GSo0C2017 Boost.Geometry:Filtering of compare
distance predicates Proposal

1.Personal Details

2.Backaround Information

Education Background
Computer Science

Mathematics
Programming Background
Operating systems

Languages
Algorithms
Programming Contest

Programming Interest
Previous Work

Future Plan

Skillng Core

Dev Environment
Documentation Tools

3.Project Proposal
Introduction

Milestones and Schedule
Versions
Deliverables

Define the appropriate range of “far enough”
Calculation with Sectorial Area

Map Projection

4 .Programming Competency

Boost.Geometry programming competency test
Algorithm Problem codes.

1.Personal Details

Name: Ruoyun Jing

College/University: Northwest University
Course/Maijor: Software Engineering
Degree Program: Bachelor of Engineering

Email: jingry0321@agmail.com

Homepage: https://github.com/Rylynnn

Availability:
| will spend at least 40 hours a week for the work. | do not have any conflicts during the
official coding periods, because my semester course will ended by the end of April. If time
permits, | will try to make efforts doing more work beyond my proposal. Furthermore,l am
willing to keep contributing to Boost and Boost.Geometry after this GSoC period.

2.Background Information

Education Background

I'm a third-year undergraduate student majoring in Software Engineering at Northwest
University, China. | have taken many courses including:

Computer Science
e Principles of Computer Organization

e Operating System
e Software Engineering
e Avrtificial Intelligence

e Data Structure and Algorithm

Mathematics
e Linear Algebra

e Advanced Mathematics
e Discrete Mathematics

e Number Theory

Programming Background

mailto:jingry0321@163.com
https://github.com/Rylynnn

I've been writing C++ since | entered university, and | became to a contestant of algorithm
competition since first semester. For the study of algorithms, | am familiar with C++ and STL.

Operating systems
Ubuntu 16.04 LTS, Windows 10, Mac OS X

Languages
C,C++,Pascal,Python,Java,C#,HTML,CSS,JavaScript

Algorithms
Search, Graph Theory, Computational Geometry, etc.’

Programming Contest
Bronze Medal, 46th, ACM International Collegiate Programming Contest(ACM-ICPC)
Asia Shenyang Regional Contest, Dec, 2016.
Bronze Medal, 52th, China Collegiate Programming Contest(CCPC) Hefei Regional
Contest, Dec, 2016.

Programming Interest
| extremely enjoy learning and spending time on algorithms using C++, and | also want to
challenge my programming capabilities in different aspects. When | found Boost, a set of
algorithms libraries for C++, | felt this is a good opportunity for me. Honestly, | did not have
lots of experience contributing to open source community, however, | will try my best to
communicate and learn!

Because | am good at mathematical algorithms like geometry, | decided to propose the
project of Boost.Geometry. After | finished the Programming Competency Test from
Boost.Geometry, | read the source code of Boost.Geometry, | found there have plenty of
basic geometry formula. It will be better if we can reduce the time complexity by calculating
for different conditions or using other methods. So | decide to contribute to project1 to avoid
expensive geographic distance calculation whenever possible.

Previous Work
I have finished the following work since | decided to contribute to Boost:

e Learn C++ meta-programming and understand the architecture of Boost.Geometry.
e Learn Boost.Geometry functions with documents and source code.

e |Learn knowledge of geodesic from differential geometry and map projection.

Future Plan

I am willing to continue developing and contributing to Boost.Geometry and Boost
community . And | would like to expand and optimize other functions from Boost, the work |

! https://github.com/Rylynnn/Arithmetic

https://icpc.baylor.edu/regionals/finder/shenyang-2016/standings
http://board.acmicpc.info/ccpc2016/ahu_onsite.php
https://github.com/Rylynnn/Arithmetic

do will indeed improve engineering ability and abundant my experience of coding for open
source community.

Skillng Core

Please rate, from 0 to 5 (0 being no experience, 5 being expert), your knowledge of the
following languages, technologies, or tools:

e C++ 98/03 (traditional C++) (3.5, using frequently before during coding to solve
algorithms' problems and courses' work)

e C++ 11/14 (modern C++) (4, frequently use during coding to solve algorithms'
problems and courses' work)

e C++ Standard Library (4, frequently use during coding to solve algorithms' problems)

e Boost C++ Libraries (2.5, never used them before GSoC 2017, but understand the
architecture and learn functions)

e Git (3.5, frequently use during study)

Dev Environment
e Visual Studio for C# development
e Eclipse for JAVA development

e Code Blocks, Sublime Test + Gce/Clang for C++ devlopment.

Documentation Tools

| tried to used Doxygen during my curriculum design of Software Engineering. If there is
need for me to use other software documentation tools, | would like to learn!

3.Project Proposal

Introduction

In some algorithms there is the need to compare two distances of two point pairs, just like .
Especially, computing distances on ellipsoid in Boost.Geometry used compare_distance (
D1,P2,41,492)? function, which is a predicate that is it returns three possible values (larger
than, less than, equal). Boost.Geometry has 3 strategies for distance: andoyer, tomas,
vincenty.. Although Newton's method has been successfully used to give rapid convergence
for this formula, the time complexity of this algorithm is hard to estimate.

To reduce the time complexity, this project will try to use the following approaches:

1. Condition Division: Compute the Euclidean distances?® first, if the length of two
segments are very close, defined not “far enough” means “very close”, then fall back

2 Boost.Geometry comparable distance-1.63.0
3 Euclidean distance - Wikipedia

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%7Bp_%7B1%7D%2C%20p_%7B2%7D%2C%20q_%7B1%7D%2C%20q_%7B2%7D%7D
https://en.wikipedia.org/w/index.php?title=Euclidean_distance&gettingStartedReturn=true
http://www.boost.org/doc/libs/1_63_0/libs/geometry/doc/html/geometry/reference/algorithms/distance/comparable_distance_2.html

to expensive geographic distance calculation, otherwise return the result by
comparing those numbers obtained by less expensive cartesian computation.

2. Calculation with The Area of a Sector of an Ellipse: Get cross-section through the
center of ellipsoid and the geodesic segments, then calculate the area, which is easy
to compare distances.

(this is low priority and may be tested if you have the time.)Calculation with Performing a
local spheroid approximation and return the 2D distance by map projection: Perform a
local spheroid approximation, then use methods of map projection to calculate the distances.
In this project, | use Azimuthal equidistant projection, accommodating equatorial, polar,
oblique and Two-point equidistant projection make the 3D point to 2D with reliable functions,
then do approximate calculation.Related problems

1.Compare azimuths: Given p1, p2, g1, g2 we want to compare azimuth(p1,p2) vs. azimuth
(91,92). The result again will be {larger than, less than, equal}. This problem appear in
relational operations in Boost Geometry. See for example
https://github.com/boostorg/geometry/blob/develop/include/boost/geometry/strategies/geogr
aphic/intersection.hpp#L 336 where we test if two points are on the same side of some
geodesic segment.

2.Not directly related but a useful reference for filtering in computational geometry is the
following: https://www.cs.cmu.edu/~quake/robust.html

Milestones and Schedule
Community Bonding Period (May 4 to May 29, 2017):

1. Understand Boost.Geometry libraries and architecture by source code and
documents.

Make a wiki page (TODO lists and weekly reports).
Learn meta-programming and other essential knowledge of C++.

Get familiar with development* for Boost community.

o & 0D

Understand the algorithms of map projection and mathematical calculation on
ellipsoid.

Official Coding Period (May 30 to August 21, 2017):
Official Coding Period Phase 1 (May 30 to June 26, 2017):
Week 1 (May 30 to June 5, 2017):
1. Learn how to create documentation and tests.
2. Create initial documentation.
Week 2 to 3 (June 6 to June 19, 2017):
1. Implement Condition Division.
2. Check the section to fit the architecture of Boost.

3. Create documentation for these section.

4 Boost Development

https://math.stackexchange.com/questions/114371/deriving-the-area-of-a-sector-of-an-ellipse
https://github.com/boostorg/geometry/blob/develop/include/boost/geometry/strategies/geographic/intersection.hpp#L336
https://github.com/boostorg/geometry/blob/develop/include/boost/geometry/strategies/geographic/intersection.hpp#L336
https://www.cs.cmu.edu/~quake/robust.html
http://www.boost.org/development/index.html

Week 4 (June 20 to June 26, 2017):
1. Design the test data, and review the code.

2. Analyze the test data to define when fall back to expensive geographic
distance calculation or return the result by comparing approximately.

Milestone 1: Finish implementation of Condition Division and define “far enough”.
Official Coding Period Phase 2 (June 27 to July 24, 2017):
Week 5 (June 27 to July 10, 2017):

1. Learn differential geometry, check the geodesic segments of two points
whether can get a cross-section through the center of ellipsoid, and
whether the cross-section is ellipse that we can calculate the sectorial
area easy to compare.

2. Create documentation for this section.

Week 6 to 8 (July 11 to July 24, 2017):
1. Implement the algorithm of Calculation with Sectorial Area.
2. Design the test data, and review the code.
3. Analyze the test data, guarantee the correct of algorithms.

Milestone 2: Finish implementation of Calculation with Sectorial Area.
Official Coding Period Phase 3 (July 25 to August 21, 2017):
Week 9 to 10 (July 25 to August 7, 2017):

1. Implement the architecture of Calculation with Performing a local
spheroid approximation and return the 2D distance by map
projection.

2. Implement the algorithm of Azimuthal equidistant projection
accommodate equatorial.

3. Implement the algorithm of Azimuthal equidistant projection
accommodate polar.

4. Implement the algorithm of Azimuthal equidistant projection
accommodate oblique.

5. Implement the algorithm of Two-point equidistant projection

6. Create documentation for this section.
Week 11 (August 8 to August 14, 2017):

1. Design the test data, and review the code.

2. Analyze the test data, guarantee the correct of algorithms.
Week 12 (August 15 to August 21, 2017):

1. Fix bugs and documentation details.

2. Prepare for final delivery.

Milestone 3: Finish implementation of Calculation with Performing a local spheroid
approximation and return the 2D distance by map projection.

Versions

macOS 10.12.3
g++ 5.3

g++ 6

Clang++ 3.8

Clang++ 3.9

Boost 1.64.0 (from github develop branch)

Boost.Geometry 1.64.0 (from github develop branch)

Deliverables

The deliverables would be:

1.

Implementation of Condition Division and define the range of Division on
Boost.Geometry.

Implementation of Calculation with Sectorial Area on Boost.Geometry.

Implementation of Calculation with Performing a local spheroid approximation and
return the 2D distance with four kinds of map projection on Boost.Geometry.

Documentation and tests for the implementations.

Define the appropriate range of “far enough”

To define the appropriate range of “far enough”, here are four steps to do:

1.
2.

4.

Implement function compare_distance_Euclidean with Euclidean distances.

Test the result between function compare_distance (P1, P2, 91, 42) and
compare_distance Euclidean (P1, P2, 41, q2).

Adjust parameters to limit deviation in an acceptable range (maybe it would be 1e-6
corresponds, the accurate value should be discussed by specific condition).

Define “far enough” with adjusted parameters.

Mathematical definition

In Cartesian coordinates, if P1 = (plwaplyaplz) and P2 = (p2va2y7p2z) are two points
in Euclidean 3-space, then the distance d from P1 to P2, or from P2 to P1 is given by the
Pythagorean formula:

d(p17p2) = \/(plw —sz)2 + (ply —pzy)2 + (plz _p2z)2

Example

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%7Bp_%7B1%7D%2C%20p_%7B2%7D%2C%20q_%7B1%7D%2C%20q_%7B2%7D%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%7Bp_%7B1%7D%2C%20p_%7B2%7D%2C%20q_%7B1%7D%2C%20q_%7B2%7D%7D
https://en.wikipedia.org/wiki/Cartesian_coordinates
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1%20%3D%20(p_%7B1x%7D%2C%20p_%7B1y%7D%2C%20p_%7B1z%7D)
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2%20%3D%20(p_%7B2x%7D%2C%20p_%7B2y%7D%2C%20p_%7B2z%7D)
https://en.wikipedia.org/wiki/Euclidean_space
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dd
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1
https://en.wikipedia.org/wiki/Pythagorean_theorem
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dd(p_1%2Cp_2)%3D%7B%5Csqrt%20%20%7B(p_%7B1x%7D-p_%7B2x%7D)%5E%7B2%7D%2B(p_%7B1y%7D-p_%7B2y%7D)%5E%7B2%7D%2B(p_%7B1z%7D-p_%7B2z%7D)%5E%7B2%7D%7D%7D

Calculation with Sectorial Area

To calculate with Sectorial Area, here are four steps to do:

1. Cut the ellipse with a planar cross-section passing through the center of the ellipsoid,
and points P1 & P2.

2. Cut the ellipse with a planar cross-section passing through the center of the ellipsoid,
and points 91 & q2.

Calculate the area of sector P1Op2 and ¢10¢z.

Compare the area between sector P1Op2 and 9104g2 to two distances of two point
pairs.

Mathematical definition
In Cartesian coordinates, if P1 = (P12, P1ys P12) and P2 = (P22, P2y, P22) are two points

in Euclidean 3-space. The cross-section passing through the center of the ellipsoid, and
points P1 & P2 is ellipse.

Then P1 = (plmply), D2 = (p29:7p2y), and the implicit equation of the ellipse® P1Op2 is:

The area of sector P1Op2 is:

ab a
Sp,0py = ?(arctan Py

a
— arctan L%)

bpla: bng;

Example

® Ellipse - Wikipedia

https://en.wikipedia.org/wiki/Ellipsoid
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2
https://en.wikipedia.org/wiki/Ellipsoid
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dq_1
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dq_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1Op_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dq_1Oq_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1Op_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dq_1Oq_2
https://en.wikipedia.org/wiki/Cartesian_coordinates
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1%20%3D%20(p_%7B1x%7D%2C%20p_%7B1y%7D%2C%20p_%7B1z%7D)
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2%20%3D%20(p_%7B2x%7D%2C%20p_%7B2y%7D%2C%20p_%7B2z%7D)
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Ellipsoid
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1%20%3D%20(p_%7B1x%7D%2C%20p_%7B1y%7D)
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2%20%3D%20(p_%7B2x%7D%2C%20p_%7B2y%7D)
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1Op_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%7B%5Cdisplaystyle%20%7B%5Cfrac%20%7Bx%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D%7D%2B%7B%5Cfrac%20%7By%5E%7B2%7D%7D%7Bb%5E%7B2%7D%7D%7D%3D1%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dp_1Op_2
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DS_%7Bp_1Op_2%7D%20%3D%20%5Cfrac%7Bab%7D%7B2%7D(arctan%5Cfrac%7Bap_%7B1y%7D%7D%7Bbp_%7B1x%7D%7D-arctan%5Cfrac%7Bap_%7B2y%7D%7D%7Bbp_%7B2x%7D%7D)
https://en.wikipedia.org/wiki/Ellipse

Map Projection6

A map projection is a systematic transformation of the latitudes and longitudes of locations
on the surface of a sphere or an ellipsoid into locations on a plane. Many properties can be
measured, just like area, shape, direction, distance, etc. Map projections can be constructed
to preserve at least one of properties, though only in a limited way for most. The purpose of
the map determines which projection should form the base for the map.

Here are some projections which can be constructed to preserve distance based on spheroid
approximation:
1. Azimuthal equidistant projection” which can accommodate all aspects: equatorial,
polar, and oblique. Distances for all aspects are accurate from the center point
outward.

2. Two-point equidistant projection® which shows the true distance from either of two
chosen points to any other point on a map.Correct from either of two chosen points to
any other point on the map.

To calculate with performing a local spheroid approximation and return the 2D distance by
map projection, here are steps to do:

1. For most of these projections use longitude and latitude to calculate, | should
understand the algorithm of projections and implement them with cartesian
coordinate.

2. Classify the two points pairs based on different projections.

Calculate the distance with the center point outward.

 Map Projection - Wikipedia
7 . -

Azimuthal Equidistant--Help | ArcGIS for Desktop
8 Two-Point Equidistant--Help | ArcGIS for Deskto

https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Ellipsoid
https://en.wikipedia.org/wiki/Plane_(mathematics)
http://desktop.arcgis.com/en/arcmap/10.3/guide-books/map-projections/two-point-equidistant.htm
http://desktop.arcgis.com/en/arcmap/10.3/guide-books/map-projections/azimuthal-equidistant.htm
https://en.wikipedia.org/wiki/Map_projection

4. Compare the approximate distance.

4.Programming Competency

Boost.Geometry programming competency test
I have finished the Boost.Geometry programming competency test on Boost GSoC2017
page:

PROJECT 1 and 3 Implement a library that provides:
a representation of points on Earth's surface
a function to compute the shortest distance between two given points

The source code and test case are on my github repository.

I have implemented the test with two different model of Earth: the spherical model and the
ellipsoidal model, and test them as my test case. The two implementations have three
constructed functions of points on Earth's surface, which provide constructing points
between longitude & latitude and cartesian coordinate.

The spherical model used Great circle distance®, which need cartesian coordinates to
calculate an equation with 3 multiplications, 2 additions, 1 minus, 1 trigonometric
computation. O(1). And the ellipsoidal model used the Vincenty formula. Vincenty formulae
need geodesic coordinates to calculate. Newton's method has been successfully used to
give rapid convergence for all pairs of input. During calculate with Newton’s method, there
are 21 multiplications, 4 subtractions, 7 additions, 5 minus, 3 trigonometric functions, 1
radication in loop, 27 multiplications, 4 subtractions, 9 additions, 7 minus, 8 trigopnometric
functions out of loop, and the number of loop is hard to estimate but at least 1000. Above all,
the time complexity of this algorithm is hard to estimate.

Comparision between carth point.hpp and Boost.Geometry

vincenty inverse.hpp

During this test, | applied the Vincenty formula to calculate the distance. Compared with
Boost.Geometry, | found that Boost. Geometry used vincenty inverse.hpp to calculate
distance between points and vincenty direct.hpp to calculate the destination point, in
my code, it just can finished calculate distance between points. After | read the source code
of them, the implementation of vincenty inverse.hpp and earth point.hpp are
similar, and | extracted more constants out of the Newton iteration loop which will reduce
constant coefficient. About the constructed function, | finished constructed the point on the
Earth’s surface more accurate with longitude, latitude and height, but Boost.Geometry just
constructed points with longitude and latitude. And in earth_point.hpp you can construct
point with three methods and set points with Redian system or Angle system which provide
more convenient for users.

| tested earth point.hpp and Boost.Geometry vincenty inverse.hpp with 12 test
cases'® on timing and distance result.

% Great-circle distance - Wikipedia
19 Boost. Geometry-geometry/test/strategies/vincenty.cpp

https://svn.boost.org/trac/boost/wiki/SoC2017#Programmingcompetencytest2
https://svn.boost.org/trac/boost/wiki/SoC2017#Programmingcompetencytest2
https://github.com/Rylynnn/GSoC2017/tree/master/ProgrammingTest
https://github.com/boostorg/geometry/blob/develop/test/strategies/vincenty.cpp#L101
https://en.wikipedia.org/wiki/Great-circle_distance

Test Case | P1(longitu | P2(longitu | earth p |earth p | Boost.geo | Boost.geo
de, de, oint.hp |[oint.hp | metry metry
latitude) latitude) p distance | p vincent |vincent
result(km) |timing(ms) | y inver |y inver
se.hpp se.hpp
distance timing(ms)
result(km)
Flinders (144.425,- | (143.926,- | 55.015606 | 16 54.972271 | 215
Peak -> 37.951) 37.6528)
Buninyong
Lodz -> (19.4667,5 | (10.35,63. | 1399.0336 | 20 1399.0327 | 18
Trondheim | 1.7833) 3833) 66 24
London -> | (0.1275,51 | (-74.0058, | 5602.0418 | 16 5602.0448 | 14
New York | .5072) 40.7128) 95 51
Shanghai | (121.5,31. | (-122.417, [9899.6783 | 12 9899.6985 | 17
-> San 2) 37.7833) 74 50
Francisco
N (0,0) (0,50) 5540.8470 | 15 5540.8470 | 23
41 42

S (0,0) (0,-50) 5540.8470 | 18 5540.8470 | 17
41 42

E (0,0) (50,0) 5565.9745 | 16 5565.9745 | 16
40 40

w (0,0) (-50,0) 5565.9745 | 15 5565.9745 | 16
40 40

NE (0,0) (50,50) 7284.8792 | 15 7284.8792 | 9
97 97

sub-polar | (0,89) (1,80) 1005.1508 | 16 1005.1508 | 13
74 74

no point (4,52) (4,52) 0 0 0 0

difference

normal (4,52) (3,40) 1336.0272 | 14 1336.0272 | 37

case 19 19

10

Algorithm Problem codes.
| have been code for solving several algorithm problems, during my competation
experiences.
e Competation online
e Practice code for algorithm

11

https://github.com/Rylynnn/Arithmetic/tree/master/Competition
https://github.com/Rylynnn/Arithmetic

	1.Personal Details
	2.Background Information
	Education Background
	Computer Science
	Mathematics

	Programming Background
	Operating systems
	Languages
	Algorithms
	Programming Contest

	Programming Interest
	Previous Work
	Future Plan
	Skillng Core
	Dev Environment
	Documentation Tools

	3.Project Proposal
	Introduction
	Milestones and Schedule
	Versions
	Deliverables
	Define the appropriate range of “far enough”
	Calculation with Sectorial Area
	Map Projection

	4.Programming Competency
	Boost.Geometry programming competency test
	Algorithm Problem codes.

