
Go client-side interceptors: thoughts
zellyn@squareup.com - 2016-03-23

Retries
The most complicated thing we wish to do with client-side interception is parallel retries on
idempotent requests. We mark RPC idempotency with proto options, and when an idempotent
Call reaches its “retry timeout”, but still has time remaining before the context timeout, we fire off
a new request in parallel, hoping that the original request will return first.

When to pick/load-balance
The picker call cannot happen before the interceptors are run. The Java client-side interceptors
do the right thing: the picker/load-balancer happens inside the handler given to interceptors. So
an interceptor can call a handler multiple times.

CallOptions
It’s unclear when/where the CallOptions should be run, if multiple requests are made. The
existing ones (which capture Header and Trailer information) should probably only run on the
successful request.

Curious to see what happens with Streaming calls, since they have similar multiple-message
problems, I notice that CallOptions are simply unimplemented for Streaming calls :-)

Output parameters
In the current design, grpc.Invoke takes both input and output interface{} parameters,
instead of an output return value, so that the type is already set. If multiple calls are made for
retries, it makes things tricky: all calls cannot write to the same output parameter. Some kind of
output factory is needed, or the proto codec needs to be called only for the one successful call.
(or coordinate writes so that happen sequentially, and the successful one happens last.)

One approach
One approach Josh Humphries (jh@squareup.com) and I discussed for a minimally invasive
change was adding a grpc.Channel interface, and using it in the generated protobuf grpc
code. The generated code only calls two methods on ClientConn:

type Channel interface {

mailto:zellyn@squareup.com
mailto:jh@squareup.com

 Invoke(ctx context.Context, method string, args interface{}, replyFactory func()
interface{}, opts ...CallOption) (error)
 NewClientStream(ctx context.Context, desc *StreamDesc, method string, opts ...CallOption)
(ClientStream, error)
}

clientConn would need two new methods that just call grpc.Invoke and
grpc.NewClientStream.

func (c *clientConn) Invoke(ctx context.Context, method string, args interface{},
replyFactory func() interface{}, opts ...CallOption) (error) {
 return grpc.Invoke(ctx, method, args, replyFactory(), c, opts…)
}

func (c *clientConn) NewClientStream(ctx context.Context, desc *StreamDesc, method string,
opts ...CallOption) (ClientStream, error) {
 Return grpc.NewClientStream(ctx, desc, method, c, opts…)
}

The generated code changes are straightforward:

// NewRouteGuideClient takes a Channel instead of a ClientConn.
func NewRouteGuideClient(ch grpc.Channel) RouteGuideClient {​
​ return &routeGuideClient{ch}​
}​

// featureFactory generates new Feature proto messages.​
func featureFactory() *Feature {​
​ return new(Feature)​
}​
​

func (c *routeGuideClient) GetFeature(ctx context.Context, in *Point, opts
...grpc.CallOption) (*Feature, error) {​
​ out, err := c.ch.Invoke(ctx, "/routeguide.RouteGuide/GetFeature", in, featureFactory,
opts...)​
​ if err != nil {​
​ ​ return nil, err​
​ }​
​ return out.(*Feature), nil​
}​
​

func (c *routeGuideClient) RecordRoute(ctx context.Context, opts ...grpc.CallOption)
(RouteGuide_RecordRouteClient, error) {​
​ stream, err := c.ch.NewClientStream(ctx, &_RouteGuide_serviceDesc.Streams[1],
"/routeguide.RouteGuide/RecordRoute", opts...)​
​ if err != nil {​
​ ​ return nil, err​
​ }​
​ x := &routeGuideRecordRouteClient{stream}​
​ return x, nil​
}

Note: This approach doesn’t solve the problem with callOptions being called multiple times.
Since they run with defer, they’ll be called even if the later Calls are cancelled.

	Go client-side interceptors: thoughts
	Retries
	When to pick/load-balance
	CallOptions
	Output parameters

	One approach

