Population Genetics Simulation

Name:	

Go to the <u>Population Genetics Simulation</u> at Biology Simulations.

I. Equilibrium

1. Set information to the following:

Population Size	1000
Number of Generations	50
Red Allele Starting Frequency	.5
Red Survival Chance	1
Purple Survival Chance	1
Blue Survival Chance	1
Chance of Red to Blue Mutation	0
Chance of Blue to Red Mutation	0

2. Run the simulation and record the **final allele frequencies**.

Red Allele Frequency	
Blue Allele Frequency	

- 3. Use chi-squared to test if the allele frequencies remained constant over time (null hypothesis).
- a. Find the expected number of alleles and the observed number of alleles.

Observed = final frequency x 2000* Expected = starting frequency x 2000 *total number of alleles = 1000 x 2

Allele	Observed	Expected
Red		
Blue		

b.	Calculate the chi-square value.
С.	Is the null hypothesis (no change occurred) rejected or supported (fail to reject)?
d.	Write a 1-2 sentence conclusion explaining what happened.

II. Selection

1. Set information to the following:

Population Size	1000
Number of Generations	50
Red Allele Starting Frequency	.5
Red Survival Chance	1
Purple Survival Chance	1
Blue Survival Chance	0
Chance of Red to Blue Mutation	0
Chance of Blue to Red Mutation	0

2. Run the simulation and record the **final allele frequencies**.

Red Allele Frequency	
Blue Allele Frequency	

- 3. Use chi-square to test if the allele frequencies remained constant over time (null hypothesis).
- a. Find the expected number of alleles and the observed number of alleles.

Allele	Observed	Expected
Red		
Blue		

b. Calculate the chi-square value.	
c. Is the null hypothesis (no change occurred) rejected or supported?	
d. Write a 1-2 sentence conclusion explaining what happened.	

III. Heterozygote Advantage

1. Set information to the following:

Population Size	1000
Number of Generations	50
Red Allele Starting Frequency	.5
Red Survival Chance	.5
Purple Survival Chance	1
Blue Survival Chance	0
Chance of Red to Blue Mutation	0
Chance of Blue to Red Mutation	0

2.	Run the simulation and record the final allele frequencies .				
		Red All	ele Frequency		
		Blue A	llele Frequency		
	hypothesis).		e allele frequencies of alleles and the c		·
a.	Tillu tile expecte	a namber	or alleles and the c	bbserved Hamber C	or alleles.
	[Allele	Observed	Expected	7
		Red	3.333.00		-

Blue

k).	Calculate the chi-square value.
c	:.	Is the null hypothesis (no change occurred) rejected or supported?
c	d.	Write a 1-2 sentence conclusion explaining what happened.

IV. Mutation

1. Set information to the following:

Population Size	1000
Number of Generations	50
Red Allele Starting Frequency	.5
Red Survival Chance	1
Purple Survival Chance	1
Blue Survival Chance	1
Chance of Red to Blue Mutation	.01
Chance of Blue to Red Mutation	0

2. Run the simulation and record the **final allele frequencies**.

Red Allele Frequency	
Blue Allele Frequency	

- 3. Use chi-square to test if the allele frequencies remained constant over time (null hypothesis).
- a. Find the expected number of alleles and the observed number of alleles.

Allele	Observed	Expected
Red		
Blue		

k).	Calculate the chi-square value.
C	` .	Is the null hypothesis (no change occurred) rejected or supported?
C	ł.	Write a 1-2 sentence conclusion explaining what happened.

V. Small Population

1. Set information to the following:

Population Size	100
Number of Generations	50
Red Allele Starting Frequency	.5
Red Survival Chance	1
Purple Survival Chance	1
Blue Survival Chance	1
Chance of Red to Blue Mutation	0
Chance of Blue to Red Mutation	0

2. Run the simulation and record the **final allele frequencies**.

Red Allele Frequency	
Blue Allele Frequency	

- 3. Use chi-square to test if the allele frequencies remained constant over time (null hypothesis).
- a. Find the expected number of alleles and the observed number of alleles. $*total\ number\ of\ alleles = 100\ x\ 2$

Allele	Observed	Expected
Red		
Blue		

b. Calculate the chi-square value.
c. Is the null hypothesis (no change occurred) rejected or supported?
d. Write a 1-2 sentence conclusion explaining what happened.