

JSON encoding/decoding
Project Proposal for Google Summer of Code 2020
─

Abdallah Khaled Ahmed Mahmoud Elshamy
Third year student at Computer and Systems department
Faculty of engineering - Ain Shams University
Cairo - Egypt

 1

Table of Contents
Table of Contents

Introduction

Contact Information

Self-assessment

Motivation

Task

Deliverables

Libraries to be used

Plan

Milestones

Timeline

Implementation Details

Contribution to Octave

Qualification

Introduction
●​ My name is Abdallah Khaled Elshamy, a student from Egypt. I am a hard-working

person who is passionate about his work. I am a third year undergraduate student
studying computer and systems engineering at faculty of engineering - Ain Shams
University.

●​ I speak Arabic (native) and English (good written communication skills).
●​ I will dedicate the whole summer to the project. I will treat it as a full-time job (40

hours/week or more if necessary).
●​ I will be available on the IRC channel as long as I am online. I check my email

periodically.
●​ I may take a one week summer vacation during July and may not be able to work for

the estimated period through this week (I will inform my mentor as fast as I can.)

 2

Contact Information
●​ E-mail: abdallah.k.elshamy@gmail.com
●​ User name on Savannah: Abdallah_Elshamy
●​ Nickname on IRC: Abdallah_Elshamy
●​ Location: ​ Cairo,Egypt
●​ Time zone: ​ (UTC+2)
●​ Public profile: User:Abdallah Elshamy - Octave
●​ Github: Abdallah-Elshamy
●​ Phone number: +201272295337

Self-assessment
●​ I certainly love to receive advice from more experienced developers. Listening to

them and asking questions is definitely helpful for me to become a better developer.
I think the mentorship in GSoC is one of the coolest things about it. I also like to give
advice and to help other people but only when I think that I have the sufficient
amount of knowledge to benefit them.

●​ Criticism is greatly important and highly appreciated by me as it allows me to learn
from other's experiences. To be useful for me I prefer it to:

○​ Be as specific as possible.
○​ Be supported with examples.
○​ Use clear language and avoid ambiguity.
○​ Be given in points so I can track my improvement in a better way.

Motivation
JavaScript Object Notation, in short JSON, is a very common human readable and
structured data format. Unfortunately, GNU Octave still lacks builtin support for that data
format. Having JSON support, Octave can improve for example it's web service functions,
which often exchange JSON data these days.

Related bugs: bug #53100

https://wiki.octave.org/User:Abdallah_Elshamy
https://github.com/Abdallah-Elshamy
https://en.wikipedia.org/wiki/JSON
https://savannah.gnu.org/bugs/?53100

 3

Task
evaluate (and cherry pick from) different implementations (octave-jsonstuff , jsonlab ,
JSONio and octave-rapidjson) to create MATLAB-compatible jsonencode and jsondecode
functions. This involves proper documentation of the work and unit tests to ensure the
correctness of the implementation.

Deliverables
The project will deliver MATLAB-compatible jsonencode and jsondecode functions. It will
also produce a test suite to verify the two functions and a proper documentation to them.

Libraries to be used
We will use RapidJSON for the following reasons:

●​ It has a better performance(according to this benchmark), code quality and
documentation.

●​ It’s a header only library which can be integrated easily in Octave.
●​ It does not depend on external libraries (even on STL.)
●​ It is Unicode-friendly.

Plan
1.​ During the community bonding period, I will get more familiar with the organization

and solve more bugs.
2.​ The first output of my work will be a complete test suite extracted from the four

approaches and my additions to it. It will be MATLAB-compatible for benchmarking.
3.​ Assess comprehensively the libraries with tests and benchmarks. Create reliable

figures and graphics to give good insights performance and MATLAB-compatible
data processing.

4.​ Produce a C++ implementation for jsondecode/jsonencode
5.​ Convert the test suite to Octave BIST
6.​ Provide proper documentation for the functions.
7.​ Integrate the​ functions into Octave core.
8.​ Use the community and mentors feedback after submissions to perfect the patch.

https://github.com/apjanke/octave-jsonstuff
https://github.com/fangq/jsonlab
https://github.com/gllmflndn/JSONio
https://github.com/Andy1978/octave-rapidjson
https://www.mathworks.com/help/matlab/ref/jsonencode.html
https://www.mathworks.com/help/matlab/ref/jsondecode.html
https://www.mathworks.com/help/matlab/ref/jsonencode.html
https://www.mathworks.com/help/matlab/ref/jsondecode.html
https://rapidjson.org/
https://github.com/miloyip/nativejson-benchmark

 4

Milestones
1.​ 26/6: Deliver test suite (first evaluation period starts on 29/6)
2.​ 20/7: Deliver jsondecode (second evaluation period starts on 27/7)
3.​ 05/8: Deliver jsonencode (final week starts on 24/8)

Timeline

From-To Duration Task Hours/
Week

04/5 - 01/6
(Community

Bonding Period)

27 days getting more familiar with the organization
and solving more bugs

20-25

01/6 - 21/6* 20 days Preparing the test suite 7-10

21/6 - 03/7 12 days Finalizing the test suite, running tests on the
libraries and Creating reliable figures.

40-45

03/7 - 06/7 3 days Analyzing results and taking design decisions
with the mentors.

40-45

06/7 - 18/7 12 days Implementing jsondecode 40-45

18/7 - 20/7 2 days Buffering 40-45

20/7 - 03/8 14 days Implementing jsonencode 40-45

03/8 - 07/8 4 days Buffering & Documenting 40-45

07/8 - 12/8 5 days Converting the test suite to Octave BIST 40-45

12/8 - 17/8 5 days Cleaning the code and preparing the patch 40-45

17/8 - 31/8 14 days Perfecting the patch with the community
feedback.

40-45

* My final exams are expected to start from 1/6 to 21/6 (It may change. I will inform
my mentor as soon as I know.)

 5

Implementation Details
1.​ The test suite: The strategy we will follow in building the test suite will be:

a.​ Extract the tests from the previous implementations.
i.​ Extract tests from “test_jsonread.m” and “test_jsonwrite.m” from

JSONio (needs to be MATLAB-compatible.)
ii.​ Extract tests from the “examples” folder in jsonlab (also needs to be

MATLAB-compatible.)
iii.​ Extract tests from the “tests” folder and the BIST in “load_json.cc” and

“save_json.cc” in octave-rapidjson (needs to be MATLAB-compatible.)
iv.​ Extract the BIST from “inst/jsondecode.m” and “inst/jsondecode.m” in

octave-jsonstuff (already MATLAB-compatible.)
v.​ Add tests which cover the features from the official MATLAB

documentation.
b.​ Organize the tests and add missing cases (if any) to make sure that the suite

covers all the data types, corner cases and compatibility considerations (for
example: jsonencode have different behaviours in encoding NaN and inf.
jsondecode may change the original string due to makeValidName function.)

c.​ Ensure the suite has some big test cases to ensure the accuracy of measuring
the performance.

d.​ Make the test suite MATLAB-compatible.
e.​ To be able to benchmark the previous implementations with the same test

suite we will write a wrapper around non-MATLAB-compatible
implementations to follow MATLAB interfaces (jsonencode, jsondecode).

f.​ In the end, convert the test suite to Octave BIST.
2.​ Jsondecode: What this function does is illustrated in the following data flow diagram

https://github.com/gllmflndn/JSONio
https://github.com/fangq/jsonlab
https://github.com/Andy1978/octave-rapidjson
https://github.com/apjanke/octave-jsonstuff

 6

The choice for the parser is already decided. What remains is to determine the
efficient algorithm for the transform part and we will do this based on the results we
get from running our test suite on the implementations: octave-rapidjson (after
wrapping it to be MATLAB-compatible) and octave-jsonstuff (as both
implementations use RapidJSON). We will pick the best performing and the most
MATLAB-compatible and make corrections if it fails some tests. If octave-jsonstuff
performs better we will:

●​ Move some parts (“condensation” algorithm) to C++.
●​ Tidy the code, add documentation and add BIST.

​ If octave-rapidjson performs better we will:

●​ Instead of using wrappers we will refactor the interface of the function itself
to be MATLAB-compatible.

●​ Tidy the code, add documentation and add BIST.
3.​ Jsonencode: What this function does is illustrated in the following data flow diagram

There are two approaches to implement the transform part:

1.​ The approach followed by octave-rapidjson was to use PrettyWriter class
supported by RapidJSON (This is the only implementation that is using C++.)

2.​ The approach followed by octave-jsonstuff , jsonlab and JSONio was to use a
set of functions that convert to the correct JSON format (a function that
converts string to JSON , a function that converts struct to JSON ...etc) but all
of them are written in m-scripts.

https://github.com/Andy1978/octave-rapidjson
https://github.com/apjanke/octave-jsonstuff
https://github.com/apjanke/octave-jsonstuff
https://github.com/Andy1978/octave-rapidjson
https://github.com/Andy1978/octave-rapidjson
https://github.com/apjanke/octave-jsonstuff
https://github.com/fangq/jsonlab
https://github.com/gllmflndn/JSONio

 7

​ What we will do will be the following:

●​ To be able to assess both approaches, we will write the second approach
(which is written in m-script) in C++. The set of functions will support all the
data types that jsonencode supports. An example of a function in the set of
functions that encodes numeric values is :

We will also check if the input type has a jsonencode method to provide
compatibility for future data types.

●​ Write a wrapper around octave-rapidjson to be MATLAB-compatible.

https://www.mathworks.com/help/matlab/ref/jsonencode.html
https://github.com/Andy1978/octave-rapidjson

 8

●​ Use the test bench to determine the best performing and the most
MATLAB-compatible and make corrections if it fails some tests.

●​ If the best is octave-rapidjson we will refactor the interface of the function
itself to be MATLAB-compatible and get rid of the wrapper.

●​ Tidy the code, add documentation and add BIST.

Contribution to Octave
Bug: #57041

I have submitted a patch to add the new functions "startsWith" and "endsWith" to Octave.

Qualification ​ ​ ​ ​ ​

●​ I really want to contribute to Octave and to engage in the community.
●​ I have a good knowledge of algorithmic analysis (I have successfully completed

Algorithms specialization on Coursera and participated in local and national
competitive programming contests.)

●​ I have a good knowledge of C++ and used it in many projects.
●​ I have been using Octave/MATLAB for about two years. I wrote many m-scripts.
●​ I have a good knowledge of JSON format.
●​ I have a good knowledge of Python and a fair knowledge of Java.
●​ I am comfortable with using version control systems (both Git and Mercurial.)
●​ I am comfortable with the make tool and I successfully built Octave.
●​ I am familiar with IRC and the mailing list.
●​ I always want to expand my knowledge and I am always ready to learn more.

https://github.com/Andy1978/octave-rapidjson
https://savannah.gnu.org/bugs/?57041

	
	JSON encoding/decoding
	Table of Contents
	Introduction
	Contact Information
	Self-assessment
	Motivation
	Task
	Deliverables
	Libraries to be used
	Plan
	Milestones
	Timeline
	Implementation Details
	Contribution to Octave
	Qualification ​ ​ ​ ​ ​

