer=tf.random_normal_initializer()) 
    b1 = tf.get_variable("h1_biases", [50], initializer=tf.constant_initializer(0.0)) 
    h1 = tf.matmul(x, w1) + b1 
    assert h1.shape.as_list() == [200, 50]   
    w2 = tf.get_variable("h2_weights", [50, 10], initializer=tf.random_normal_initializer()) 
    b2 = tf.get_variable("h2_biases", [10], initializer=tf.constant_initializer(0.0)) 
    logits = tf.matmul(h1, w2) + b2 
    return logits 

 
We will run into this error: 

ValueError: Variable h1_weights already exists, disallowed. Did you mean to set reuse=True 
or reuse=tf.AUTO_REUSE in VarScope? 

 
To avoid this, we need to put all variables we want to use in a VarScope, and set that VarScope to be 
reusable. 

with tf.variable_scope('two_layers') as scope: 
    logits1 = two_hidden_layers_2(x1) 
    scope.reuse_variables() 
    logits2 = two_hidden_layers_2(x2) 



def fully_connected(x, output_dim, scope): 
    with tf.variable_scope(scope) as scope: 
        w = tf.get_variable("weights", [x.shape[1], output_dim], 
initializer=tf.random_normal_initializer()) 
        b = tf.get_variable("biases", [output_dim], initializer=tf.constant_initializer(0.0)) 
        return tf.matmul(x, w) + b 
 
def two_hidden_layers(x): 
    h1 = fully_connected(x, 50, 'h1') 
    h2 = fully_connected(h1, 10, 'h2') 
 
with tf.variable_scope('two_layers') as scope: 
    logits1 = two_hidden_layers(x1) 
    scope.reuse_variables() 
    logits2 = two_hidden_layers(x2) 

 
Let’s look at TensorBoard. 

 
 
There’s only one set of variables now, all within the variable_scope two_layers. They take in two 
different inputs x1 and x2. tf.variable_scope("name") implicitly opens a tf.name_scope("name"). 
 
In our code, we write code for each layer. When we have more layers that are similar in structure, we 
probably want to make our code more reusable.  
 

def fully_connected(x, output_dim, scope): 
    with tf.variable_scope(scope) as scope: 
        w = tf.get_variable('weights', [x.shape[1], output_dim], 



initializer=tf.random_normal_initializer()) 
        b = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0)) 
        return tf.matmul(x, w) + b 
 
def two_hidden_layers(x): 
    h1 = fully_connected(x, 50, 'h1') 
    h2 = fully_connected(h1, 10, 'h2') 
 
with tf.variable_scope('two_layers') as scope: 
    logits1 = two_hidden_layers(x1) 
    scope.reuse_variables() 
    logits2 = two_hidden_layers(x2) 

 
You can scale it to infinitely many layers with many different kinds of activation functions! 

Graph collections 
As you create a model, you might put your variables to different parts of the graph. Sometimes, you’d 
want an easy way to access them. tf.get_collection lets you access a certain collection of variables, 
with key being the name of the collection, scope is the scope of the variables. 
 

tf.get_collection( 
    key, 
    scope=None 
) 

 
By default, all variables are placed in tf.GraphKeys.GLOBAL_VARIABLES. To get all variables in 
scope “my_scope”, simply call. This turns a list of variables in “my_scope”. 
 

tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_scope') 

 
If you set trainable=True (which is always set by default) when you create your variable, that variable 
will be in the collection tf.GraphKeys.TRAINABLE_VARIABLES.  
 
You can have collections of ops that aren’t variables. And yes, you can create your own collections with 
tf.add_to_collection(name, value). For example, you can create a collection of initializers and  add all 
init ops to that.  
 
The standard library uses various well-known names to collect and retrieve values associated with a 
graph. For example, the tf.train.Optimizer subclasses default to optimizing the variables collected 
under tf.GraphKeys.TRAINABLE_VARIABLES if none is specified, but it is also possible to pass an 
explicit list of variables. For the list of predefined graph keys, please see the official documentation. 

https://www.tensorflow.org/api_docs/python/tf/GraphKeys


Manage experiments 
We’ve built a word2vec model and it seems to be working pretty well using such a small dataset. We 
know that it’d take much longer time for a larger dataset, and we also know that training more 
complicated models can take an ungodly amount of time. For example, a machine translation models 
can take up to days, if not months on a single GPU. Many computer vision and reinforcement learning 
tasks require a really long time and a lot of patience.  
 
It’s difficult to let our models run for days, wait and then make adjustment. If the computer or the 
cluster crashes, the training is interrupted and we’ll have to run our model all over again! It’s crucial to 
be able to stop training at any point, for any reason, and resume training as if nothing happens. It will 
be helpful for analyzing our models, as this allows us closely inspect our models after any number of 
training steps. 
 
Another problem that researchers often face is how to replicate research results. When building and 
training neural networks, we often use randomization. For example, we randomize the weights for our 
models, or we shuffle the order of our training samples. It’s important to learn how to control this 
random factor in our models. 
 
In this part of the lecture, we will go over the excellent set of tools that TensorFlow provides to help us 
manage our experiments, including but not limited to tf.train.Saver() class, TensorFlow’s random state, 
and visualization our training progress (aka more TensorBoard). 

tf.train.Saver() 
A good practice is to periodically save the model’s parameters after a certain number of steps or epochs 
so that we can restore/retrain our model from that step if need be. The tf.train.Saver() class allows us to 
do so by saving the graph’s variables in binary files.  
 

tf.train.Saver.save( 
    sess, 
    save_path, 
    global_step=None, 
    latest_filename=None, 
    meta_graph_suffix='meta', 
    write_meta_graph=True, 
    write_state=True 
) 

 
For example, if we want to save the variables of the graph after every 1000 training steps, we do the 
following: 



 

# define model 
 
# create a saver object 
saver = tf.train.Saver() 
 
# launch a session to execute the computation 
with tf.Session() as sess: 
    # actual training loop 
    for step in range(training_steps):  
​ sess.run([optimizer]) 
​ if (step + 1) % 1000 == 0: 
​    saver.save(sess, 'checkpoint_directory/model_name', global_step=global_step) 

 
In TensorFlow lingo, the step at which you save your graph’s variables is called a checkpoint. Since we 
will be creating many checkpoints, it’s helpful to append the number of training steps our model has 
gone through a variable called global_step. It’s a variable you’d see in many TensorFlow programs. We 
first need to create it, initialize it to 0 and set it to be not trainable, since we don’t want TensorFlow to 
optimize it. 
 

global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') 

 
We need to pass global_step as a parameter to the optimizer so it knows to increment global_step by 
one with each training step. 
 

optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss,global_step=global_step) 

 
To save the current values of variables in the folder ‘checkpoints’, we use this: 
 

saver.save(sess, 'checkpoints/model-name', global_step=global_step) 

 
To restore the variables, we use tf.train.Saver.restore(sess, save_path). For example, to restore the 

checkpoint at the  step. 10, 000𝑡ℎ

 

saver.restore(sess, 'checkpoints/skip-gram-10000') 

 
But of course, we can only load saved variables if there is a valid checkpoint. What you probably want 
to do is that if there is a checkpoint, restore it. If there isn’t, train from the start. TensorFlow allows you 
to get checkpoint from a directory with tf.train.get_checkpoint_state(‘directory-name’). The code 
for checking looks something like this: 
 



ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint')) 
if ckpt and ckpt.model_checkpoint_path: 
     saver.restore(sess, ckpt.model_checkpoint_path) 

 
The file checkpoint automatically keeps track of the path to the latest checkpoint, so if we find the 
latest checkpoint from , 'checkpoints/checkpoint' we can always get the latest checkpoint. This is an 
example of what the file 'checkpoints/checkpoint' looks like. 

model_checkpoint_path: "skip-gram-21999" 
all_model_checkpoint_paths: "skip-gram-13999" 
all_model_checkpoint_paths: "skip-gram-15999" 
all_model_checkpoint_paths: "skip-gram-17999" 
all_model_checkpoint_paths: "skip-gram-19999" 
all_model_checkpoint_paths: "skip-gram-21999" 

 
So our training loop for word2vec now looks like this: 
 

saver = tf.train.Saver() 
 
initial_step = 0 
utils.safe_mkdir('checkpoints') 
 
with tf.Session() as sess: 
    sess.run(self.iterator.initializer) 
    sess.run(tf.global_variables_initializer()) 
 
    # if a checkpoint exists, restore from the latest checkpoint 
    ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint')) 
    if ckpt and ckpt.model_checkpoint_path: 
        saver.restore(sess, ckpt.model_checkpoint_path) 
 
    writer = tf.summary.FileWriter('graphs/word2vec' + str(self.lr), sess.graph) 
 
    for index in range(num_train_steps): 
        try: 
            sess.run(self.optimizer) 
            # save the model every 1000 steps 
            if (index + 1) % 1000 == 0:  
                saver.save(sess, 'checkpoints/skip-gram', index) 
        except tf.errors.OutOfRangeError: 
            sess.run(self.iterator.initializer) 
             
    writer.close() 

 
If you go to the folder ‘checkpoints’, you will see files like the below: 



 
 
By default, saver.save() stores all variables of the graph, and this is recommended. However, you can 
also choose what variables to store by passing them in as a list or a dict when we create the saver object. 
This is an example from TensorFlow official documentation. 
 

v1 = tf.Variable(..., name='v1')  
v2 = tf.Variable(..., name='v2')  
 
# pass the variables as a dict:  
saver = tf.train.Saver({'v1': v1, 'v2': v2})  
 
# pass them as a list 
saver = tf.train.Saver([v1, v2])  
 
# passing a list is equivalent to passing a dict with the variable op names # as keys 
saver = tf.train.Saver({v.op.name: v for v in [v1, v2]}) 

 
Note that savers only save variables, not the entire graph, so we still have to create the graph ourselves, 
and then load in variables. The checkpoints specify the way to map from variable names to tensors. 
 
What people usually do is not just save the parameters from the last iteration, but also save the 
parameters that give the best result so far so that you can evaluate your model on the best parameters so 
far. 

tf.summary  
We’ve been using matplotlib to visualize our losses and accuracy, which is unnecessary because 
TensorBoard provides us with a great set of tools to visualize our summary statistics during our 
training. Some popular statistics to visualize is loss, average loss, accuracy. You can visualize them as 



scalar plots, histograms, or even images. So we have a new namescope in our graph to hold all the 
summary ops. 
 

def _create_summaries(self): 
     with tf.name_scope("summaries"): 
            tf.summary.scalar("loss", self.loss) 
            tf.summary.scalar("accuracy", self.accuracy)             
            tf.summary.histogram("histogram loss", self.loss) 
            # because you have several summaries, we should merge them all 
            # into one op to make it easier to manage 
            self.summary_op = tf.summary.merge_all() 

 
Because it’s an op, you have to execute it with sess.run() 
 

loss_batch, _, summary = sess.run([model.loss, model.optimizer, model.summary_op],  
                                  feed_dict=feed_dict) 

 
Now you’ve obtained the summary, you need to write the summary to file using the same FileWriter 
object we created to visualize our graph. 
 

writer.add_summary(summary, global_step=step) 

 
Now, if you go run tensorboard and go to http://localhost:6006/, in the Scalars page, you will see the 
plot of your scalar summaries. This is the summary of your loss in scalar plot. 

 
And the loss in histogram plot. 

http://localhost:6006/


 

 

 
If you save your summaries into different sub-folder in your graph folder, you can compare your 
progresses. For example, the first time we run our model with learning rate 1.0, we save it in 
‘improved_graph/lr1.0’ and the second time we run our model, we save it in ‘improved_graph/lr0.5’, 
on the left corner of the Scalars page, we can toggle the plots of these two runs to compare them. This 
can be really helpful when you want to compare the progress made with different optimizers or 
different parameters. 
 



 
 
You can write a Python script to automate the naming of folders where you store the graphs/plots of 
each experiment. 
 
You can visualize the statistics as images using tf.summary.image. 
 

tf.summary.image(name, tensor, max_outputs=3, collections=None) 

Control randomization  
I never realized what an oxymoron “control randomization” sounds like until I’ve written it down, but 
the truth is that you often have to control the randomization process to get stable results for your 
experiments. You’re probably familiar with random seed and random state from NumPy. TensorFlow 
doesn’t allow you to get random state the way NumPy does (at least not that I know of -- I will double 
check), but it does allow you to get stable results in randomization through two ways: 
 
1. Set random seed at operation level. All random tensors allow you to pass in seed value in their 
initialization. For example: 

my_var = tf.Variable(tf.truncated_normal((-1.0,1.0), stddev=0.1, seed=0)) 

 
Note that, session is the thing that keeps track of random state, so each new session will start the 
random state all over again. 
 

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.summary.image.md


c = tf.random_uniform([], -10, 10, seed=2) 
 
with tf.Session() as sess: 
​ print sess.run(c) # >> 3.57493 
​ print sess.run(c) # >> -5.97319 

 

c = tf.random_uniform([], -10, 10, seed=2) 
 
with tf.Session() as sess: 
​ print sess.run(c) # >> 3.57493 
 
with tf.Session() as sess: 
​ print sess.run(c) # >> 3.57493 

 
With operation level random seed, each op keeps its own seed. 
 

c = tf.random_uniform([], -10, 10, seed=2) 
d = tf.random_uniform([], -10, 10, seed=2) 
 
with tf.Session() as sess: 
​ print sess.run(c) # >> 3.57493 
​ print sess.run(d) # >> 3.57493 

 
2. Set random seed at graph level with tf.Graph.seed 
 

tf.set_random_seed(seed) 

 
If you don’t care about the randomization for each op inside the graph, but just want to be able to 
replicate result on another graph (so that other people can replicate your results on their own graph), 
you can use tf.set_random_seed instead. Setting the current TensorFlow random seed affects the 
current default graph only.  
 
For example, you have two models a.py and b.py that have identical code: 
 

import tensorflow as tf 
 
tf.set_random_seed(2) 
c = tf.random_uniform([], -10, 10) 
d = tf.random_uniform([], -10, 10) 
 
with tf.Session() as sess: 
​ print sess.run(c) 
​ print sess.run(d) 

 



Without graph level seed, running python a.py and b.py will return 2 completely different results, but 
with tf.set_random_seed, you will get two identical results: 
 

$ python a.py  
>> -4.00752 
>> -2.98339 
 
$ python b.py  
>> -4.00752 
>> -2.98339 

Autodiff (how TensorFlow takes gradients) 
In all the models we’ve built so far, we haven’t taken a single gradient. All we need to do is to build a 
forward pass and TensorFlow takes care of the backward path for us. For example, if tensor C depends 
on a set of previous nodes, the gradient of C with respect to those previous nodes can be automatically 
computed with a built-in function, even if there are many layers in between them. 
 
TensorFlow uses what’s known as the reverse mode automatic differentiation. It allows you to take 
derivative of a function at roughly the same cost as computing the original function. Gradients are 
computed by creating additional nodes and edges in the graph. For example, you need to compute the 
gradients of C with respect to I, first TensorFlow looks for the path between these two nodes. Once the 
path is found, TensorFlow starts at C and moves backward toward I. For every operation on this 
backward path, a node is added to the graph, composing the partial gradients of each added node via 
the chain rule. This process is visualized in TensorFlow white paper: 

 
 
To compute partial gradients, we can use tf.gradients() 



 

tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, 
gate_gradients=False, aggregation_method=None) 

 
tf.gradients(ys, [xs]) with [xs] stands for a list of tensors with respect to those you’re trying to compute 
the gradient of ys. It will return a list of gradient values. 
 

x = tf.Variable(2.0) 
y = 2.0 * (x ** 3) 
 
grad_y = tf.gradients(y, x) 
with tf.Session() as sess: 
​ sess.run(x.initializer) 
​ print sess.run(grad_y) # >> 24.0 

 

x = tf.Variable(2.0) 
y = 2.0 * (x ** 3) 
z = 3.0 + y ** 2 
 
grad_z = tf.gradients(z, [x, y]) 
with tf.Session() as sess: 
​ sess.run(x.initializer) 
​ print sess.run(grad_z) # >> [768.0, 32.0] 
# 768 is the gradient of z with respect to x, 32 with respect to y 

 
You should check by hand to see that this is correct. 
 
So, the question is: why should we still learn to take gradient? Why are Chris Manning and Richard 
Socher making us take gradients of cross entropy and softmax? Shouldn’t taking gradients by hands 
one day be as obsolete as trying to take square root by hands since the invention of calculator? 
 
Well, maybe. But for now, TensorFlow can take gradients for us, but it can’t give us intuition about 
what functions to use. It doesn’t tell us if a function will suffer from exploding or vanishing gradients. 
We still need to know about gradients to get an understanding of why a model works while another 
doesn’t. 
 



 
We plot the error surface of a one hidden unit recurrent network, highlighting the existence of high 
curvature walls. The solid lines depicts standard trajectories that gradient descent might follow. Using 
dashed arrow the diagram shows what would happen if the gradients is rescaled to a fixed size when its 
norm is above a threshold. 
 
Source for the plot: Understanding the exploding gradient problem (Pascanu et al., 2012) 
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