LO 4.2.3.D

Learning Objective: Describe tree pruning, specifically cost complexity (weakest link) pruning.

Review:

The goal is to find, for each value of α, the subtree T that minimizes the loss function

<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>&#x2211;</mo><mrow><mi>m</mi><mo>=</mo><mn>1</mn><mo>&#xA0;</mo><mo>&#xA0;</mo></mrow><mfenced open="|" close="|"><mi>T</mi></mfenced></munderover><munderover><mo>&#x2211;</mo><mrow><mi>i</mi><mo>:</mo><mo>&#xA0;</mo><msub><mi>x</mi><mi>i</mi></msub><mo>&#x2208;</mo><msub><mi>R</mi><mi>m</mi></msub></mrow><mrow/></munderover><msup><mfenced><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><msub><mover><mi>y</mi><mo>^</mo></mover><msub><mi>R</mi><mi>m</mi></msub></msub></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mi>&#x3B1;</mi><mfenced open="|" close="|"><mi>T</mi></mfenced></math>

where

𝛼 |T| is the penalty component (reminiscent of the Lasso method).

𝛼 ≥ 0 is the tuning parameter.

|T| is the number of terminal nodes of the tree T.

Rm  is the rectangle corresponding to the mth terminal node.

 is the predicted response associated with Rm  - that is, the mean of the training observations in Rm .

Source: Assigned reading