

Trident Language
Documentation
by Energyxxer
[Link to HTML mirror]
[Link to complementary documentation]

Table of Contents
What's Trident?​ 1

Trident Project Structure​ 1

The Format​ 1

An Important Note​ 1

File Directives​ 1

Language Levels​ 1

Implicit execute​ 1

Objectives​ 1

Verbatim Commands​ 1
Raw Modifiers​ 1

Inner Function Syntax​ 1
Via Define Instruction:​ 1
Via function command:​ 1
Relative Resource Locations​ 1

Introduction to Custom Objects​ 1
Object Inner Functions​ 1

An object's directory​ 1
Function declarations​ 1

Custom Entities​ 2
Custom Entity Declaration​ 2
Custom Entity Body​ 2
Custom Entity Functions​ 2

Ticking Functions​ 2

Entity Components​ 2
Usage​ 2

Summon​ 2
Component add/remove command​ 2
Component selector argument​ 2
Entity Inheritance​ 2

Abstract Entity Events​ 2

Custom Items​ 2
Custom Item Declaration​ 2
Custom Item Body​ 2
Custom Item Functions​ 2

Item Event Functions​ 2

Command Syntax Additions​ 3
Blocks​ 3
Items​ 3
New-Entity literal​ 3
Selectors​ 3

score: isset​ 3
Commands​ 3

set​ 3
tag update​ 3
component​ 3
event​ 3
summon​ 3
expand​ 3
gamelog​ 3

Execute Modifiers​ 3
if/unless score: isset​ 3
if/unless selector​ 3
raw​ 3

Instructions​ 3
log​ 3
using​ 3

using tag​ 3
using summon​ 3

eval​ 3
within​ 3
Control Flow​ 4

if - else​ 4
while​ 4
for​ 4
switch​ 4
break​ 4
continue​ 4
return​ 4

Exceptions​ 4
try-catch​ 4
try-recovering-catch​ 4
throw​ 4

Variables​ 4
Variable Visibility​ 4

Type Constraints​ 4
Inferred Constraints​ 4

Type Checking and Type Conversion​ 4
is operator​ 4
Strict casting​ 4
Weak casting (as operator)​ 4

Interpolation Values​ 5
Data Types​ 5

Integers​ 5
Reals​ 5
Booleans​ 5
Strings​ 5
Integer Ranges​ 5
Real Ranges​ 5
Entities​ 5
Blocks​ 5
Items​ 5
Text Components​ 6
NBT Values​ 6
Tag Compounds​ 6
Tag Lists​ 6
Other NBT Tag Types​ 6
NBT Paths​ 6
Coordinate Sets​ 6
Rotations​ 6
Resource Locations​ 6
Pointers​ 7
Dictionaries​ 7
Lists​ 7
Custom Entities​ 7
Custom Items​ 8
UUIDs​ 8
Functions​ 8
Exceptions​ 8
Type Definitions​ 8

Custom Classes​ 9
Custom Class Declaration​ 9
Incomplete Declarations​ 9
Fields​ 9

Field inheritance​ 9
Methods​ 9

Picking an overload​ 9
Symbols in context​ 9
Method inheritance​ 9
Constructors​ 9
Default Methods​ 9

Indexer​ 9
Indexer inheritance​ 9

Properties​ 9
Property inheritance​ 9

Conversion Definitions​ 9
Conversion inheritance​ 9

Operator Overloading​ 9
Inheritance​ 10
Generics​ 10

Native Libraries​ 10
Reflection​ 10
File​ 10
File.in​ 10
File.out​ 10
JSON​ 10
Text​ 10
Character​ 10
Tags​ 10
MinecraftTypes​ 11
Block​ 11
Item​ 11
Project​ 11
Math​ 11
Integer​ 11
Real​ 11
Random​ 12
CoordinateType​ 12
RotationType​ 12
Axis​ 12

Documentation Terms​ 12

What's Trident?
Trident is a Minecraft Functions language by Energyxxer that builds upon the vanilla mcfunction syntax to add more and more
quality-of-life features any data pack aimed toward a small project or a fully-fledged map may need. All Trident code gets compiled
into a data pack you can then distribute for your creations or maps.

What does Trident do that regular functions can't?
A lot of mcfunction's syntax is verbose and repetitive, so often times you will end up writing a lot of function structures just to organize
what should be a basic module. Trident takes care of that by adding compile-time variables, constants, and even custom entities and
items.

Trident Project Structure
To work with Trident you'll need to organize your files in a specific directory layout similar to that of data packs and resource packs.
Inside the project directory, there will usually be three files: a datapack folder, a resources folder, and a .tdnproj file. The first two are
self-explanatory: the contents of the data pack, and the contents of the resource pack, respectively. The .tdnproj is a json file with
several properties you may want to edit to fit with your project.

All of the Trident code will go in the datapack folder, inside the functions folder of any namespace. As a refresher, a data pack
structure goes as follows:

datapack

pack.mcmeta

data

[namespace]

functions

advancements

tags

blocks

fluids

items

functions

entity_types

loot_tables

structures

Inside the [namespace]>functions folders, you can place your function files as you normally would. The only exception is that
functions you want to process with Trident will have the extension .tdn instead of .mcfunction.

The Format
The Trident language uses the .tdn file extension to represent code files. In a Trident file, you can add commands just as you would
normally do in a .mcfunction file. Most commands that are valid in .mcfunction are also valid in .tdn, with a few exceptions:

1.​ Fake player names starting with the $ symbol won't mean the same thing (this is due to a feature of the Trident language that
uses that symbol).

2.​ The /particle command's delta arguments (dx,dy,dz) only accept real numbers - not coordinates.
A difference between Trident functions and Minecraft functions is whitespace tolerance. Commands in Trident accept extra
whitespace and even newlines between arguments (as long as there is no ambiguity). This means you can lay out things such as
execute subcommands or NBT in their own indented lines, and it would be no different to keeping them all in the same line. Example:

execute

 as @a

 at @s

 align xyz

 run

 summon armor_stand ~ ~ ~ {

 Tags: [

 "position_history",

 "new"

],

 Invisible: 1b,

 Marker: 1b

 }

An Important Note
The features of the Trident Language are better understood if Trident is seen as an interpreted language, and not a function
pre-processor. A file is composed of entries – which may be either commands or instructions.
For every command in a function, its grammar is interpreted, and the final command text is then appended to the function currently
being written. Instructions are similar, but instead of appending a command, they change the state of the program (for example,
change a variable).
If there are any variables used in a command, that command will only see the state of the variables at the moment it is being
interpreted. This makes the order in which Trident files are read very important, and so you should use the language’s ordering
features to solidify the order of the files.

File Directives
You can specify certain attributes of a .tdn file at the very beginning via directives. Directives are prefixed by a @ symbol. Here are all
the available directives:

1.​ @ on compile Specifies that the current file should be compilation-only. This means that it should not export itself as a
.mcfunction file, and that it should run before all other non-compilation files. This is generally used to define objectives and
other setup purposes.

2.​ @ tag <tag name> Marks the current function export with the given function tag. The tag name should be a resource
location. If the namespace is omitted, it defaults to minecraft. Cannot be used on compile-only files. Examples:

@ tag load

@ tag tick

@ tag custom:tag

3.​ @ meta_tag <tag name> Marks the current file with the given meta tag. The tag name should be a resource location. Unlike
the regular @ tag directive, this does not create a function tag, and can be used on compile-only files. Useful for Reflection​
(see Reflection.getFilesWithMetaTag). Examples:

@ meta_tag trident:advancement_reward

4.​ @ require <file> Specifies that this function should run after the specified file. This also imports all the local variables in
the specified file into the current file (see Variable Visibility). The file argument should be a resource location, as you would
normally access the function file generated by it.

5.​ @ priority <number> Sets this file’s priority number to the real number specified. Higher priority files run before lower
priority files. Note that @ on compile and @ require directives all have higher precedence over the @ priority directive. A file
with priority 2 will run before a priority 6 if the former is compile-only and the latter is not. A file with priority 9 will run before a
file with priority 12 if the former requires the latter.

6.​ @ language_level <level> Overrides the project language level for this particular file (see Language Levels).
7.​ @ metadata <object> Sets this file's metadata to the given object (see Reflection.getMetadata).
8.​ @ breaking If this directive is set, any uncaught exceptions in this file will halt the execution of the rest of the file, similarly to

how a non-recovering try block behaves. (see Control Flow>try-catch). This is particularly useful for files that primarily contain
compile-time instructions.

9.​ @ using_plugin <plugin name> If this directive is set, all custom commands from the specified plugin can be used in this
file without the namespace. (see Custom Commands)

Language Levels
Trident is designed to be very close to vanilla functions, and avoids standing in the way between the user and the commands it
outputs. However, some of the language features are too abstract and far from Minecraft commands to still allow that level of control.
In order to logically separate these features, Language Levels come into play.
The language level is a numerical setting that can be changed in the project setting or in a per-file basis. The lowest language level
only contains the features that are the most straight-forward, and doesn't allow features that will generate a large volume of
commands without user control. The highest language level enables all features of the language, including those which involve many
commands, functions and files that the user doesn't have direct control over.
Following is a list of language levels and their features:

1.​ Basic pre-processing of functions (vanilla commands, variables, objectives, custom entities, basic custom items, etc.)
2.​ Basic Trident commands (tag update) and using instruction. These will usually turn into more than one command each, and

short extra functions may be created to properly implement the expected behavior.
3.​ Custom item events and game logger. These will usually create several functions with many commands each, which may

introduce some execution time and space overhead. However, these functions will only generate once the first usage of the
feature is found, and further uses of the feature will either reference a generated function or append to one.

The language level can be specified using the language-level property in the project configuration file .tdnproj, or per file, using
the @ language_level file directive.

Implicit execute
Trident lets you omit execute and run keywords from your commands entirely. The previous snippet can be simplified to the following
command:

as @a at @s align xyz

 summon armor_stand ~ ~ ~ {

 Tags: [

 "position_history",

 "new"

],

 Invisible: 1b,

 Marker: 1b

 }

Note that this comes with a limitation: Omitting the execute and run keywords will require you to follow up with a command; If you
need to store a value obtained from the if or unless subcommand alone, you must include execute. Example:

execute store result score PLAYER_COUNT global if entity @a

The execute keyword cannot be omitted in this case!

Objectives
Trident allows you to declare scoreboard objectives on the fly, and it takes care of the commands that add them. Define objectives
using the define objective instruction:

define objective global

This will create the objective named global, and the command to create it will then be added to a separate objective initialization
function marked with the minecraft:load tag, which runs whenever the data pack is loaded. By default, the defined objective will be
of type dummy, and have the same display name as its internal name.
You can also specify the criteria and display name of the objective in the definition, both sequence-optional. Example:

define objective health health {"text": "Current Health"}

You may use objectives not previously defined in commands, and the compiler will silently register them, but it will give you a warning
if you do so, asking you to define the objective first. Note that a scoreboard objectives add command will also register the
objective.

Verbatim Commands
The implementation of the Trident language requires it to receive an update every time a new command feature is added to
Minecraft. This is why Trident features verbatim commands, which are a way to export a command as-is, without any processing from
Trident. These are commands prefixed by a forward slash (/). Anything after the slash and before the end of the line will be included
in the output function as-is. Example:

/futurecommand @a minecraft:future_block

You may also use interpolation blocks in verbatim commands (see Interpolation Blocks):

var raw_command = "futurecommand @a"

/${raw_command + " minecraft:future_block"}

Raw Modifiers
You may also want to output an execute modifier as-is, while using Trident syntax for the chained command. This is why you can use
the raw execute modifier for that, which takes a string literal or an interpolation block. Example:

raw "if block ~ ~-1 ~ minecraft:future_block" tp @s ~ 127 ~

This also works with interpolation blocks and lists of strings.

Inner Function Syntax
Creating a file for every function you want in a datapack can often be tedious, and difficult to maintain. This is why Trident implements
several ways you can create functions within functions.

Via Define Instruction:
You can define an inner function via the define instruction, with the specified name. The name is a resource location, which can be
relative to the parent function, or an absolute path in a non-minecraft namespace. Example:

#at: tdndemo:inner_functions.tdn

define function inner {

 if block ~ ~ ~ minecraft:hopper summon armor_stand ~ ~ ~ {Tags:["block_marker", "new"],

Invisible:1b, Marker:1b}

 scoreboard players add BLOCKS_CHECKED global 1

}

#inner is created at tdndemo:inner_functions/inner

Via function command:
You can define an inner function inside the function command, which will create the function and immediately call it. Example:

at: tdndemo:inner_functions.tdn

function inner {

 if block ~ ~ ~ minecraft:hopper summon armor_stand ~ ~ ~ {Tags:["block_marker", "new"],

Invisible:1b, Marker:1b}

 scoreboard players add BLOCKS_CHECKED global 1

}

#inner is created at tdndemo:inner_functions/inner

In this example, inner is created at tdndemo:inner_functions/inner, and the command is resolved to function
tdndemo:inner_functions/inner
You may also omit the name, when creating a function via the function command:

at: tdndemo:inner_functions.tdn

function {

 setblock ~ ~ ~ stone

}

Here, the inner function is created at tdndemo:inner_functions/_anonymous0
The number at the end will increase for every anonymous inner function created in the parent file.

There is also another way to create inner functions, but we’ll discuss it in the Interpolation Values section.

Relative Resource Locations
Wherever you can use a resource location (typically function references), Trident lets you use function paths relative to the function
currently being written, starting with a forward slash (/). Example:

#at: tdndemo:relative_functions

function /inner

function /

The above example resolves into:

function tdndemo:relative_functions/inner

function tdndemo:relative_functions

The second example (with a single slash) is particularly useful for recursive functions.

Introduction to Custom Objects
Trident allows you to abstract the process of creating a custom entity or item, using its custom object features. This section will
describe features common to both entity and items.

Object Inner Functions
Inside a custom entity or item body you may define functions that are logically tied to it.

An object's directory

An object's inner functions need to be created under a directory, and so both the path and name of the file that declares that object
affects where those functions will be.​
For objects whose name is the same as the file that created it, inner functions will be created relative to the function that created it.
Example:

file: mypack:entities/guard.tdn

define entity guard minecraft:iron_golem {

 function idle {

 # ...

 }

}

The function idle will be created in function whose resource location is: mypack:entities/guard/idle.

For objects whose name is different from the file that created it, a subfolder will be created relative to the original function, whose
name is that of the entity or item. Example:

file: mypack:entities/guards.tdn

define entity town_guard minecraft:iron_golem {

 function idle {

 # ...

 }

}

The function idle will be created in function whose resource location is: mypack:entities/guards/town_guard/idle.

Function declarations

The most basic form of object inner functions is the following:

function {

 # function file contents here...

}

This will declare a function relative to this object's directory. Since this function declaration doesn't have a name, an anonymous
function will be created, similarly to the function command (See Inner Function Syntax > Via function command).

You can specify a name for the function, with the following syntax:

function <name> {

 # function file contents here...

}

This will create the function with the path specified by the name, relative to the object's folder.
Example:

file: mypack:items.tdn

define item key minecraft:tripwire_hook {

 function validate/block {

 # ...

 }

}

The function validate/block will be created at mypack:items/key/validate/block.

Object inner functions may have extra syntax options depending on the object type, which are specified in the Custom Entity
Functions and Custom Item Functions sections.

https://energyxxer.com/trident/docs/language
https://docs.google.com/document/d/1HW5A6KVgC8VIcwJm6bLv31bzqVtZsnFqXRInZ_BXstM/edit?usp=sharing
https://docs.google.com/document/d/1HW5A6KVgC8VIcwJm6bLv31bzqVtZsnFqXRInZ_BXstM/edit#heading=h.gko9zadcmpyh

Custom Entities
Trident lets you simplify the process of creating "new" entity types. A custom entity starts with a definition specifying its base type
(what vanilla entity type it uses), its default NBT data, its passengers, and functions it may want to run. After declaration, you can use
its name in place of the summon command entity type, or type= selector argument. Here's an example declaration:

file: mypack:entities/guard.tdn

define entity guard minecraft:iron_golem {

 default name [

 "",

 {"text":"Guard","color":"red"},

 "[",

 {"text":"Lv. ","color":"gold"},

 {"text":"1","color":"yellow"},

 "]"

]

 default nbt {

 Silent: 1b,

 CustomNameVisible: 1b,

 DeathLootTable: "minecraft:empty"

 }

 default health 30

 function animation/hurt {

 particle damage_indicator ~ ~ ~ 0.5 0.5 0.5 0.5 8

 playsound minecraft:block.anvil.place master @a

 # ...

 }

 ticking function tick {

 if entity @s[nbt={HurtTime:10s}] function ${this["animation/hurt"]}

 # ...

 }

}

That declaration defines an entity named 'guard' that is based on an iron golem. It defines a default name, default NBT and health
that will be assigned upon summoning.
As well as these default values, the guard declaration also defines two functions: tick and animation/hurt.
The ticking keyword before the function tells Trident to run that function on every entity of the type guard, every tick (using as
@e[...] at @s).

Inside the tick function, it calls another function called animation/hurt. Notice how that function is accessed via the this identifier,
which is set to whatever custom entity type being declared. (see Interpolation Values > Data Types > Custom Entities)

To spawn this custom entity later in the program, all you need is a summon command with an interpolation block retrieving the
custom entity. Example:

summon $guard ~ ~ ~

Equivalent to:

summon minecraft:iron_golem ~ ~ ~ {

 Tags: ["trident-entity.mypack.guard"],

 CustomName: '["",{"text":"Guard","color":"red"},"[",{"text":"Lv.

","color":"gold"},{"text":"1","color":"yellow"},"]"]',

 Silent: 1b,

 CustomNameVisible: 1b,

 DeathLootTable: "minecraft:empty",

 Health: 30.0f,

 Attributes:[

 {Name:"generic.maxHealth",Base:30.0d}

]

}

Trident uses tags to distinguish custom entity types apart. They are "trident-entity", followed by the namespace it was declared
in, and the name of the custom entity, all separated by dots.

Custom Entity Declaration

Custom entities are defined by two identifying properties: a name, and a base type. Depending on whether these properties are set,
the custom entity will behave differently.

1.​ Named custom entities (Has a name and a base type)
Named custom entities define a new spawnable entity that doesn't alter the behavior of other vanilla entities. The declaration
header looks like this:​
define entity <name> <base_type>​
Example:

​ define entity guard minecraft:iron_golem

Note: The base type can also be another named custom entity. Example:
​ define entity town_guard $guard

2.​ Default custom entities (Has no name but has a base type)
Default custom entities serve as a way to add functionality to a specific vanilla entity type. The declaration header looks like
this:​
define entity default <base_type>

Example:
​ define entity default minecraft:iron_golem

Behavior defined inside this example entity declaration will affect all iron golems.

3.​ Wildcard custom entities (Has no name and no base type)
Wildcard custom entities serve as a way to add functionality to all entities.
The declaration header looks like this:​
define entity default *

4.​ Entity Components (Has a name but no base type)
Entity components serve as a way to add functionality to specific entities, regardless of their entity type. More about Entity
Components in another section.

Custom Entity Body
●​ Variable Declarations.​

●​ default name <text_component>​
(Named entities and components only)​
Changes the entity's base NBT to contain the given CustomName.

●​ default nbt <tag_compound>​
(Named entities and components only)​
Changes the entity's base NBT to contain the tags in the given compound (via a merge operation).

●​ default health <real>​
(Named entities and components only)​
Changes the entity's base NBT to reflect the given max health (Changes the Health tag, as well as the generic.maxHealth
attribute).

●​ default passengers [<new_entity_literal>, <new_entity_literal>, ...]​
(Named entities and components only)​
Adds the given entities as passengers of this entity. See Command Syntax Additions > New-Entity literal.​
Example:

define entity free_block minecraft:armor_stand {

 default passengers [

 shulker[invisible]{NoAI:1b},

 falling_block[everlasting]{Time:1}

]

 # ...

}

●​ Inner functions (See next section)

Custom Entity Functions
Custom entities and entity components support inner functions, as described in the Object Inner Functions section.

Ticking Functions

Within custom entity bodies, you may specify that an inner function should run every tick on entities of that type. This is done via the
ticking keyword before the function keyword.
Example:

file: mypack:entities/guard.tdn

define entity guard minecraft:iron_golem {

 ticking function tick {

 if entity @s[nbt={HurtTime:10s}] function ${this["animation/hurt"]}

 # ...

 }

}

That roughly translates to the following command in a Trident-generated function tagged with #minecraft:tick:

as @e at @s if entity @s[type=$guard] function mypack:entities/guard/tick

You may also specify other modifiers that should be added in that command. Extra modifiers go after the ticking keyword and
before the function keyword.
Example:

file: mypack:entities/guard.tdn

define entity guard minecraft:iron_golem {

 ticking if entity @s[nbt={HurtTime:10s}] function animation/hurt {

 particle damage_indicator ~ ~ ~ 0.5 0.5 0.5 0.5 8

 playsound minecraft:block.anvil.place master @a

 # ...

 }

}

That roughly translates to the following command:

as @e at @s if entity @s[type=$guard] if entity @s[nbt={HurtTime:10s}] function

mypack:entities/guard/animation/hurt

This is done for the sake of optimization with several custom entity types, so that all entities are only iterated through once per tick.
The result is optimized more if there is only one ticking entity function.

NOTE: Since this uses the @e selector to iterate through entities, this will not run for dead players.
You may also specify an interval between executions. Write a time literal right after the 'ticking' keyword.
Example:

file: mypack:entities/guard.tdn

define entity guard minecraft:iron_golem {

 ticking 5s function {

 playsound minecraft:block.anvil.use master @a ~ ~ ~ 1.0 2.0 0.0

 }

}

This will create a self-scheduling function tagged with #minecraft:tick, one for each unique time interval used in the project.

Entity Components
Entity components are an extension of the custom entity system, which allows adding functionality to arbitrary entities via tags.
Entity components have all the features and functionality of a named entity.
Entity components can be added to an entity's definition or after the summon command entity type, as well as a Trident-exclusive
component= selector argument. Here's an example declaration:

file: mypack:components.tdn

define entity component invisible {

 default nbt {

 ActiveEffects: [

 {Id:14b,Duration:200000,Amplifier:0b,ShowParticles:0b}

]

 }

 function reapply {

 @tag load

 effect give @e[component=invisible] invisibility 10000 0 true

 schedule function / 10000s

 }

}

That declaration defines an entity component named 'invisible'. It defines a default NBT containing the invisibility effect that will be
applied upon summoning.
The invisible declaration also defines a reapply function that runs every 10,000 seconds that reapplies the effect to all entities with
the component.

Just like named custom entities, entity components are represented by a tag on the entity. For entity components, they are
"trident-component", followed by the namespace it was declared in, and the name of the component, all separated by dots.

Usage

Summon

There are many ways to use an entity component. The most simple way is through the summon command. To give a summoned
entity components, you may put the names of the components, separated by commas, between square braces after the entity name.
Example:

summon pig[invisible]

Equivalent to:

summon minecraft:pig ~ ~ ~ {

 Tags: ["trident-component.mypack.invisible"],

 ActiveEffects: [

 {Id:14b,Duration:200000,Amplifier:0b,ShowParticles:0b}

]

}

Component add/remove command

Another way to use entity components is by adding/removing them, just like tags. To do so, use the Trident-exclusive component
command:

component @e[type=pig] remove invisible

component @e[type=cow] add invisible

Equivalent to:

tag @e[type=pig] remove trident-component.mypack.invisible

tag @e[type=cow] add trident-component.mypack.invisible

Component selector argument

You can filter entities based on which components they have, using the Trident-exclusive component selector argument:

as @e[component=invisible] say I'm invisible

as @e[component=!invisible] say I'm not invisible

Equivalent to:

as @e[tag=trident-component.mypack.invisible] say I'm invisible

as @e[tag=!trident-component.mypack.invisible] say I'm not invisible

Entity Inheritance

You may also use components in the declaration of a named custom entity, or even another entity component. Do this by using the
implements keyword at the end of the entity/component declaration header with the names of the components, separated by
commas:

file: mypack:entities/rclick_agent.tdn

define entity rclick_agent minecraft:villager implements invisible {

 default nbt {Silent:1b, Offers: {Recipes: [] }}

}

define entity component outline implements invisible {

 default nbt {Glowing:1b}

}

summon $rclick_agent

summon minecraft:iron_golem[outline]

Equivalent to:

summon minecraft:villager ~ ~ ~ {

 Tags: [

 "trident-entity.mypack.rclick_agent",

 "trident-component.mypack.invisible"

],

 ActiveEffects: [

 {Id:14b,Duration:200000,Amplifier:0b,ShowParticles:0b}

],

 Silent: 1b,

 Offers: {Recipes:[]}

}

summon minecraft:iron_golem ~ ~ ~ {

 Tags: [

 "trident-component.mypack.outline",

 "trident-component.mypack.invisible"

],

 ActiveEffects: [

 {Id:14b,Duration:200000,Amplifier:0b,ShowParticles:0b}

],

 Glowing: 1b

}

Abstract Entity Events
Trident offers a form of polymorphism for entity functions, in the form of Abstract Entity Events.
Abstract entity events are special functions whose behavior is incomplete by default. The function's behavior is entirely dependent on
the type of entity that executes the function. The event can then be called through a custom event command, which simply tells the
entities to run their own implementation of the event.

Each entity that decides to implement the event can do so through on <event> <optional modifiers> function {...}

Here's an example:

define event identify

define entity boar minecraft:pig {

 default nbt {Glowing:1b}

 on identify function identify_impl {

 say I'm a boar

 }

}

define entity default minecraft:pig {

 on identify if entity @s[type=!$boar] function identify_impl {

 say I'm a pig

 }

}

define entity default minecraft:sheep {

 on identify function identify_impl {

 say I'm a sheep

 }

}

event @e[distance=..10] identify

Equivalent to:

define function trident_dispatch_event_identify {

 if entity @s[type=$boar] function /boar/identify_impl

 if entity @s[type=minecraft:pig] if entity @s[type=!$boar] function /default_pig/identify_impl

 if entity @s[type=minecraft:sheep] function /default_sheep/identify_impl

}

function /trident_dispatch_event_identify

The event command has the following syntax:
event <entity> <event>
which simply gets transformed into a function command as the provided entity
as <entity> function <event_dispatch_function>

Custom Items
Trident lets you simplify the process of creating "new" item types and modifying existing ones. A custom item starts with a definition
specifying its base type (what vanilla item type it uses), its default NBT data, its name, lore, and functions it may want to run. After
declaration, you can use its name in place of the give/clear/replaceitem/etc. commands' item type. Here's an example declaration:

file: mypack:items/teleport_wand.tdn

define objective tp_dist

define item teleport_wand minecraft:carrot_on_a_stick#1 {

 default name {"text":"Teleport Wand","color":"aqua","italic":false}

 default lore [

 [

 {"keybind":"key.use","color":"green"},

 " to teleport to where you're looking"

]

]

 default nbt {Enchantments:[{}]}

 function raytrace {

 scoreboard players remove @s tp_dist 1

 unless block ^ ^ ^1 minecraft:air

 tp @s ~ ~ ~

 unless score @s tp_dist matches ..0

 positioned ^ ^ ^1

 if block ~ ~ ~ minecraft:air

 function /

 }

 on used function {

 set @s->tp_dist = 64

 anchored eyes

 positioned ^ ^ ^

 anchored feet

 function ${this.raytrace}

 }

}

The code above is for an item that teleports the player to the block they're looking at when right-clicking with it.
Its declaration defines an item named 'teleport_wand' that is based on a carrot on a stick with CustomModelData 1. It defines a
default name, default lore and default NBT that will be assigned when given.
As well as these default values, the teleport wand declaration also defines two functions: raytrace and an anonymous function.
The on keyword before the function tells Trident to run that function whenever a player fires an event using that item (using
scoreboard objective criteria, more on that in Custom Item Functions > Item Event Functions) (using as @a[...] at @s on the
player that fired the event).

Inside the anonymous function, it calls another function called raytrace. Notice how that function is accessed via the this identifier,
which is set to whatever custom entity type being declared. (see Interpolation Values > Data Types > Custom Items)

To give, clear or use this custom item later in the program, all you need is an interpolation block retrieving the custom item. Example:

give @a $teleport_wand

clear @a $teleport_wand

Equivalent to:

give @a minecraft:carrot_on_a_stick{

 TridentCustomItem: -2008252046,

 CustomModelData: 1,

 display: {

 Name: '{"text":"Teleport Wand","color":"aqua","italic":false}',

 Lore: ['[{"keybind":"key.use","color":"green"}," to teleport to where you\'re looking"]']

 },

 Enchantments: [{}]

}

clear @a minecraft:carrot_on_a_stick{

 TridentCustomItem: -2008252046

}

Trident uses a TridentCustomItem item tag to distinguish custom item types apart. The value of that tag is determined by hashing the
string formed after combining the namespace and the item name together.

Custom Item Declaration

Just like Custom Entities, Custom Items are defined by two identifying properties: a name, and a base type. Depending on whether
these properties are set, the custom entity will behave differently.

1.​ Named custom items (Has a name and a base type)
Named custom items define a new item type that doesn't alter the behavior of other vanilla items. The declaration header
looks like this:​
define item <name> <base_type>​
Example:
define item wand minecraft:stick

Note: Unlike entities, custom items' base type cannot be another named custom item.

2.​ Default custom items(Has no name but has a base type)
Default custom entities serve as a way to add functionality to a specific vanilla item type. The declaration header looks like
this:​
define item default <base_type>

Example:
define item default minecraft:egg

Behavior defined inside this example item declaration will affect all eggs unless specified otherwise.

There are no item equivalents of entities' wildcard entities and entity components.

Custom Item Body
●​ Variable Declarations.​

●​ default name <text_component>​
(Named items only)​
Changes the item's base NBT to contain the given display.Name.

●​ default lore [<text_component>, <text_component>, ...]​
(Named items only)​
Changes the item's base NBT to contain the given display.Lore.​
Each text component must represent a different line of lore.

●​ default nbt <tag_compound>​
(Named items only)​
Changes the entity's base NBT to contain the tags in the given compound (via a merge operation).

●​ Inner functions (See next section)

Custom Item Functions
Custom items support inner functions, as described in the Object Inner Functions section.

Item Event Functions

[LL3] This feature may only be used if the project's language level is 3
Within custom item bodies, you may specify that an inner function should run whenever a scoreboard criteria event is fired from that
item. This is done via the on keyword, followed by the type of event it should be fired from.​
Those events are: used, dropped, picked_up, broken and crafted*. The actions that trigger these events may vary for each item,
depending on how the corresponding scoreboard objective criterion behaves.
* crafted is not supported for custom items, only default items support it.
Example:

file: mypack:items/demo.tdn

define item demo minecraft:snowball {

 on used function {

 say Used demo snowball

 }

 on dropped function {

 say Dropped demo snowball

 }

 on picked_up if entity @s[tag=pickup_enabled] function {

 say Picked up demo snowball

 }

}

The function marked with on used will say Used demo snowball in chat whenever a player uses (throws) a snowball internally
marked with the item code associated with this custom item. It will create a scoreboard objective named uitem.12c23c81 with
criterion minecraft.used:minecraft.snowball. Whenever that score increases for a player, it runs the corresponding function
only if they were holding the demo item a tick earlier (that check doesn't occur with default items).
A similar process occurs with the other two functions declared in the item body.

Pure Events
For default items, you may want to limit certain events to non-custom items. You can achieve this by adding the pure keyword after
the event key. Example:

file: mypack:items/demo.tdn

define item demo minecraft:snowball {

 # ...

}

define item default minecraft:snowball {

 on used pure function {

 say Used pure snowball

 }

 on used function {

 say Used snowball

 }

}

With this second item declaration, all snowballs thrown, custom or not, will print the message "Used snowball". Every non-custom
snowball thrown will print the message: "Used pure snowball". Consider the following scenarios:

Player named Foo throws a default snowball (such as from the creative inventory). Chat:
​ [Foo] Used pure snowball

​ [Foo] Used snowball

Player named Foo throws a $demo snowball. Chat:
​ [Foo] Used demo snowball

​ [Foo] Used snowball

Command Syntax Additions

Blocks
You can use interpolation blocks wherever a block is required. However, you may also want to overwrite some of the values of the
block in that variable. You can do so, simply by appending a blockstate and/or a tag compound after the first interpolation block.
Example:

var blockVar = block<chest[facing=east]{Lock:"Key"}>

setblock ~ ~ ~ $blockVar{CustomName:'"Treasure Chest"'}

setblock ~ ~ ~ $blockVar[waterlogged=true]{CustomName:'"Treasure Chest"'}

setblock ~ ~ ~ $blockVar[facing=north,waterlogged=true]

setblock ~ ~ ~ $blockVar{Lock:"Different Key"}

Equivalent to:

setblock ~ ~ ~ chest[facing=east]{

 Lock:"Key",

 CustomName:'"Treasure Chest"'

}

setblock ~ ~ ~ chest[waterlogged=true,facing=east]{

 Lock:"Key",

 CustomName:'"Treasure Chest"'

}

setblock ~ ~ ~ chest[waterlogged=true,facing=north]{

 Lock:"Key"

}

setblock ~ ~ ~ chest[facing=north]{Lock:"Different Key"}

Just like in the vanilla syntax, blockstates or NBT segments in a block literal should be attached directly to the name, without
whitespace in between.

Items
Trident adds a shorthand for CustomModelData for items. Simply append a hash sign (#), followed by the custom model data
number, to the end of the item name, and before the NBT (if any). Example:

give @a stick#5

Equivalent to:

give @a stick{CustomModelData:5}

You can use interpolation blocks wherever an item is required. Just like blocks, you may also want to overwrite some values in the
NBT of the item in that variable. You can do so, simply by appending a tag compound after the first interpolation block. Example:

var itemVar = item<stick#5>

give @a $itemVar{HideFlags:63}

give @a $itemVar#8{HideFlags:63}

Equivalent to:

give @a stick{CustomModelData:5,HideFlags:63}

give @a stick{HideFlags:63,CustomModelData:8}

Just like in the vanilla syntax, NBT segments in an item literal should be attached directly to the name, without whitespace in
between.

New-Entity literal
Trident uses a common format to refer to an entity type to create. It contains information about the entity type to spawn, its entity
components and its NBT data, where the latter two are optional. The entity type can also be a custom entity.
This format is used in the summon command, using summon and default passengers in a custom entity.
Examples:

summon armor_stand

summon armor_stand[componentA, componentB] ~ ~ ~

summon armor_stand{Glowing:1b} ~ ~ ~

summon $guard[componentA, componentB]{Glowing:1b} ~ ~ ~

define entity block_hitbox minecraft:armor_stand {

 default passengers [

 shulker[invisible]{NoAI:1b}

]

 # ...

}

New-entity-literals can also be NBT Compounds inside Interpolation Blocks, so long as there is an "id" tag inside, containing the
entity type to spawn. Example:

summon ${nbt<{id:"minecraft:skeleton",Glowing:1b}>}

Turns into:

summon minecraft:skeleton ~ ~ ~ {Glowing:1b}

Selectors
You can use interpolation blocks wherever an entity is required. However, you may want to add more selector arguments to the
selector. You can do so, simply by appending selector arguments after the first interpolation block. Note: This will add the given
selector arguments, and it will not override old ones if that selector type is repeatable. It will also try to merge scores and
advancements arguments. Example:

var entityVar = entity<@e[type=pig,tag=selected,scores={scoreA=5}]>

tp $entityVar[tag=new] @s

tp $entityVar[tag=new,scores={scoreB=3}] @s

Equivalent to:

tp @e[type=pig,tag=selected,scores={scoreA=5},tag=new] @s

tp @e[type=pig,tag=selected,tag=new,scores={scoreA=5,scoreB=3}] @s

Just like in the vanilla syntax, a selector argument block in a selector should be attached directly to the selector header, without
whitespace in between.

score: isset

Trident adds a shorthand to the score execute argument that evaluates to true if a score is set, by matching it against the entire
integer range. Example:

if entity @s[scores={id=isset}] say ID is set

Equivalent to:

if entity @s[scores={id=..2147483647}] say ID is set

Commands

set

Trident adds a shorthand command that unifies operations to and from scores and NBT.
The syntax is set <pointer: target> <operator> <pointer: source>.
Alternatively, the source pointer can be replaced with an NBT value.
Refer to Interpolation Values > Pointers to learn about pointers and their syntax.

This is a table showing what each combination of pointer/value type translates into:

Target Type Operator Source Type Transformed into

SCORE = SCORE scoreboard players operation A = B

SCORE = VALUE scoreboard players set A B

SCORE = NBT store result score A data get B

NBT = SCORE store result A scoreboard players get B

NBT = VALUE data modify A set value B

NBT = NBT # When: scale A * scale B == 1:

data modify A set from B

When: scale A * scale B != 1:

store result A * data get B *

SCORE += SCORE scoreboard players operation A += B

SCORE += VALUE scoreboard players add A B

SCORE -= SCORE scoreboard players operation A -= B

SCORE -= VALUE scoreboard players remove A B

SCORE *= SCORE scoreboard players operation A *= B

SCORE *= VALUE #[LL2]
scoreboard players operation A *= #B trident_const

NBT *= VALUE store result A data get A *B

SCORE /= SCORE scoreboard players operation A /= B

SCORE /= VALUE #[LL2]
scoreboard players operation A /= #B trident_const

SCORE %= SCORE scoreboard players operation A %= B

SCORE %= VALUE #[LL2]
scoreboard players operation A %= #B trident_const

SCORE < SCORE scoreboard players operation A < B

SCORE < VALUE #[LL2]
scoreboard players operation A < #B trident_const

SCORE > SCORE scoreboard players operation A > B

SCORE > VALUE #[LL2]
scoreboard players operation A > #B trident_const

SCORE <> SCORE scoreboard players operation A <> B

SCORE = null scoreboard players reset A

NBT = null data remove A

For arithmetic operations between a score and a value, an objective trident_const is created and initialized with all the constants
used in the project. That way, scoreboard operations can simply use the fake players to get a score with a constant. This requires a
language level of at least 2.

Example:

set @s->altitude = @s->prev_altitude

set @s->altitude = @s.Pos[1] * 100

set #OPERATION->global -= 64

set #OPERATION->global *= 8

set (-30000 0 0).RecordItem.tag.nextVariant (int) = #RANDOM->global

set @s.Variant = (-30000 0 0).RecordItem.tag.nextVariant

set @s.HandItems[0] = {id:"minecraft:bow",Count:1b}

Equivalent to:

scoreboard players operation @s altitude = @s prev_altitude

store result score @s altitude

 data get entity @s Pos[1] 100

scoreboard players remove #OPERATION global 64

scoreboard players operation #OPERATION global *= #8 trident_const

store result block -30000 0 0 RecordItem.tag.nextVariant int 1

 scoreboard players get #RANDOM global

data modify entity @s Variant set from block -30000 0 0 RecordItem.tag.nextVariant

data modify entity @s HandItems[0] set value {id:"minecraft:bow",Count:1b}

tag update

[LL2] This feature may only be used if the project's language level is at least 2
Trident adds a shorthand for removing a tag from all entities and reapplying it only to specific entities. Example:

tag @e[nbt={OnGround:1b}] update onGround

Equivalent to:

tag @e remove onGround

tag @e[nbt={OnGround:1b}] add onGround

component

This component command is similar in use to the tag command, but its purpose is to add and remove custom entity components.
See Entity Components > Component add/remove command.

event

This event command is used to invoke an event on certain entities. See Abstract Entity Events.

summon

The summon command syntax has been modified so that it uses New-Entity literals. As a result, you can append a list of entity
components to add to the summoned entity, as well as specify the NBT of the spawned entity while omitting the coordinates. See
Command Syntax Additions > New-Entity literal. The default syntax for the summon command is still valid, however.

expand

The expand command applies the same set of modifiers to multiple commands in a block.
Syntax:

expand {

 # Commands go here:

}

Example:

if entity @e[tag=!assigned] expand {

 function try_assign_0

 function try_assign_1

 function try_assign_2

 function try_assign_3

}

Equivalent to:

if entity @e[tag=!assigned] function try_assign_0

if entity @e[tag=!assigned] function try_assign_1

if entity @e[tag=!assigned] function try_assign_2

if entity @e[tag=!assigned] function try_assign_3

It's advised you only use this when you expect the condition to be invalidated somewhere in the block to stop the other commands
from running. If you want all the commands in the block to run if the condition is met, consider using functions instead.

gamelog

[LL3] This feature may only be used if the project's language level is 3
Trident adds a runtime equivalent of the log instruction. This lets you send debug messages to select people, containing information
about the execution context of the command. The syntax is gamelog <info|debug|warning|error|fatal> <value>.
The different severities correspond to an integer, and a message of a certain severity will only be shown to players whose
tdn_logger score is at least the severity number.
This is a table showing which type of log each player sees, depending on the tdn_logger score:
tdn_logger 0 : none

tdn_logger 1 : fatal

tdn_logger 2 : fatal, errors

tdn_logger 3 : fatal, errors, warnings

tdn_logger 4 : fatal, errors, warnings, info

tdn_logger 5 : fatal, errors, warnings, info, debug

tdn_logger 6 : debug

Example:

gamelog debug "Picked up item"

gamelog info "Module loaded"

gamelog warning "Jukebox at origin not found, replacing..."

gamelog error "Command limit reached"

gamelog fatal "Did /kill @e"

Result:

You may customize the style of these messages via the project configuration file (.tdnproj), within the game-logger object.
"compact": true will reduce the information shown (by default false):

"timestamp-enabled": true will show the game time (by default true). For non-compact messages, it will be in the format:
dd/hh:mm:ss.t where dd is days, hh is hours, mm is minutes, ss is seconds and t is ticks. For compact messages, the format is
hh:mm:ss.t.
"pos-enabled": true will show the block at which the command was executed (by default true).
"line-number-enabled": true will show the line number where the gamelog command is located. Note that this line number is
for the Trident file the command is located in, not the function it's in. By default false.

The gamelog messages show a variety of information in addition to the description, such as the execution time, message severity,
function file, command sender, execution position and project name. Note that some of these may or may not be present depending
on the project configuration.

Execute Modifiers

if/unless score: isset

Trident adds a shorthand to the score condition modifier that evaluates to true if a score is set, by matching it against the entire
integer range. Example:

if score @s id isset say ID is set

Equivalent to:

if score @s id matches ..2147483647 say ID is set

if/unless selector

Trident adds a shorthand to the entity condition modifier. You can omit the entity keyword if you use a selector. Example:

if @s[tag=valid] say Valid

Equivalent to:

if entity @s[tag=valid] say Valid

raw

The execute modifier version of verbatim commands. Takes a string literal or an interpolation block (containing either a string or a list
of strings) as a parameter. See Raw Modifiers. Example:

raw "if block ~ ~-1 ~ minecraft:future_block" tp @s ~ 127 ~

Instructions
Instructions in Trident typically alter the state of the program during compilation, or generate many commands or functions at once.
As such, they cannot be used with execute modifiers, as they are not commands.

log
The log instruction is used to display information after the project has finished compiling. In command-line based systems, this may
be in the form of text in the console. In the official Trident UI, these logs will appear in a panel at the bottom of the program, which
allow you to quickly jump to the location it was logged from.
There are different types of messages you can log: info, warning and error.
None of these will halt the execution of the program, but the latter (error) will prevent the output data pack and resource pack from
generating.
Syntax:

log <info|warning|error> <value>

Example:

log info "Added " + i + " to the list"

using

using tag

[LL2] This feature may only be used if the project's language level is at least 2
Tags on entities are often used temporarily to target a specific entity without changing the context. This requires adding and removing
the tag from the entity. Trident adds an instruction that makes this process easier. The using tag instruction runs a specific block after
adding a tag to the entity given, and automatically adds the tag remove command at the end. Note that the tag is removed from all
entities at the end, so don't use a tag that is used permanently somewhere else.
Syntax:

using tag <tag_to_use> <entity_to_tag> <optional_modifiers> {

 # Commands in the middle go here:

}

Examples:

using tag needs_id @e[scores={id=0},limit=1] {

 scoreboard players operation @e[tag=needs_id] id > * id

 tellraw @a ["ID assigned to ", {"selector":"@e[tag=needs_id]"}]

}

Equivalent to:

tag @e[scores={id=0},limit=1] add needs_id

scoreboard players operation @e[tag=needs_id] id > * id

tellraw @a ["ID assigned to ", {"selector":"@e[tag=needs_id]"}]

tag @e remove needs_id

using tag needs_id @e[scores={id=0},limit=1] if block ~ ~-1 ~ air {

 scoreboard players operation @e[tag=needs_id] id > * id

 tellraw @a ["ID assigned to ", {"selector":"@e[tag=needs_id]"}]

}

Equivalent to:

as @e[scores={id=0},limit=1] if block ~ ~-1 ~ air tag @s add needs_id

scoreboard players operation @e[tag=needs_id] id > * id

tellraw @a ["ID assigned to ", {"selector":"@e[tag=needs_id]"}]

tag @e remove needs_id

using summon

[LL2] This feature may only be used if the project's language level is at least 2
Another common use of temporary tags is targeting a newly summoned entity. Trident makes this much easier by adding a function
block that runs as the summoned entity. The selector targeting the entity with the tag is optimized whenever possible so that it only
targets entities close to the summoning location.
Syntax:

using <summon_command> with <tag_to_use> <optional_modifiers> {

 # Commands in the middle go here:

}

Example (without modifiers):

using summon armor_stand ~-3 0 ~4 {

 CustomName:'"guard_model"',

 CustomNameVisible:1b,

 Tags:["entity_model"]

 }

 with new {

 set @s->id = NEXT_ID->global

 scoreboard players add NEXT_ID global 1

 set @s->cooldown = 0

 set @s->jump_time = 0

 }

Equivalent to:

summon armor_stand ~-3 0 ~4 {

 CustomName:'"guard_model"',

 CustomNameVisible:1b,

 Tags:["entity_model","new"]

}

as @e[type=armor_stand,tag=new,limit=1,y=0,distance=4.99..5.01] function {

 tag @s remove new

 set @s->id = NEXT_ID->global

 scoreboard players add NEXT_ID global 1

 set @s->cooldown = 0

 set @s->jump_time = 0

}

Example (with modifiers):

using summon armor_stand ~-3 0 ~4 {

 CustomName:'"guard_model"',

 CustomNameVisible:1b,

 Tags:["entity_model"]

 }

 with new

 if score ID_ENABLED global matches 1.. {

 set @s->id = NEXT_ID->global

 scoreboard players add NEXT_ID global 1

 set @s->cooldown = 0

 set @s->jump_time = 0

 }

Equivalent to:

summon armor_stand ~-3 0 ~4 {

 CustomName:'"guard_model"',

 CustomNameVisible:1b,

 Tags:["entity_model","new"]

}

as @e[type=armor_stand,tag=new,limit=1,y=0,distance=4.99..5.01] function {

 tag @s remove new

 if score ID_ENABLED global matches 1.. function {

 set @s->id = NEXT_ID->global

 scoreboard players add NEXT_ID global 1

 set @s->cooldown = 0

 set @s->jump_time = 0

 }

}

Trident will create at least one extra function for the using summon block, and it will use two only if necessary (e.g. if one of the
modifiers specified may cause the command not to run, like conditionals if and unless). It will only create one extra function if
modifiers likely wouldn't change the execution condition (e.g. at @s)

eval
The eval instruction is used to evaluate an interpolation value or expression that might change the state of the program.
Syntax:

eval <value_or_expression>

Example:

var count = 0

eval count += 4

eval someFunction(count)

within
The within instruction makes it easy to write commands that run at every block in a volume. This is done by assigning coordinates to
a variable inside a loop, similar to a foreach loop in many languages.
Syntax:

within <identifier> <coordinates:from> <coordinates:to> {

 # Commands using the coordinates go here:

}

Example:

within pos ~-1 ~ ~-1 ~1 ~ ~1 {

 positioned $pos if block ~ ~ ~ hopper summon armor_stand

}

Equivalent to:

positioned ~-1 ~ ~-1 if block ~ ~ ~ hopper summon armor_stand

positioned ~-1 ~ ~ if block ~ ~ ~ hopper summon armor_stand

positioned ~-1 ~ ~1 if block ~ ~ ~ hopper summon armor_stand

positioned ~ ~ ~-1 if block ~ ~ ~ hopper summon armor_stand

positioned ~ ~ ~ if block ~ ~ ~ hopper summon armor_stand

positioned ~ ~ ~1 if block ~ ~ ~ hopper summon armor_stand

positioned ~1 ~ ~-1 if block ~ ~ ~ hopper summon armor_stand

positioned ~1 ~ ~ if block ~ ~ ~ hopper summon armor_stand

positioned ~1 ~ ~1 if block ~ ~ ~ hopper summon armor_stand

You may also specify the step by which to increase the coordinates. By default, the step is 1, but you can overwrite it by adding step
<real> after the coordinates.
Example:

within pos ~-16 ~ ~-16 ~15 ~ ~15 step 16 {

 positioned $pos fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

}

Equivalent to:

positioned ~-16 ~ ~-16 fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~-16 ~ ~ fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~-16 ~ ~16 fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~ ~ ~-16 fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~ ~ ~ fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~ ~ ~16 fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~16 ~ ~-16 fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~16 ~ ~ fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

positioned ~16 ~ ~16 fill ~ ~ ~ ~14 ~ ~14 white_stained_glass

Coordinates used in the within instruction may have mixed coordinates, but the coordinate types of each axis must match.

This is allowed:

Relative Absolute Absolute - Relative Absolute Absolute

within pos ~-1 0 10 ~1 15 12 {

 # ...

}

This is NOT allowed:

Relative Relative Absolute - Relative Absolute Absolute

within pos ~-1 ~ 10 ~1 15 12 {

 # ...

}

https://github.com/Energyxxer/Trident-UI/

Control Flow

if - else

(Not to be confused with the if/unless execute modifiers)​
The if instruction runs an entry block (a list of commands and/or instructions), if and only if a given compile time expression
evaluates to the boolean value true. You may also specify that, in case the expression above evaluates to false, another entry block
should be run instead.
Syntax:

if(<expression>) {

 <commands and instructions...>

} else {

 <commands and instructions...>

}

...where the else keyword and the following block are optional.
Examples:

var someVar = 5

if(someVar == 5) {

 summon cow

 log info "First block run"

} else {

 summon sheep

 log info "Second block run"

}

log info "Out of if/else blocks"

Evaluates the following lines:

summon cow

log info "First block run"

log info "Out of if/else blocks"

You may omit the curly braces if there is only one entry in the block. Example:

if(expr == 5) summon cow

else summon sheep

You may see older Trident code using do if instead of if. It was previously required for compile-time ifs to have a do keyword
before them, to distinguish them from the execute modifier if. This restriction has been lifted so if there's an open parenthesis right
after the if, it is interpreted as a compile-time if. For backwards compatibility, do if is still allowed, although discouraged.

while

The while instruction runs an entry block repeatedly based on a compile time expression, if it evaluates to the boolean value true.
Syntax:

while(<expression>) {

 <commands and instructions...>

}

Examples:

var counter = 3

while(counter > 0) {

 give @s stick $counter

 eval counter--

}

Equivalent to the following:

var counter = 3

give @s stick $counter

eval counter-- # counter is now 2

give @s stick $counter

eval counter-- # counter is now 1

give @s stick $counter

eval counter-- # counter is now 0

Ultimately evaluates to:

give @s stick 3

give @s stick 2

give @s stick 1

for

The for instruction runs an entry block repeatedly based on a compile time expression, just like while, except for supports different
headers for different uses.
Syntax:

for(<loop_header>) {

 <commands and instructions...>

}

Classic Header
The classic header for the for instruction has three expressions separated by semicolons: the initializer, the condition and the iterator.
The initializer expression is evaluated once at the beginning of the loop. The condition expression is evaluated before every loop
and it should evaluate to a boolean: true if the loop should continue, false if the loop should end. The iterator expression is evaluated
after every loop. Syntax:

for(<initializer>;<condition>;<iterator>) {

 <commands and instructions...>

}

Example:

for(var i = 0; i < 5; i++) {

 worldborder add $i

}

Equivalent to the following:

var i = 0

worldborder add $i

eval i++ # i is now 1

worldborder add $i

eval i++ # i is now 2

worldborder add $i

eval i++ # i is now 3

worldborder add $i

eval i++ # i is now 4

worldborder add $i

eval i++ # i is now 5

Ultimately evaluates to:

worldborder add 0

worldborder add 1

worldborder add 2

worldborder add 3

worldborder add 4

Iterator Header
The iterator header for the for instruction runs the entry block for every element in an iterable value (list, dictionary). It creates a
temporary variable that will contain the elements of the iterator. Syntax:

for(<temp_var_name> in <iterable>) {

 <commands and instructions...>

}

Example:

var items = [item<stick>,item<glass>,item<bow>,item<arrow>]

for(itm in items) {

 give @s $itm

}

Ultimately evaluates to:

give @s stick

give @s glass

give @s bow

give @s arrow

switch

The switch instruction takes a single value, and associates case values to the entry block that should run if the original expression
matches that value. Note that once a case has been matched, all the entry blocks after it will run, unless the break instruction is used.
The optional default case will match any expression value and run the associated block.
Syntax:

switch(<expression>) {

 case <match_0>: {

 <commands and instructions...>

 }

 case <match_1>: {

 <commands and instructions...>

 }

 case <match_n>: {

 <commands and instructions...>

 }

 default: {

 <commands and instructions...>

 }

}

Example:

var someVar = 0

switch(someVar) {

 case 0:

 case 1: {

 log info "someVar is 0 or 1"

 break

 }

 case 2: {

 log info "someVar is 2"

 break

 }

 case 3: {

 log info "someVar is 3"

 break

 }

 default: {

 log info "someVar is not between 0 and 3"

 }

}

Evaluates the following lines:

log info "someVar is 0 or 1"

break

The break instruction is used in conjuction with looping instructions or switch.
In loops, break will forcefully exit out of the innermost loop, even if the condition still matches.
In switch, it will forcefully exit the innermost switch instruction. Any entries after the break, and still inside the structure it exits, will not
be evaluated.
Syntax:

break

Example:

var counter = 3

while(counter > 0) {

 give @s stick $counter

 eval counter--

 break

}

Equivalent to the following:

var counter = 3

give @s stick $counter

eval counter-- # counter is now 2

Ultimately evaluates to:

give @s stick 3

continue

The continue instruction is used in conjuction with looping instructions.
continue will end the current iteration and begin the next, if possible. Conditions will still determine if the next iteration runs or not. In
the classic for header, the iteration expression will still run after a continue.
Any entries after the continue, and still inside the loop it affects, will not be evaluated.
Syntax:

continue

Example:

for(var i = 0; i < 5; i++) {

 if(i == 3) {

 continue

 }

 worldborder add $i

}

Equivalent to the following:

var i = 0

worldborder add $i

eval i++ # i is now 1

worldborder add $i

eval i++ # i is now 2

worldborder add $i

eval i++ # i is now 3

eval i++ # i is now 4

worldborder add $i

eval i++ # i is now 5

Ultimately evaluates to:

worldborder add 0

worldborder add 1

worldborder add 2

worldborder add 4

return

The return instruction is used in conjuction with dynamic functions, and is used to transfer the result of an operation to the
environment that called it.
return will forcefully exit from the dynamic function that contains it.
Any entries after the return, and still inside the dynamic function it's in, will not be evaluated.
Syntax:

return <optional_value>

If the return value is omitted, it defaults to null.
Example:

var min = function(a, b) {

 if(a < b) {

 return a

 } else {

 return b

 }

 # This line never runs

}

log info min(12, 4) # Logs 4

Exceptions

try-catch

The try-catch instruction is used to handle exceptions thrown inside an entry block. Exceptions in the try block will halt execution of
that block and will jump to the catch block.
The catch block will not run if no exception was caught in the try block.
Syntax:

try {

 <commands and instructions...>

} catch(<identifier: exception_var_name>) {

 <commands and instructions...>

}

Examples:

try {

 eval 1 / 0

 eval null.property

} catch(ex) {

 # ex contains an exception

 log info ex

 # Prints the following:

 # Arithmetic Error: / by zero

 # at stt:documentation_test ~ <body>

}

The standard try-catch block stops execution after the first exception has been caught, and holds that exception in the variable
specified in the catch block.

Also see: Data Types > Exceptions

try-recovering-catch

The try-recovering-catch instruction is a variation of the try-catch instruction, where the only difference is, after catching an exception
in the try block, it will continue execution until it reaches the end. After that, the variable specified in the catch block will contain a list
of exceptions, collected from the try block.
The catch block will not run if no exceptions were caught in the try block.
Syntax:

try recovering {

 <commands and instructions...>

} catch(<identifier: exception_var_name>) {

 <commands and instructions...>

}

Examples:

try recovering {

 eval 1 / 0

 eval null.property

} catch(gx) {

 # gx contains a list of exceptions

 log info gx

 # Prints the following:

 # [Arithmetic Error: / by zero, Type Error: Unexpected null value]

}

try-recovering-catch blocks behave more similarly to entries outside any exception handling block, as an error in a single command
will not stop later commands from logging their errors. However, unlike entries outside of it, try-recovering blocks will

Also see: Data Types > Exceptions

throw

The throw instruction is used to inform the calling environment that an error occurred in the execution of a piece of code, using a
string to describe the error, or another exception that has been caught.
throw will forcefully exit from the dynamic function that contains it, unless it was called from a try-recovering block.
Uncaught exceptions will prevent the output data pack and resource packs from being generated.
Syntax:

throw <string: message>

throw <exception>

Example:

var sqrt = function(x) {

 if(x < 0) {

 throw "Illegal argument 'x', expected non-negative"

 } else {

 # ...

 }

}

Variables
You can declare variables to use in commands with the following syntax:

[<visibility>] [<final>] var <identifier> [: [<constraint>]] = <value>

Where visibility is optional, and specifies the visibility of the variable to other files (see Variable Visibility). If not specified, defaults to
local.
The identifier is the name of the variable it is creating.
The value is an Interpolation Value (such as integers, real numbers, strings, booleans, null, etc.) to assign to the variable (see
Interpolation Values)
You can access variables from commands using Interpolation Blocks, which we’ll cover later (see Interpolation Blocks).

If you specify final before the var keyword, the variable will only be able to change its value once. Any further attempts to change
the value in this variable will fail.

Variable Visibility
There are three main modes of variable visibility, which affect how files other than the declaring one can access the variable. They
are:

1.​ private: Only the declaring file can access the symbol.​
In the context of Class members, private visibility means only the defining class can access it.

2.​ local: Only the declaring file and files which @require the declaring file can use it. This is the default for variables declared
with var.​
In the context of Class members, local means only the declaring file and subclasses can access this symbol.

3.​ global: Any file can see the variable without any @require directives, as long as the declaring file is read before. This is the
default for custom items and entities.​
This cannot be used for Class members.

4.​ public: Only usable by Class members. Public visibility means any file can access this symbol.

Type Constraints
Variables and other symbols (such as function parameters and return values) can be constrained to be a certain type.
A type constraint has two properties:

1.​ The Type. This is the type definition that the values MUST be an instance of. If a type constraint has no type, it will accept any
type of value.​
The type may be a primitive or a user-defined class.

2.​ Nullability: If the type constraint is nullable, it will accept null values as well as whatever type is assigned to it. If the type
constraint is not nullable, attempting to assign a null value to it will result in an exception. In a type constraint literal, this is
represented as a question mark after the type. Omitting the question mark will make the type constraint not nullable.

Assigning to a type-constrained symbol will check the type of the value before assigning, and throw an exception if the value doesn't
conform to the constraints.

A type constraint is declared by using a colon :, followed by the type to constraint to and, optionally, a question mark ? to mark it
nullable.
Example using variables:

var someInt : int = 3 # OK

var someString : string = "a" # OK

var someNullableString : string? = "b" # OK

eval someInt = 5 # OK

eval someInt = "" # ERROR

eval someString = "c" # OK

eval someString = null # ERROR

eval someNullableString = "d" # OK

eval someNullableString = null # OK

Assignment will also check if the value can be implicitly converted into the target type, and automatically perform the conversion.
Some primitive types have implicit conversions defined, such as int to real. Example:

var someReal : real = 3.0 # OK

eval someReal = 5 # OK

If a type constraint isn't defined for a symbol, it defaults to a constraint that can accept any value of any type, null or not.

var anything = 3.0 # OK

eval anything = "ab" # OK

eval anything = null # OK

Inferred Constraints
Some symbol definitions allow the constraints to be inferred by the initial value, such as variable definitions and field definitions.
This is done by using a colon : but omitting the type. A type constraint will be created using the type definition of the initial value
assigned to it. Note that constraints cannot be inferred for null initial values.​
Example:

var symbolA : = 3 # Constrained to int

var symbolB : = 3.0 # Constrained to real

var symbolC : = "ab" # Constrained to string

var symbolD : = null # ERROR

Type Checking and Type Conversion
You may come across a situation where you'd like to check the type of a variable before doing any operations with it. Trident has a
special operator specifically for this.

is operator
The is operator is a simple binary operator that takes a value on the left, and a type on the right (can be a primitive or a custom
class). This operator will return true if the value given is of the specified type, either the exact type or another type that extends the
one specified. Otherwise it will return false. Null values will always return false.​
Note that this operator will not check whether the value can be coerced into the given type.​
Example:

log info 5 is int # logs true

log info "a" is string # logs true

log info 5 is real # logs false

log info 5.0 is real # logs true

log info null is string # logs false

Another way that might be useful is the type_definition.of() function, which will return the exact type of the value given.

You might also need to convert a value into a certain type, and some types may have ways to convert a value into another of a
different type. For instance, you may want to convert an integer into a string, a string into a text component, a real number into a real
number range, etc.
This can be done via casting, and there are two ways to do it:

Strict casting
This is done by prepending the type in parenthesis to the value you want to cast. Strict casting will attempt to convert the value into
the target type, and it will throw an exception if the type does not support casting to the target type.​
Example:

log info (real) 5 # 5.0

log info (tag_byte) 1 # 1b

log info (int) 2.8 # 2

log info (nbt_path) null # null

log info (tag_byte) "foo" # ERROR

Weak casting (as operator)
The as operator is a binary operator that does almost exactly the same as casting, except that if the value is unable to be cast to the
target type, it will return null instead of throwing an error.​
Example:

log info 5 as real # 5.0

log info 1 as tag_byte # 1b

log info 2.8 as int # 2

log info null as nbt_path # null

log info "foo" as tag_byte # null

Interpolation Values

Data Types

Integers
Identifier: int

Integer values represent any kind of 4-byte integer number with a range from to , inclusive. An integer value can be − 231 231 − 1
created via a number literal like so:

var someInt = 3

var anotherInt = -72

clear @s minecraft:stone $someInt

Integers can be used in interpolation blocks in commands or instructions, in places where an integer is typically needed (such as the
give command item count, effect give duration, etc.).

Integer literals may also be specified in binary form as well as hexadecimal, with 0b and 0x prefixes respectively. Example:

var someInt = 0b0101 # 5

var anotherInt = 0xFF # 255

Conversions
​ real (explicit & implicit): A real with the same value as this integer.
​ int_range (explicit & implicit): An integer range with min and max set to this integer.
​ real_range (explicit & implicit): A real range with min and max set to this integer.
​ nbt_value & tag_int (explicit): An int tag with the same value as this integer.
​ tag_byte (explicit): A byte tag with the same value as this integer (adjusted into the byte range with modulo).
​ tag_short (explicit): A short tag with the same value as this integer (adjusted into the short range with modulo).
​ tag_float (explicit): A float tag with the same value as this integer.
​ tag_double (explicit): A double tag with the same value as this integer.
​ tag_long (explicit): A long tag with the same value as this integer.

Reals
Identifier: real
Real values represent any real number that can be stored in an 8-byte double-precision floating-point number. A real value can be
created via a number literal with a decimal point like so:

var pitch = 0.5

var someReal = 1000.04

playsound minecraft:ui.button.click master @a ~ ~ ~ 1 $pitch 0

Real numbers can be used in interpolation blocks in commands or instructions, in places where a real number is typically needed
(such as the playsound volume and pitch, spreadplayers distance, etc.).

Real literals may also be specified in engineering notation
Example:

var someReal = 1.5e+3 # 1500.0

var anotherReal = 1.5e-3 # 0.0015

Conversions
​ int (explicit): An integer value with the result of truncating this real number.
​ real_range (explicit & implicit): A real range with min and max set to this real number.
​ nbt_value & tag_double (explicit): A double tag with the same value as this real number.
​ tag_float (explicit): A float tag with the same value as this real number.

Booleans
Identifier: boolean
Real values represent true/false values. A boolean value can be created via a boolean literal like so:

var on = true

var off = false

Strings
Identifier: string
String values represent any sequence of characters, which together form text. A string value can be created via a string literal like so:

var str = "This is a string"

var anotherString = "A string with \"escaped\" characters"

var singleQuotedString = 'this is a string too, and the single quote (") needs no escaping'

var someObjective = "field0"

define objective $someObjective

scoreboard players add @s[name=$str] $someObjective 1

Strings can be used in interpolation blocks in commands or instructions, in places where a string literal is expected (name selector
argument) or an identifier is expected (objective names, tag command tag names, etc.).

Members

Indexer: string[index : int]
readonly
Returns a single-character string containing the character at the given index.
Example:

log info "Mojang"[3] #logs "a"

length: int
readonly
Contains the length of this string; that is, the number of characters in this string.​
Example:

log info "Mojang".length #logs 6

substring: function(beginIndex : int, endIndex : int?) : string
readonly
Returns a string that is a substring of this string. The substring begins at the specified beginIndex and extends to the character at
index endIndex - 1.
Thus the length of the substring is endIndex-beginIndex.
If endIndex is omitted, it defaults to the length of the string.
Example:

log info "stonecutter".substring(5, 8) #logs "cut"

log info "replaceitem".substring(7) #logs "item"

indexOf: function(str : string) : int
readonly
Returns the first index at which the given parameter substring occurs in this string. Returns -1 if the string doesn't contain the given
parameter.​
Example:

log info "a b c d e".indexOf("d e") #logs 6

lastIndexOf: function(str : string) : int
readonly
Returns the last index at which the given parameter substring occurs in this string. Returns -1 if the string doesn't contain the given
parameter.​
Example:

log info "this appears twice in this string".lastIndexOf("this") #logs 22

split: function(delimiter : string, limit : int?) : list
readonly
Splits this string around matches of the given substring, and returns the result as a list of strings. The limit, if greater than 0, limits the
number of elements in the return list, and only splits the string $limit times. Additionally, if the limit is set to zero, consecutive
occurrences of the delimiter will split the string once, avoiding empty strings in the result list.
If limit is omitted, it defaults to 0.
Example:

log info "foo:and:boo".split(":") #logs ["foo", "and", "boo"]

splitRegex: function(regex : string, limit : int?) : list
readonly
Splits this string around matches of the given regular expression, and returns the result as a list of strings. The limit, if greater than 0,
limits the number of elements in the return list, and only splits the string $limit times. Additionally, if the limit is set to zero, consecutive
occurrences of the delimiter will split the string once, avoiding empty strings in the result list.
If limit is omitted, it defaults to 0.
Example:

log info "foo:and:boo".splitRegex(".(?=:)") #logs ["foo:", "and:", "boo"]

replace: function(target : string, replacement : string) : string
readonly
Returns this string after replacing all occurrences of the target string with the replacement string.
Example:

log info "foo:and:boo".replace(":",", ") #logs "foo, and, boo"

replaceRegex: function(target : string, replacement : string) : string
readonly
Returns this string after replacing all matches of the target regex within this string with the replacement string.
Example:

log info "foo:and:boo".replaceRegex(":\w+",".") #logs "foo.."

replaceFirst: function(target : string, replacement : string) : string
readonly
Returns this string after replacing the first match of the target regex within this string with the replacement string.
Example:

log info "foo:and:boo".replaceFirst(":\w+","") #logs "foo:boo"

toLowerCase: function() : string
readonly
Returns this string after replacing all characters with their lowercase counterpart in the English locale.
Example:

log info "This is a String".toLowerCase() #logs "this is a string"

toUpperCase: function() : string
readonly
Returns this string after replacing all characters with their uppercase counterpart in the English locale.
Example:

log info "This is a String".toUpperCase() #logs "THIS IS A STRING"

trim: function() : string
readonly
Returns this string after replacing all whitespace characters at the beginning and the end of this string.
Example:

log info " This is a String ".trim() #logs "This is a String"

startsWith: function(str : string) : boolean
readonly
Tests if this string starts with the specified prefix.
Example:

log info "This is a String".startsWith("This") #logs true

endsWith: function(str : string) : boolean
readonly
Tests if this string ends with the specified suffix.
Example:

log info "This is a String".endsWith("String") #logs true

contains: function(str : string) : boolean
readonly
Tests if the given string exists as a substring of this string.
Example:

log info "setblock ~ ~ ~ stonecutter".contains("stone") #logs true

matches: function(str : string) : boolean
readonly
Tests if this string completely matches the given regular expression.
Example:

log info "minecraft:stone".matches("[a-z0-9_\\.-]+?:[a-z0-9_/\\.-]+")​
#logs true​
log info "mine/craft:stone".matches("[a-z0-9_\\.-]+?:[a-z0-9_/\\.-]+")​
#logs false

isEmpty: function() : boolean
readonly
Returns true if this string contains no characters; that is, its length is zero.
Example:

log info "".isEmpty() #logs true

isWhitespace: function() : boolean
readonly
Returns true if this string's first character is a whitespace character (space, tabulation, newline). See Java's
Character.isWhitespace(char) method. Throws an exception if the string is empty.
Example:

log info " ".isWhitespace() #logs true

isDigit: function() : boolean
readonly
Returns true if this string's first character is a digit character. See Java's Character.isDigit(char) method. Throws an exception if the
string is empty.
Example:

log info "9".isDigit() #logs true

isLetter: function() : boolean
readonly
Returns true if this string's first character is a letter character. See Java's Character.isLetter(char) method. Throws an exception if the
string is empty.
Example:

log info "F".isLetter() #logs true

isLetterOrDigit: function() : boolean
readonly
Returns true if this string's first character is a letter character or a digit character. See Java's Character.isLetterOrDigit(char) method.
Throws an exception if the string is empty.
Example:

log info "F".isLetterOrDigit() #logs true

Iterator
Using a for-each loop on a string will create single-character string entries for each character in the original string. The entries in the
iterator will be in the order they appear in the string.
Example:

for(char in "ABC") {

 log info char

}

logs:

A

B

C

Conversions
​ nbt_value & tag_string (explicit): A string tag with this string as its content.

entity (explicit): Turns this entity into a fake player that can be used as an entity. The string may not be empty and must not
contain whitespace.

​ resource (explicit): Parses this string into a resource location. Must be a valid resource location.
​ text_component (explicit): Turns this string into a string text component.

Integer Ranges
Identifier: int_range
Integer ranges consist of one or two integers, which represent all possible numbers between them. (In the case only one integer, the
other defaults to positive or negative infinity). They can be created either via a integer range literal or the int_range constructor:

var range0 = int_range<5..10>

var range1 = int_range<5..>

var range2 = int_range<..10>​
var range3 = new int_range(5, 10) # same as range0​
var range4 = new int_range(5, null) # same as range1​
var range4 = new int_range(null, 10) # same as range2

Integer ranges can be used in interpolation blocks in commands, in places where an integer range is typically needed (such as
selector arguments).

Constructor
new int_range(min : int?, max : int?) : int_range
Creates an integer range with the specified min and max bounds.​
Example:

var range0 = new int_range(5, 10)​
var range1 = new int_range(5, null)​
var range2 = new int_range(null, 10)

Members

min: int?
readonly
Contains the lower bound of this range. Returns null if the lower bound is not specified.​
Example:

log info int_range<5..10>.min #logs 5

log info int_range<..10>.min #logs null

max: int?
readonly
Contains the upper bound of this range. Returns null if the upper bound is not specified.​
Example:

log info int_range<5..10>.max #logs 10

log info int_range<5..>.max #logs null

range: int
readonly
Contains the difference between the upper and lower bounds, as if null values represented min and max values of the integer data
type. (Note: may overflow for ranges larger than the max int)​
Example:

log info int_range<5..15>.range #logs 10

log info int_range<5..>.range #logs 2147483642

deriveMin: function(newMin : int?) : int_range
readonly
Returns a new range whose lower bound is the one specified.
Example:

log info int_range<5..10>.deriveMin(2) #logs 2..10

log info int_range<5..10>.deriveMin(null) #logs ..10

deriveMax: function(newMax : int?) : int_range
readonly
Returns a new range whose upper bound is the one specified.
Example:

log info int_range<5..10>.deriveMax(20) #logs 5..20

log info int_range<5..10>.deriveMax(null) #logs 5..

Real Ranges
Identifier: real_range
Real ranges consist of one or two real numbers, which represent all possible numbers between them. (In the case only one real
number, the other bound is undefined). They can be created either via a real range literal or the real_range constructor:

var range0 = real_range<5.5..10.2>

var range1 = real_range<5.5..>

var range2 = real_range<..10.2>​
var range3 = new real_range(5.5, 10.2) # same as range0​
var range4 = new real_range(5.5, null) # same as range1​
var range5 = new real_range(null, 10.2) # same as range2

Real ranges can be used in interpolation blocks in commands, in places where a real range is typically needed (such as the distance
selector argument).

Constructor
new real_range(min : real?, max : real?) : real_range
Creates an integer range with the specified min and max bounds.​
Example:

var range0 = new real_range(5.5, 10.2)​
var range1 = new real_range(5.5, null)​
var range2 = new real_range(null, 10.2)

Members

min: real?
readonly
Contains the lower bound of this range. Returns null if the lower bound is not specified.​
Example:

log info real_range<5.5..10.2>.min #logs 5.5

log info real_range<..10.2>.min #logs null

max: real?
readonly
Contains the upper bound of this range. Returns null if the upper bound is not specified.​
Example:

log info real_range<5.5..10.2>.max #logs 10.2

log info real_range<5.5..>.max #logs null

range: int
readonly
Contains the difference between the upper and lower bounds. This will be Infinity if either the upper or lower bounds are unspecified.​
Example:

log info real_range<5.5..15.2>.range #logs 9.7

log info real_range<5.5..>.range #logs Infinity

deriveMin: function(newMin : real?) : real_range
readonly
Returns a new range whose lower bound is the one specified.
Example:

log info real_range<5.5..10.2>.deriveMin(2.5) #logs 2.5..10.2

log info real_range<5.5..10.2>.deriveMin(null) #logs ..10.2

deriveMax: function(newMax : real?) : real_range
readonly
Returns a new range whose upper bound is the one specified.
Example:

log info real_range<5.5..10.2>.deriveMax(20.5) #logs 5.5..20.5

log info real_range<5.5..10.2>.deriveMax(null) #logs 5.5..

Entities
Identifier: entity
Values of type entity represent ways to target an entity, either through a selector or a player name. They can be created via a entity
literal:

var fakePlayer = entity<#RETURN>

var selector = entity<@e[type=cow,tag=onGround]>

kill $selector

Entity values can be used in interpolation blocks in commands, in places where an entity is typically needed.
NOTE: UUIDs are internally treated as player names by the following functions.

Members

isPlayerName: function() : boolean
readonly
Returns true if this entity representation is a player name (not a selector)
Example:

log info entity<#RETURN>.isPlayerName() #logs true

log info entity<@a>.isPlayerName() #logs false

isPlayer: function() : boolean
readonly
Returns whether all the entities represented by this object are guaranteed to be of type minecraft:player.
Example:

log info entity<#RETURN>.isPlayer() #logs true

log info entity<@a>.isPlayer() #logs true

log info entity<@e>.isPlayer() #logs false

log info entity<@s>.isPlayer() #logs false

isUnknownType: function() : boolean
readonly
Returns whether the type of the entities represented by this object cannot be known just from this object's values.
An example of this is the @s selector, where @s could mean any entity type, even if it only returns one entity.
Returns false if it expected to return more than one entity type.
Example:

log info entity<#RETURN>.isUnknownType() #logs false

log info entity<@a>.isUnknownType() #logs false

log info entity<@e>.isUnknownType() #logs true

log info entity<@e[type=cow]>.isUnknownType() #logs false

log info entity<@s>.isUnknownType() #logs true

getLimit: function() : int
readonly
Returns this entity's count limit; that is, how many entities, at maximum, this entity object represents. -1 if indeterminate.

Example:

log info entity<#RETURN>.getLimit() #logs 1

log info entity<@a>.getLimit() #logs -1

log info entity<@e[limit=5]>.getLimit() #logs 5

log info entity<@s>.getLimit() #logs 1

Blocks
Identifier: block
Values of type block group together a block type, blockstate and block data, which may represent the tiles at any position in a
Minecraft world. They can be created via a block literal:

var block0 = block<minecraft:prismarine_wall>

var block1 = block<minecraft:prismarine_wall[east=true,up=false]>

var block2 = block<command_block{auto:1b,Command:"tp @a ~ ~1 ~"}>

var block3 = block<chest[facing=east]{Lock:"Key"}>

var block4 = block<#wool>

setblock ~ ~ ~ $block2

Block values can be used in interpolation blocks in commands, in places where a block is typically needed.

Constructor
new block(type : resource?) : block
Creates a block value with the specified block type. May throw an exception if the type is not a valid block type.
If type is omitted, it defaults to minecraft:air.​
Example:

var wall = new block(resource<minecraft:prismarine_wall>)

var walls = new block(resource<#minecraft:walls>)

var air = new block()

Members

blockType: resource
get-set
Holds the type or ID of this block.​
Example:

log info block<stone>.blockType #logs minecraft:stone

log info block<#wool>.blockType #logs #minecraft:wool

blockState: dictionary?
get-set
Holds a Dictionary object containing all the key-value pairs of this block's state (may be null).​
Example:

log info block<stone>.blockState

#logs null

log info block<brick_wall[east=true,up=false]>.blockState

#logs {east: "true", up: "false"}

blockTag: tag_compound?
editable
Contains the tag compound containing this block's NBT data (may be null).​
Example:

log info block<stone>.blockTag

#logs null

log info block<command_block{auto:1b,Command:"tp @a ~ ~1 ~"}>.blockTag

#logs {auto:1b,Command:"tp @a ~ ~1 ~"}

Items
Identifier: item
Values of type item group together an item type and item data, which may represent the item at any entity or container's slot in a
Minecraft world. They can be created via an item literal, using explicit type and NBT, or a reference to a custom item type:

var item0 = item<minecraft:prismarine_wall>

var item1 = item<$someCustomItem>

var item2 = item<bow{Enchantments:[{id:"flame",lvl:1s}]}>

var item3 = item<#minecraft:music_discs>

give @a $item1

clear @a $item3

Item values can be used in interpolation blocks in commands, in places where an item is typically needed.

Constructor
new item(type : resource?) : item
Creates an item value with the specified item type. May throw an exception if the type is not a valid item type.
If type is omitted, it defaults to minecraft:air.​
Example:

var stick = new item(resource<minecraft:stick>)

var records = new item(resource<#minecraft:music_discs>)

var air = new item()

Members

itemType: resource
get-set
Holds the type or ID of this item.​
Example:

log info item<stick>.itemType #logs minecraft:stick

log info item<#wool>.itemType #logs #minecraft:wool

itemTag: tag_compound?
editable
Contains the tag compound containing this item's NBT data (may be null).​
Example:

log info item<stick>.itemTag

#logs null

log info item<bow{display:{Name:'"PSG-1"'}}>.itemTag

#logs {display:{Name:'"PSG-1"'}}

https://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#isWhitespace(char)
https://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#isDigit(char)
https://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#isLetter(char)
https://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#isLetterOrDigit(char)

getSlotNBT: function() : tag_compound
readonly
Returns an NBT compound representing this item in a slot in NBT.
Example:

log info item<bow{display:{Name:'"PSG-1"'}}>.getSlotNBT()

#logs {tag:{display:{Name:"\"PSG-1\""}},id:"minecraft:bow",Count:1b}

Text Components
Identifier: text_component
Values of type text component represent JSON text with formatting, which can be shown in-game. They can be created via a text
component literal or the text_component constructor:

var text0 = text_component<"Winner">

var text1 = text_component<{"selector":"@s"}>

var text2 = text_component<["Winner: ",{"selector":"@s"}]>

var text3 = new text_component(["First Round's ", text2])

tellraw @a $text3

Item values can be used in interpolation blocks in commands or instructions, in places where an item is typically needed.

Constructor
new text_component(object : *?, ignoreIncompatibleTypes : boolean?) : text_component
Creates a block text component out of the given object, recursively. If ignoreIncompatibleTypes is false (or unset), an exception
will be thrown if a value that cannot be converted to a text component is found.
Valid object types are: string, boolean, dictionary, list, entity, resource, coordinate, pointer or text_component. If null,
defaults to an empty string.
If ignoreIncompatibleTypes is omitted, it defaults to false.​
Example:

var text3 = new text_component(["First Round's ", text2, " (", pointer<@s -> score>, " points)"])

log info text3

#logs ["First Round's ",["Winner",{"selector":"@s"}]," (",{"score":{"name":"@s","objective":"score"}},"

points)"]

NBT Values
Identifier: nbt_value​
grouping type

Values of type NBT Value represent data storage elements for Minecraft's entities, items and blocks. There are many subtypes of nbt
values.

Constructor
new nbt(object : *?, ignoreIncompatibleTypes : boolean?) : nbt_value
Creates an nbt value out of the given object, recursively. If ignoreIncompatibleTypes is false (or unset), an exception will be
thrown if a value that cannot be converted to an NBT value is found.
Valid object types are: int, real, string, boolean, resource, dictionary, list or nbt_value. If null, defaults to an empty
dictionary.
If ignoreIncompatibleTypes is omitted, it defaults to false.
Notes: ​Any nbt value passed to this constructor will be cloned.
​ Any integers passed to this constructor will be turned into tag_int
​ Any reals passed to this constructor will be turned into tag_double
​ Any booleans passed to this constructor will be turned into tag_byte (1b->true, 0b->false)​
Example:

var nbt2 = new nbt({CustomModelData:120,Unbreakable:nbt_value<1b>})

var nbt3 = new nbt({Item:{id:resource<stone>,Count:nbt_value<3b>,tag:nbt2}})

log info nbt2 #logs {Unbreakable:1b,CustomModelData:120}

log info nbt3 #logs {Item:{id:"minecraft:stone",Count:3b,tag:{Unbreakable:1b,CustomModelData:120}}}

Tag Compounds
Identifier: tag_compound​
alias: nbt​
extends: nbt_value

Values of type Tag Compound represent key-value pairs, where keys are strings, and values are exclusively NBT values. They can
be created via a nbt literal, nbt_value literal or the nbt constructor:

var nbt0 = nbt<{CustomModelData:120,Unbreakable:1b}>

var nbt1 = nbt_value<{CustomModelData:120,Unbreakable:1b}>

var nbt2 = new nbt({CustomModelData:120,Unbreakable:nbt_value<1b>})

give @a minecraft:carrot_on_a_stick$nbt0

Tag Compound values can be used in interpolation blocks in commands, in places where a tag compound is typically needed. They
can also be used in item or block literals to add or merge the two NBT compounds.

Members

Indexer: tag_compound[key : string] : nbt_value?
readonly
Returns the nbt value associated with the specified key, or null if it doesn't exist.
Example:

log info nbt<{Age:0s,PickupDelay:10s,Tags:["a"]}>["Age"] #logs 0s

merge: function(other : tag_compound) : tag_compound
readonly
Creates a new tag compound that contains elements of both this compound and the compound given by the parameter. In case of
conflict between tags, the tags from the other compound overwrite those of this compound.
Example:

var nbt0 = nbt<{Age:0s,PickupDelay:10s,Tags:["a"]}>

var nbt1 = nbt<{PickupDelay:40s,Tags:["b"]}>

log info nbt0.merge(nbt1) #logs {Age:0s,PickupDelay:40s,Tags:["a","b"]}

remove: function(key : string)
readonly
Removes a value from the tag compound using the given key, if it exists.
Example:

var nbt0 = nbt<{Age:0s,PickupDelay:10s,Tags:["a"]}>

log info nbt0 #logs {Age:0s,PickupDelay:10s,Tags:["a"]}

eval nbt0.remove("Age")

log info nbt0 #logs {PickupDelay:10s,Tags:["a"]}

toDictionary: function() : dictionary
readonly
Creates a dictionary representation of this NBT tag tree and its nested values. This will convert all number tags into integers and
reals, string tags into strings, list tags into lists, compounds into dictionaries and so on.
Example:

var nbt0 = nbt<{Age:0s,PickupDelay:40s,Tags:["a","b"]}>

log info nbt0.toDictionary()

logs {PickupDelay: 40, Age:0, Tags: ["a", "b"]}

Note that what is returned is of type dictionary and is editable, unlike tag_compound

Iterator
Using a for-each loop on a tag compound will create one value for each key-value pair. The iterator's values are dictionaries with two
entries each: "key", which holds the tag's name, and "value", which holds the entry's value as an NBT tag. The entries in the iterator
are not guaranteed to be in any particular order.​
Modifying the dictionary during iteration is not allowed and will throw a concurrent modification exception.
Example:

var comp = nbt<{Age:0s,PickupDelay:40s,Tags:["a","b"]}>

for(entry in comp) {

 log info entry

}

logs:

{value: 0s, key: "Age"}

{value: 40s, key: "PickupDelay"}

{value: ["a","b"], key: "Tags"}

Tag Lists
Identifier: tag_list​
extends: nbt_value

Values of type Tag List represent sequences of nbt_values of the same type. They can be created via a nbt_value literal or the nbt
constructor:

var tagList0 = nbt_value<[0.0f,180.0f,90.0f]>

var tagList1 = new nbt(["a","b","new"])

summon minecraft:skeleton ~ ~ ~ {Tags:$tagList1}

Tag List values can be used in interpolation blocks in commands or instructions, in places where a tag compound is typically needed.
They can also be used in item or block literals to add or merge the two NBT compounds.

Members

Indexer: tag_list[index : int] : nbt_value
readonly
Returns the nbt value at the specified index.
Example:

log info nbt_value<[0.0f,180.0f,90.0f]>[2] #logs 90.0f

length: int
readonly
Contains the length of this tag_list; that is, the number of elements in this tag list.​
Example:

log info nbt_value<["a","b","new","needs_id"]>.length #logs 4

merge: function(other : tag_list) : tag_list
readonly
Creates a new tag list that contains elements of both this tag list and the one given by the parameter. Conflicting tag lists with the
same type will be merged, with elements from the parameter tag list appearing after those of this tag list. In case of conflict between
tag list content types (e.g. trying to merge a float tag_list and a string tag_list), an exception will be thrown.
Example:

var tagList0 = nbt_value<[0.0f,180.0f,90.0f]>

var tagList1 = new nbt(["a","b"])

var tagList2 = new nbt(["new","needs_id"])

log info tagList1.merge(tagList2) #logs ["a","b,"new","needs_id"]

log info tagList0.merge(tagList1)

#Error: Unable to merge tag lists: Incompatible types: TAG_String and TAG_Float

toList: function() : list
readonly
Creates a list representation of this NBT tag tree and its nested values. This will convert all number tags into integers and reals,
string tags into strings, list tags into lists, compounds into dictionaries and so on.
Example:

var tagList0 =

nbt_value<[{},{},{id:"minecraft:leather_chestplate",Count:1b},{id:"minecraft:pumpkin",Count:1b}]>

log info tagList0.toList()

logs [{}, {}, {id: "minecraft:leather_chestplate", Count: 1}, {id: "minecraft:pumpkin", Count: 1}]

Note that what is returned is of type list and is editable, unlike tag_list

Iterator
Using a for-each loop on a tag list will yield each element in the list to the iterating variable, as an NBT tag. The entries in the iterator
will be in the order they appear in the list.​
Modifying the list during iteration is not allowed and will throw a concurrent modification exception.
Example:

var list = nbt_value<[1s,2s,4s,8s]>

for(entry in list) {

 log info entry

}

logs:

1s

2s

4s

8s

Other NBT Tag Types
extends: nbt_value

1.​ tag_byte constructor: new tag_byte(n : int)
2.​ tag_short constructor: new tag_short(n : int)
3.​ tag_int constructor: new tag_int(n : int)
4.​ tag_float constructor: new tag_float(n : real)
5.​ tag_double constructor: new tag_double(n : real)
6.​ tag_long constructor: new tag_long(v) where argument 0 is: int, real or string
7.​ tag_string constructor: new tag_string(str : string)
8.​ tag_byte_array constructor: new tag_byte_array(list : list) where list contains ints
9.​ tag_int_array constructor: new tag_int_array(list : list) where list contains ints
10.​tag_long_array constructor: new tag_long_array(list : list) where list contains ints, reals or strings.

As a reminder of the syntax, tag_byte_array, tag_int_array and tag_long_array can be created through the nbt_value literal, just like
values of type tag_list, except adding a prefix before all the elements. Note that for each element in the array (excluding int arrays),
the proper suffix must be added, or else it will be read as an integer, an incompatible type.
Example:

var byteArr = nbt_value<[B; 0b, 1b, 2b, 3b]>

var intArr = nbt_value<[I; 0, 1, 2, 3]>

var longArr = nbt_value<[L; 0L, 1L, 2L, 3L]>

setblock ~ ~ ~ minecraft:campfire{CookingTime:$intArr}

Conversions
​ <any numeric NBT type> to int (explicit): Gets the truncated integer value of this NBT value.
​ <any numeric NBT type> to real (explicit): Gets the real value of this NBT value.
​ <any numeric array NBT type> to list (explicit): Retrieves all the tags of this array into a list of nbt values.

NBT Paths
Identifier: nbt_path
Values of type NBT Path represent routes through an NBT tree that point to one or many nbt value within it. They can be created via
the nbt_path literal:

var path = nbt_path<Items[0].tag.display.Name>

data modify block ~ ~ ~ $path set value '"New Item"'

NBT Path values can be used in interpolation blocks in commands, in places where a path is typically needed.

Constructor
4 overloads:
new nbt_path(key : string, compoundMatch : tag_compound?) : nbt_path
Creates a NBT path root out of the given key, of the form key{compoundMatch} where the compound match is optional.
new nbt_path(compoundMatch : tag_compound, wrapInList : boolean?) : nbt_path
Creates a NBT path root out of the given compound, of the form {compoundMatch}. If wrapInList is true, it'll be wrapped in a list
match, making it [{compoundMatch}].
new nbt_path(index : int) : nbt_path
Creates a NBT path root out of the given list index, of the form [index].
new nbt_path() : nbt_path
Creates a NBT path root of the form []
Examples:

var path0 = new nbt_path("CustomModelData")

var path1 = new nbt_path("display",nbt<{Lore:[]}>)

var path2 = new nbt_path(nbt<{HurtTime:10s}>)

var path3 = new nbt_path(nbt<{HurtTime:10s}>, true)

var path4 = new nbt_path(2)

var path5 = new nbt_path()

Paths 3, 4 and 5 are never used in practice, though still valid in-game

log info path0 #logs CustomModelData

log info path1 #logs display{Lore:[]}

log info path2 #logs {HurtTime:10s}

log info path3 #logs [{HurtTime:10s}]

log info path4 #logs [2]

log info path5 #logs []

Members

resolveKey: function(key : string, compoundMatch : tag_compound?) : nbt_path
readonly
Creates a new NBT path with the given key segment (and optionally, a compound match) added to the end.
Example:

log info nbt_path<RecordItem>.resolveKey("id") #logs RecordItem.id

log info nbt_path<RecordItem>.resolveKey("tag", nbt<{Damage:0s}>)

#logs RecordItem.tag{Damage:0s}

resolveIndex: function(index : int) : nbt_path
readonly
Creates a new NBT path with the given index segment added to the end.
Example:

log info nbt_path<Items>.resolveIndex(0) #logs Items[0]

resolveListMatch: function(match : tag_compound) : nbt_path
readonly
Creates a new NBT path with the given list match segment added to the end.
Example:

log info nbt_path<Items>.resolveListMatch(nbt<{id:"minecraft:snowball"}>)

#logs Items[{id:"minecraft:snowball"}]

log info nbt_path<Items>.resolveListMatch()

#logs Items[]

Coordinate Sets
Identifier: coordinates
Values of type Coordinate Set represent points in 3D space in a given coordinate system. They can be created via the coordinate
literal:

var origin = coordinates<0.0 0.0 0.0> # parsed as 0.0 0.0 0.0

var pos0 = coordinates<0 0 0> # parsed as 0.5 0.0 0.5

var pos1 = coordinates<~ ~-8 ~> # parsed as ~ ~-8 ~

var pos2 = coordinates<^ ^ ^.1> # parsed as ^ ^ ^0.1

var pos3 = coordinates<15 3 -7> # parsed as 15 3 -7

var pos4 = coordinates<~ 255 ~> # parsed as ~ 255 ~

setblock $origin jukebox # setblock 0 0 0 minecraft:jukebox

setblock $pos0 jukebox # setblock 0 0 0 minecraft:jukebox

summon pig $origin # summon pig 0.0 0.0 0.0

summon pig $pos0 # summon pig 0.5 0.0 0.5

spreadplayers $pos3 1 2 true @a # spreadplayers 15.5 -6.5 1 2 true @a

Coordinate values can be used in interpolation blocks in commands, in places where a coordinate set is typically needed.
NOTE: Through the coordinate literal, the coordinates are parsed as if they were going to be used for an entity position. That means
0.5 is added to X and Z axes if they are absolute. Note that for every command that uses coordinates, the output is adjusted for each
type of coordinate mode it uses.

Members

getMagnitude: function(axis : trident-util:native@Axis) : real
readonly
Retrieves the magnitude of the coordinate set along a given axis (in entity position mode). The axis parameter should be one of the
X, Y and Z constants of the Axis class.
Example:

log info coordinates<0.0 1.0 2.0>.getMagnitude(Axis.Z) # logs 2.0

log info coordinates<0 1 2>.getMagnitude(Axis.X) # logs 0.5

log info coordinates<~ ~1 2>.getMagnitude(Axis.Y) # logs 1

getCoordinateType: function(axis : trident-util:native@Axis) : trident-util:native@CoordinateType
readonly
Retrieves the coordinate type of the coordinate along a given axis. The axis parameter should be one of the X, Y and Z constants of
the Axis class. The returned value is one of the ABSOLUTE, RELATIVE and LOCAL constants of the CoordinateType class.
Example:

log info coordinates<~ ~ 2.0>.getCoordinateType(Axis.Z)

#logs CoordinateType.ABSOLUTE

log info coordinates<~ ~ 2.0>.getCoordinateType(Axis.Y)

#logs CoordinateType.RELATIVE

log info coordinates<^ ^ ^.1>.getCoordinateType(Axis.X)

#logs CoordinateType.LOCAL

deriveMagnitude: function(newMagnitude : real, axis : trident-util:native@Axis?) : coordinates
readonly
Creates a new coordinate set after changing one or all axes' magnitudes to the one given. The axis parameter is optional, and should
be one of the X, Y and Z constants of the Axis class. If the axis is not specified, all axes' magnitudes will be changed; otherwise, only
the specified axis is changed.
Example:

log info coordinates<~ ~ 2.0>.deriveMagnitude(1, Axis.X)

#logs ~1 ~ 2.0

log info coordinates<~ ~ 2.0>.deriveMagnitude(1)

#logs ~1 ~1 1.0

deriveCoordinateType:

function(

newType : trident-util:native@CoordinateType,

axis : trident-util:native@Axis?

) : coordinates
readonly
Creates a new coordinate set after changing one or all axes' coordinate types to the one given. The axis parameter is optional, and
should be one of the X, Y and Z constants of the Axis class. Only the type of the axis specified will be changed to the new type,
unless at least one of the following conditions is met:

1.​ The axis is not specified.
2.​ The specified coordinate type is CoordinateType.LOCAL
3.​ The coordinate type of the original coordinate set is CoordinateType.LOCAL

If one of these conditions is met, all axes will be changed to the given type, regardless of the axis specified.
Example:

log info coordinates<~ ~ 2.0>

 .deriveCoordinateType(CoordinateType.ABSOLUTE, Axis.X)

#logs 0.0 ~ 2.0

log info coordinates<1.0 2.0 3.0>

 .deriveCoordinateType(CoordinateType.RELATIVE, Axis.Y)

#logs 1.0 ~2 3.0

log info coordinates<1.0 2.0 3.0>

 .deriveCoordinateType(CoordinateType.RELATIVE)

#logs ~1 ~2 ~3

log info coordinates<1.0 2.0 3.0>

 .deriveCoordinateType(CoordinateType.LOCAL)

#logs ^1 ^2 ^3

log info coordinates<1.0 2.0 3.0>

 .deriveCoordinateType(CoordinateType.LOCAL, Axis.X)

#logs ^1 ^2 ^3

log info coordinates<^1 ^2 ^3>

 .deriveCoordinateType(CoordinateType.RELATIVE, Axis.X)

#logs ~1 ~2 ~3

Rotations
Identifier: rotation
Values of type Rotation represent an Euler rotation formed by yaw (rotation along the Y axis) and pitch (rotation along the X axis).
They can be created via the coordinate literal:

var origin = rotation<0 0>

var rot0 = rotation<45 90>

var rot1 = rotation<~ 0>

var rot2 = rotation<~180 ~12.5>

tp @s ~ ~ ~ $origin # tp @s ~ ~ ~ 0 0

tp @s ~ ~ ~ $rot0 # tp @s ~ ~ ~ 45 90

rotated $rot1 tp @s ^ ^ ^1 $rot2 # execute rotated ~ 0 run tp @s ^ ^ ^1 ~180 ~12.5

Rotation values can be used in interpolation blocks in commands, in places where a rotation is typically needed.

Members

getMagnitude: function(axis : trident-util:native@Axis) : real
readonly
Retrieves the magnitude of the coordinate set along a given axis (in entity position mode). The axis parameter should be one of the X
and Y constants of the Axis class. Remember that rotations are written in YX order.
Example:

log info rotation<~180 ~12.5>.getMagnitude(Axis.X) # logs 12.5

log info rotation<0 90>.getMagnitude(Axis.Y) # logs 0

getRotationType: function(axis : trident-util:native@Axis) : trident-util:native@RotationType
readonly
Retrieves the rotation type of the rotation along a given axis. The axis parameter should be one of the X and Y constants of the Axis
class. The returned value is one of the ABSOLUTE and RELATIVE constants of the RotationType class.
Example:

log info rotation<~ 90>.getCoordinateType(Axis.X)

#logs RotationType.ABSOLUTE

log info rotation<~ 90>.getCoordinateType(Axis.Y)

#logs RotationType.RELATIVE

deriveMagnitude: function(newMagnitude : real, axis : trident-util:native@Axis?) : rotation
readonly
Creates a new rotation after changing one or both axes' magnitudes to the one given. The axis parameter is optional, and should be
one of the X and Y constants of the Axis class. If the axis is not specified, both Y and X axes' magnitudes will be changed; otherwise,
only the specified axis is changed.
Example:

log info rotation<~ 90>.deriveMagnitude(-90, Axis.X)

#logs ~ -90

log info rotation<~ 90>.deriveMagnitude(-45)

#logs ~-45 -45

deriveRotationType:

function(

newType : trident-util:native@RotationType,

axis : trident-util:native@Axis?

) : rotation
readonly
Creates a new rotation after changing one or both axes' rotation types to the one given. The axis parameter is optional, and should
be one of the X and Y constants of the Axis class. If the axis is not specified, both Y and X axes' types will be changed; otherwise,
only the specified axis is changed.
Example:

log info rotation<~ 90>.deriveRotationType(CoordinateType.ABSOLUTE, Axis.X)

#logs 0 -90

log info rotation<0 90>.deriveRotationType(CoordinateType.RELATIVE)

#logs ~ ~90

Resource Locations
Identifier: resource
Values of type Resource Location represent locations in data packs or resource packs where any asset or resource may be located
within a namespace. They can be created via the resource literal, or cast from a string. If a namespace is not specified, it defaults to
the minecraft namespace. Can be prefixed with a # symbol to denote a tag. They also support Relative Resource Locations.

file: mypack:demo/resources

var res0 = resource<tick> # contains: minecraft:tick

var res1 = resource<mypack:tick> # contains: mypack:tick

var res2 = resource<#wool> # contains: #minecraft:wool

var res3 = resource<#mypack:load> # contains: #mypack:load

var res4 = (resource) "mypack:util/id" # contains: mypack:util/id

var res5 = resource<mypack:tile.step> # contains: mypack:tile.step

var res6 = resource</> # contains: mypack:demo/resources

var res7 = resource # contains: mypack:demo/resources/a

playsound $res5 master @a

define function $res4 {

 # ...

}

function $res4

Resource Locations can be used in interpolation blocks in commands and instructions, in places where a resource location is
typically needed.

Constructor
new resource(whole : string) : resource
Assembles a resource location entirely out of the given string.
new resource(namespace : string, parts : list, delimiter : string?) : resource
Assembles a resource location out of the given namespace and the specified parts, separated by a delimiter (by default, the forward
slash "/").
The parts may be strings or resource locations - in the latter case, only the body of the resource location is used in the output
resource location.
Examples:

log info new resource("#mypack:utils/random")

logs #mypack:utils/random

log info new resource("mypack", ["utils", "random", "get"])

logs mypack:utils/random/get

var rain = new resource("minecraft", ["weather", "rain"], ".")

log info rain

logs minecraft:weather.rain

log info new resource("minecraft", [rain, "above"], ".")

logs minecraft:weather.rain.above

Members

Indexer: resource[index : int] : string
readonly
Returns the string which represents the name at the specified position of the body.
Example:

log info resource<mypack:util/random/get>[0] # logs util

log info resource<mypack:util/random/get>[1] # logs random

log info resource<mypack:util/random/get>[2] # logs get

namespace : string
readonly
Contains the namespace of this resource.​
Example:

log info resource<tick>.namespace # logs "minecraft"

log info resource<#minecraft:tick>.namespace # logs "minecraft"

log info resource<mypack:tick>.namespace # logs "mypack"

body : string
readonly
Contains the body of this resource.​
Example:

log info resource<ui.toast.in>.body # logs "ui.toast.in"

log info resource<minecraft:load>.body # logs "load"

log info resource<mypack:tiles/step>.body # logs "tiles/step"

isTag : boolean
readonly
Contains whether this resource is tagged.​
Example:

log info resource<ui.toast.in>.isTag # logs false

log info resource<#minecraft:load>.isTag # logs true

nameCount : int
readonly
Retrieves the number of "names" in this resource location - that is, the number of parts separated by forward slashes in the body.​
Example:

log info resource<mypack:util/random/get>.nameCount # logs 3

log info resource<mypack:tiles/step>.nameCount # logs 2

log info resource<ui.toast.in>.nameCount # logs 1

parent: string?
readonly
Retrieves the resource location that is the parent of this resource location. That is, the resource location that has the same
namespace and isTag as this one, and its body is made from all the "names" from this location excluding the last one. If there is no
parent to this resource location, this member is null.​
Example:

log info resource<mypack:util/random/get>.parent # logs mypack:util/random

log info resource<ui.toast.in>.parent # logs null

subLoc: function(beginIndex : int, endIndex : int) : resource
readonly
Returns a similar resource location whose body contains only a specified range of names, such that the resulting resource location's
nameCount will be endIndex - beginIndex.
The names that will be kept will range from beginIndex (inclusive) to endIndex (exclusive)
Example:

log info resource<mypack:util/rand/get>.subLoc(1, 3) # logs mypack:rand\get

log info resource<mypack:util/rand/get>.subLoc(0, 2) # logs mypack:util\rand

resolve: function(other : string, delimiter : string?) : resource
readonly
Returns a similar resource location, with the specified name appended to the end. The other parameter may be a string or a
resource location - in the latter case, only the location's body will be added to the end. The delimiter used to append the resource
location will be, by default, the forward slash "/", unless specified by the second optional argument.
Example:

log info resource<mypack:util>.resolve("rand")

logs mypack:util/rand

log info resource<mypack:util>.resolve("rand", ".")

logs mypack:util.rand

log info resource<mypack:util>.resolve(resource<rand>)

logs mypack:util/rand

log info resource<mypack:util>.resolve(resource<rand>, ".")

logs mypack:util.rand

Iterator
Using a for-each loop on a resource location will create string entries for names in the resource location body. The entries in the
iterator will be in the order they appear in the resource location.
Example:

for(name in resource<mypack:util/random/get>) {

 log info name

}

logs:

util

random

get

Pointers
Identifier: pointer
Values of type Pointer represent places where data is typically stored in-game. They have four properties:

1.​ Target: The block, entity or resource location that holds the information
2.​ Member: The place they hold the information; either a scoreboard objective (entities only) or an NBT path.
3.​ Scale: Used in the set custom command. Stores how much to scale the value when getting or setting from this pointer. May

only exist for NBT path Members.
4.​ Numeric type: Used in the set custom command, when the member is an NBT path. Specifies what the data type of the NBT

tag is. If unspecified, Trident will attempt to determine the data type.
They can be created using the pointer literal.
Block targets should be
The separator between the target and the member depends on the type of target and member; score members will require an arrow
->, NBT paths require a dot ., and storage requires a tilde ~.

var ptr0 = pointer<#RETURN->global> # player #RETURN, score global

var ptr1 = pointer<@s->id> # sender, score id

var ptr2 = pointer<custom:storage~Tmp (double)>

storage "custom:storage", Tmp

var ptr3 = pointer<@s.Pos[1]> # sender, tag Pos[1], double (guess)

var ptr4 = pointer<(~ ~-1 ~).auto (byte)>

block at ~ ~-1 ~, tag auto, byte

var ptr5 = pointer<@p.Motion[0] * 0.1 (double)>​
nearest player, tag Motion[0], scale 0.1, double

set $ptr1 = $ptr0

scoreboard players operation @s id = #RETURN global

set $ptr2 = $ptr5

execute store result storage custom:storage Tmp double 1 run data get entity @p Motion[0] 0.1

scoreboard players operation deref $ptr1 += deref $ptr0

scoreboard players operation @s id += #RETURN global

Pointers can be used in interpolation blocks in the set command, as well as the scoreboard command by using the deref keyword in
place of the player name, and an interpolation block to the pointer in place of the objective name.

Note: The target and member properties of pointer objects can hold any data type; regardless of whether they make up a valid
pointer. However, if an invalid pointer is used on any command or instruction that uses pointers, an error will be thrown.

Members

target : *
editable
Contains the target of this pointer. Becomes an illegal pointer if it's anything other than an entity, a coordinate set or a resource
location.​
Example:

log info pointer<#RETURN->global>.target # logs #RETURN (type entity)

log info pointer<@s->id>.target # logs @s (type entity)

log info pointer<custom:storage~Pos>.target

logs custom:storage (type resource)

log info pointer<(~ ~ ~1).auto>.target # logs ~ ~ ~1 (type coordinates)

member : *
editable
Contains the target of this pointer. Becomes an illegal pointer if it's anything other than a string or an NBT path, if the string is an
invalid objective name, or if the target is a coordinate set or resource while the member is a string.​
Example:

log info pointer<@s->global>.member #logs "global"

log info pointer<@s.Pos[1]>.member #logs Pos[1]

scale: real
get-set
Contains the scale of this pointer. It is 1 by default.​
Example:

log info pointer<@s->global>.scale #logs 1

log info pointer<@s.Pos[1] * 100>.scale #logs 100

log info pointer<@s.Pos[1] * 0.01>.scale #logs 0.01

numericType : string
get-set
Contains the numeric type of this pointer. null by default.
Must be one of: null, "byte", "short", "int", "float", "double", "long"
If attempting to set to an invalid value, no changes will be made to this field.​
Example:

log info pointer<@s.Pos[1] * 100>.numericType #logs null

log info pointer<@s.Pos[1] * 100 (double)>.numericType #logs double

log info pointer<@s.FallDistance (float)>.numericType #logs float

Dictionaries
Identifier: dictionary
Dictionaries are collections of named values. These contain key-value pairs where keys are strings, and values are any type of
interpolation value. They can be created via a dictionary literal:

var MapProperties = {

 name: "The Aether II Map",

 version: "1.1.2",

 final: true,

 idle: resource<aether:aemob.moa.say>,

 mainFunc: resource</main>,

 "Not an identifier": entity<@s>,

 nested: {

 level: 2​
 }

}

log info MapProperties.name # logs "The Aether II Map"

log info MapProperties.nested.level # logs 2

Dictionaries are particularly useful to store large amounts of related information together.

Members

Note: This data type features dynamic members (user-made member keys), as well as static members (those given by the
language). User-made members with the same name as language-provided members are valid, but they will hide the
language-defined member for that object.
Example:

var dict0 = {}

var dict1 = {map: "overwritten"}

log info dict0.map

logs <internal function>

log info dict1.map

logs "overwritten"

Indexer: dictionary[key : string] : *?
variable
Returns the value associated with the specified key.
Example:

var MapProperties = {

 idle: resource<aether:aemob.moa.say>,

 mainFunc: resource</main>,

 "Not an identifier": entity<@s>​
}

log info MapProperties["idle"] # logs aether:aemob.moa.say

log info MapProperties["Not an identifier"] # logs @s

eval MapProperties["new"] = true # sets property "new" to true

* : *?
variable
Returns the value associated with the specified key. This can only access values named as identifiers; to access values with keys of
any string, use the accessor instead.
New entries can be added and changed from the dictionary, using the assignment operator, as well as through the dictionary literal
upon creation.
Example:

var MapProperties = {

 name: "The Aether II Map",

 version: "1.1.2",

 final: true​
}

log info MapProperties.name # logs "The Aether II Map"

log info MapProperties.version # logs "1.1.2"

log info MapProperties.final # logs true

log info MapProperties.unset # logs null

eval MapProperties.newProp = entity<@e> # sets property "newProp" to @e

merge: function(other : dictionary) : dictionary
readonly
Creates a new dictionary that contains elements of both this dictionary and the dictionary given by the parameter. In case of conflict
between keys, the values from the other dictionary overwrite those of this dictionary.
Example:

var dict0 = {

 a: "Original A",

 b: "Original B"​
}

var dict1 = {

 b: "New B",

 c: "New C"​
}

log info dict0.merge(dict1)

logs {a: "Original A", b: "New B", c: "New C"}

remove: function(key : string)
readonly
Removes the key-value pair with the given value, if it exists. If it doesn't exist, no action is taken.
Example:

var dict0 = {

 a: "Original A",

 b: "Original B"​
}

log info dict0

logs {a: "Original A", b: "Original B"}

eval dict0.remove("b")

log info dict0

logs {a: "Original A"}

hasOwnProperty: function(key : string)
readonly
Returns whether the dictionary has a value associated with the given key. Does not include native functions.
Example:

var dict0 = {

 a: "A",

 b: "B"

}

log info dict0.hasOwnProperty("a") # logs true

log info dict0.hasOwnProperty("b") # logs true

log info dict0.hasOwnProperty("c") # logs false

log info dict0.hasOwnProperty("hasOwnProperty") # logs false

clear: function()
readonly
Removes all elements from this dictionary.
Example:

var dict0 = {

 a: "Original A",

 b: "Original B"​
}

log info dict0

logs {a: "Original A", b: "Original B"}

eval dict0.clear()

log info dict0

logs {}

map: function(filter : function[(key : string, value : *?) : *?]) : dictionary
readonly
Creates a new dictionary with the same keys as this one, but with the values given by the filter function passed to this function. For
each key-value pair, the filter function should take as its first parameter, the key, and as its second parameter, the original value.
Whatever is returned by the function at each key-value pair will be used as the value for that key in the new dictionary.
Example:

var dict0 = {

 a: "Original A",

 b: "Original B",

 c: "Original C"​
}

log info dict0.map(function(key, value) {

 if(key != "c") {

 return value.replace("Original", "New")

 } else {

 return value

 }

})

logs {a: "New A", b: "New B", c: "Original C"}

Iterator
Using a for-each loop on a dictionary will create one value for each key-value pair. The iterator's values are dictionaries with two
entries each: "key", which holds the entry's key, and "value", which holds the entry's value. The entries in the iterator are not
guaranteed to be in any particular order.
Example:

var dict0 = {

 a: "Original A",

 b: "Original B",

 c: "Original C"​
}

for(entry in dict0) {

 log info entry

}

logs:

{value: "Original A", key: "a"}

{value: "Original B", key: "b"}

{value: "Original C", key: "c"}

Lists
Identifier: list
Lists are ordered collections of interpolation values of any type. They can be created via a list literal using square braces:

var list0 = [

 "A String",

 true,

 resource<minecraft:weather.rain>,

 entity<@s>,

 {min: 0, max: 100},

 ["another", "list"]

]

Members

Indexer: list[index : int] : *?
variable
Returns the value located at the specified index.
Example:

var list0 = [

 "A String",

 true,

 resource<minecraft:weather.rain>,

 entity<@s>,

 {min: 0, max: 100},

 ["another", "list"]

]

log info list0[0] # logs "A String"

log info list0[2] # logs minecraft:weather.rain

log info list0[4] # logs {min: 0, max: 100}

log info list0[5] # logs ["another", "list"]

length : int
readonly
Contains the length of this list; that is, the number of elements in it.​
Example:

log info ["a","b","new","needs_id"].length # logs 4

add: function(elem : *?)
readonly
Appends the given element to the end of this list.
Example:

var list0 = [

 "A",

 "B"

]

log info list0 # logs ["A", "B"]

eval list0.add("C")

log info list0 # logs ["A", "B", "C"]

insert: function(elem : *?, index : int)
readonly
Inserts the given element at the specified index, shifting all elements previously at that index of higher, one index up.
Example:

var list0 = [

 "A",

 "C",

 "D"

]

log info list0 # logs ["A", "C", "D"]

eval list0.insert("B", 1)

log info list0 # logs ["A", "B", "C", "D"]

remove: function(index : int)
readonly
Removes the element at the specified index.
Example:

var list0 = [

 "A",

 "B",

 "C",

 "D"

]

log info list0 # logs ["A", "B", "C", "D"]

eval list0.remove(2)

log info list0 # logs ["A", "B", "D"]

clear: function()
readonly
Removes all elements from this list.
Example:

var list0 = [

 "A",

 "B",

 "C"

]

log info list0 # logs ["A", "B", "C", "D"]

eval list0.clear()

log info list0 # logs []

contains: function(value : *?)
readonly
Returns true if the given value exists in the list, false otherwise.
Example:

var list0 = [

 "Original A",

 "Original B",

 "Original C"​
]

log info list0.contains("Original A") # logs true

log info list0.contains("Original D") # logs false

indexOf: function(value : *?) : int
readonly
Returns the index at which the specified value first occurs in the list. Returns -1 if the list does not contain it.
Example:

var list0 = [

 "Original A",

 "Original B",

 "Repeat",

 "Repeat"​
]

log info list0.indexOf("Repeat") # logs 2

log info list0.indexOf("Original C") # logs -1

lastIndexOf: function(value : *?) : int
readonly
Returns the index at which the specified value last occurs in the list. Returns -1 if the list does not contain it.
Example:

var list0 = [

 "Original A",

 "Original B",

 "Repeat",

 "Repeat"​
]

log info list0.lastIndexOf("Repeat") # logs 3

log info list0.lastIndexOf("Original C") # logs -1

isEmpty: function() : boolean
readonly
Returns true if the list contains no elements, false otherwise.
Example:

var list0 = [

 "Original A",

 "Original B",

 "Repeat",

 "Repeat"​
]

log info list0.isEmpty() # logs false

log info [].isEmpty() # logs true

map: function(filter : function[(value : *?, index : int) : *?]) : list
readonly
Creates a new list, where each element corresponds to one of the original list, after going through a filter. The filter function should
take as its first parameter the original value, as second parameter, the index it resides in, and return its corresponding value in the
new list.
Example:

var list0 = [

 "Original A",

 "Original B",

 "Original C"​
]

log info list0.map(function(value, index) {

 return value.replace("Original", "New at " + index + ":")

})

logs ["New at 0: A", "New at 1: B", "New at 2: C"]

filter: function(filter : function[(value : *?, index : int) : boolean]) : list
readonly
Creates a duplicate of this list, keeping only elements that, when run through the filter function, return true. The filter function should
take as its first parameter the original value, as second parameter, the index it resides in, and return true for elements that should be
kept in the new list.

Example:

var list0 = [

 "Original A",

 "Original B",

 "New C",

 "New D"​
]

log info list0.filter(function(value, index) {

 return value.startsWith("Original")

})

logs ["Original A", "Original B"]

reduce:

function(function : function[(total : *?, currentValue : *?, index : int) : *?], initialValue :

*?) : *?
readonly
Reduces all of the values of the list into a single value, using the given function and starting with the given initial value.

Example:

var list0 = [1, 2, 3, 4, 5]

log info list0.reduce(function(total, currentValue, index) {

 return total + currentValue

})

logs 15

Iterator
Using a for-each loop on a list will yield each element in the list to the iterating variable. The entries in the iterator will be in the order
they appear in the list.
Example:

var list0 = [

 "A",

 "B",

 "C",

 "D",

 "E"

]

for(entry in list0) {

 log info entry

}

logs:

"A"

"B"

"C"

"D"

"E"

Custom Entities
Identifier: custom_entity
Values of type custom_entity represent blueprints for an user-defined non-default entity or entity component. These typically contain
the values defined in their body. They can only be created via the define entity instruction. More it the Custom Entities section.

define entity bear minecraft:polar_bear {

 var idleSound = resource<minecraft:entity.polar_bear.ambient>

 ticking function tick {

 # ...

 }

}

summon $bear

Members
Note: This data type features dynamic members (user-made member keys), as well as static members (those given by the
language). User-made members with the same name as language-provided members are valid, but they will hide the
language-defined member for that object.

Indexer: custom_entity[key : string] : *?
variable
Returns the value associated with the specified key.
Note: New properties can't be added through the accessor; only properties that have been declared inside the entity body can be
edited.
Example:

file: mypack:entities/bear.tdn

define entity bear minecraft:polar_bear {

 var idleSound = resource<minecraft:entity.polar_bear.ambient>

 ticking function tick {

 # ...

 }

 function animation/hurt {

 # ...

 }

}

log info bear["idleSound"] # logs minecraft:entity.polar_bear.ambient

log info bear["tick"] # logs mypack:entities/bear/tick

log info bear["animation/hurt"] # logs mypack:entities/bear/animation/hurt

* : *?
variable
Returns the value associated with the specified key. This can only access values named as identifiers; to access values with keys of
any string, use the accessor instead.
Note: New properties can't be added through dot notation; only properties that have been declared inside the entity body can be
edited.
Example:

file: mypack:entities/bear.tdn

define entity bear minecraft:polar_bear {

 var idleSound = resource<minecraft:entity.polar_bear.ambient>

 ticking function tick {

 # ...

 }

 function animation/hurt {

 # ...

 }

}

log info bear.idleSound # logs minecraft:entity.polar_bear.ambient

log info bear.tick # logs mypack:entities/bear/tick

idTag : string
readonly
Contains the tag that identifies entities of this type or component. This is added to the Tags tag_list of the entity when created, or
added through the custom component command.
Example:

file: mypack:entities.tdn

define entity bear minecraft:polar_bear {}

define entity component animatable {}

log info bear.idTag # logs trident-entity.mypack.bear

log info animatable.idTag # logs trident-component.mypack.animatable

baseType : resource?
readonly
Contains the resource location representing the base entity type of this entity. This is always null for entity components.
Example:

file: mypack:entities.tdn

define entity bear minecraft:polar_bear {}

define entity component animatable {}

log info bear.baseType # logs minecraft:polar_bear

log info animatable.baseType # logs null

getSettingNBT: function() : tag_compound
readonly
Returns a tag_compound that can be used to create an entity of this type, or an entity with this component.
Example:

file: mypack:entities.tdn

define entity bear minecraft:polar_bear {

 default nbt {Glowing:1b}

}

define entity component invisible {

 default nbt {ActiveEffects:[{Id:14b,Amplifier:0b,Duration:100000}]}

}

log info bear.getSettingNBT()

logs {Tags:["trident-entity.mypack.bear"],Glowing:1b,id:"minecraft:polar_bear"}

log info invisible.getSettingNBT()

logs

{Tags:["trident-component.mypack.invisible"],ActiveEffects:[{Id:14b,Amplifier:0b,Duration:100000}]}

getMatchingNBT: function() : tag_compound
readonly
Returns a tag_compound that can be used to match an entity of this type, or an entity with this component, using its idTag.
Example:

file: mypack:entities.tdn

define entity bear minecraft:polar_bear {

 default nbt {Glowing:1b}

}

define entity component invisible {

 default nbt {ActiveEffects:[{Id:14b,Amplifier:0b,Duration:100000}]}

}

log info bear.getMatchingNBT()

logs {Tags:["trident-entity.mypack.bear"]}

log info invisible.getMatchingNBT()

logs {Tags:["trident-component.mypack.invisible"]}

Custom Items
Identifier: custom_entity
Values of type custom_item represent blueprints for an user-defined non-default item. These typically contain the values defined in
their body. They can only be created via the define item instruction. More at the Custom Items section.

define item staff minecraft:snowball#3 {

 default nbt {Enchantments:[{}]}

 var useSound = resource<minecraft:item.totem.use>

 on used function use {

 playsound ${this.useSound} master @a

 }

}

give @a $staff

Members
Note: This data type features dynamic members (user-made member keys), as well as static members (those given by the
language). User-made members with the same name as language-provided members are valid, but they will hide the
language-defined member for that object.

Indexer: custom_item[key : string] : *?
variable
Returns the value associated with the specified key.
Note: New properties can't be added through the accessor; only properties that have been declared inside the item body can be
edited.
Example:

file: mypack:items/staff.tdn

define item staff minecraft:snowball#3 {

 default nbt {Enchantments:[{}]}

 var useSound = resource<minecraft:item.totem.use>

 on used function use {

 playsound ${this.useSound} master @a

 }

 on dropped function other/dropped {

 # ...

 }

}

log info staff["useSound"] # logs minecraft:item.totem.use

log info staff["use"] # logs mypack:items/staff/use

log info staff["other/dropped"] # logs mypack:items/staff/other/dropped

* : *?
variable
Returns the value associated with the specified key. This can only access values named as identifiers; to access values with keys of
any string, use the accessor instead.
Note: New properties can't be added through dot notation; only properties that have been declared inside the item body can be
edited.
Example:

file: mypack:items/staff.tdn

define item staff minecraft:snowball#3 {

 default nbt {Enchantments:[{}]}

 var useSound = resource<minecraft:item.totem.use>

 on used function use {

 playsound ${this.useSound} master @a

 }

 on dropped function other/dropped {

 # ...

 }

}

log info staff.useSound # logs minecraft:item.totem.use

log info staff.use # logs mypack:items/staff/use

itemCode : int
readonly
Contains the int used to identify this custom Trident item from those of a different type. This is added to a custom TridentCustomItem
tag_int to the item tag upon creation or for testing.
Example:

file: mypack:items/staff.tdn

define item staff minecraft:snowball#3 {}

log info staff.itemCode # logs 1721657579

baseType : resource
readonly
Contains the resource location representing the base item type of this item.
Example:

file: mypack:items/staff.tdn

define item staff minecraft:snowball#3 {}

log info staff.baseType # logs minecraft:snowball

getSlotNBT: function() : tag_compound
readonly
Returns a tag_compound that can be used to create an item of this type. This includes the id, Count and tag tags of a typical item
compound.
Example:

file: mypack:items/staff.tdn

define item staff minecraft:snowball#3 {

 default nbt {Enchantments:[{}]}}

}

log info staff.getSlotNBT()

logs

{tag:{TridentCustomItem:1721657579,CustomModelData:3,Enchantments:[{}]},id:"minecraft:snowball",Count:1b}

getItemTag: function() : tag_compound
readonly
Returns the item tag of this item, containing all its initial data. This does not include the base ID of the item.
Example:

file: mypack:items/staff.tdn

define item staff minecraft:snowball#3 {

 default nbt {Enchantments:[{}]}}

}

log info staff.getItemTag()

logs {TridentCustomItem:1721657579,CustomModelData:3,Enchantments:[{}]}

getMatchingNBT: function() : tag_compound
readonly
Returns a tag_compound that can be used to match an item of this type using its itemCode.
Example:

file: mypack:items/staff.tdn

define item staff minecraft:snowball#3 {

 default nbt {Enchantments:[{}]}}

}

log info staff.getMatchingNBT()

logs {TridentCustomItem:1721657579}

UUIDs
Identifier: uuid
Values of type UUID represent an immutable universally unique identifier. A UUID represents a 128-bit value, and is commonly used
in Minecraft for identifying entities and attribute modifiers. They can be created via the uuid literal or constructor:

var id0 = uuid<0-0-0-0-0>

var id1 = uuid<1-2-3-4-5>

attribute @s generic.armor modifier add $id0 myAttribute0 5 add

attribute @s generic.armor modifier add $id1 myAttribute1 2 multiply

Constructors
new uuid() : uuid
Generates a random UUID using the trident-util:native@Random.PROJECT_RANDOM object, meaning it will be consistent
between compilations yet unique for your project. UUIDs generated this way will be version 4 UUIDs that conform to RFC 4122.
new uuid(raw : string) : uuid
Parses the given string and creates a UUID out of it.
new uuid(random : trident-util:native@Random) : uuid
Creates a random UUID using the next 4 ints returned by the nextInt method of the given Random object. UUIDs generated this way
will be version 4 UUIDs that conform to RFC 4122.
Examples:

log info new uuid("0-0-0-0-0") # Fixed

log info new uuid("1-2-3-4-5") # Fixed

log info new uuid() # Random, consistent across compilations

log info new uuid(new Random()) # Random, different every compilation

Conversions
​ nbt_value & tag_int_array (explicit): Creates an array with 4 ints corresponding to this UUID. Example:

log info (tag_int_array) new uuid("1-2-3-4-5")

logs [I;1,131075,262144,5]

Functions
Identifier: function
These values represent dynamic functions that can take parameters, return a value, and insert commands into the file currently being
written. They can be called using the function name followed by parentheses.
Each parameter may or may not be constrained to a type, and the return value may also be constrained by placing the constraint
after the parameter list and before the opening brace.
Example:

var rand = function(min : int, max : int) : pointer {

 function $generate_random

 set RANDOM_TEMP->global = ${max - min}

 scoreboard players operation RANDOM global %= RANDOM_TEMP global

 scoreboard players add RANDOM global $min

 return pointer<RANDOM->global>

}

scoreboard players operation @s offset += deref ${rand(-16, 17)}

Result:

rand() call begin

function stt:utils/generate_random

scoreboard players set RANDOM_TEMP global 33

scoreboard players operation RANDOM global %= RANDOM_TEMP global

scoreboard players add RANDOM global 16

rand() call end

scoreboard players operation @s offset += RANDOM global

Parameters can be passed to a function by name, which allows them to be passed out of order. Here's an example:

var testFunction = function(a : int, b : int) {

 log info "a: " + a

 log info "b: " + b

}

eval testFunction(b: 1, a: 2)

Logs:

a: 2

b: 1

Members

formalParameters : list
get
Retrieves a list of the parameter names defined for this function. Will be an empty list if the function does not define any parameters
OR if the function is language-provided.​
Example:

log info function(min, max : int) {}.formalParameters

logs [{nullable: true, name: "min", type: null}, {nullable: false, name: "max", type:

type_definition<int>}]

declaringFile : resource?
get
Retrieves a resource location specifying the static function it was declared from. Will always be null for language-provided functions.​
Example:

file: mypack:function_tests

log info function(min, max) {}.declaringFile # logs mypack:function_tests

Exceptions
Identifier: exception
These values represent exceptions or errors thrown by the program logic. Values of type exception are only created when an
exception is thrown.
Example:

file: mypack:exceptions

try {

 throw "An error occurred"

} catch(ex) {

 log info ex

}

Members

message : string
readonly
Contains a brief description of the exception.​
Example:

file: mypack:exceptions

try {

 throw "An error occurred"

} catch(ex) {

 log info ex.message # logs "An error occurred"

}

extendedMessage : string
readonly
Contains a long description of the exception, detailing the error type, message and stack trace.​
Example (with line numbers):

file: mypack:exceptions

1 try {

2 throw "An error occurred"

3 } catch(ex) {

4 log info ex.extendedMessage

 # logs An error occurred

 # at mypack:exceptions ~ <body>

 # at mypack:exceptions ~ <body> (exceptions.tdn:2)

5 }

line : int
readonly
Contains the line from the file at which the exception was thrown (starting from 1).​
Example (with line numbers):

file: mypack:exceptions

1 try {

2 throw "An error occurred"

3 } catch(ex) {

4 log info ex.line # logs 2

5 }

column : int
readonly
Contains the column from the file at which the exception was thrown (starting from 1).​
Example (with line numbers):

file: mypack:exceptions

1 try {

2 throw "An error occurred"

3 } catch(ex) {

4 log info ex.line # logs 5

5 }

index : int
readonly
Contains the index from the file at which the exception was thrown (starting from 0).​
Example (with line numbers):

file: mypack:exceptions

1 try {

2 throw "An error occurred"

3 } catch(ex) {

4 log info ex.line # logs 10

5 }

type : string
readonly
Contains a key of the exception type, that describes what could have caused it. Will always return one of the following:
"USER_EXCEPTION"
"TYPE_ERROR"
"ARITHMETIC_ERROR"

"COMMAND_ERROR"

"INTERNAL_EXCEPTION"

"STRUCTURAL_ERROR"

"LANGUAGE_LEVEL_ERROR"

"DUPLICATION_ERROR"

"IMPOSSIBLE"​
Example:

file: mypack:exceptions

try recovering {

 throw "An error occurred"

 eval 1 / 0

 summon ${1}

 summon player

} catch(exceptions) {

 for(ex in exceptions) {

 log info ex.type

 # logs:

 # "USER_EXCEPTION"

 # "ARITHMETIC_ERROR"

 # "TYPE_ERROR"

 # "COMMAND_ERROR"

 }

}

All exceptions thrown by the throw instruction will be of type USER_EXCEPTION. The type IMPOSSIBLE is reserved for language
bugs, and typically signifies that something has gone wrong with the compiler and that the user should report it.

Type Definitions
Identifier: type_definition
Type Definitions are objects that represent each Interpolation Value type. They can be created via the type_definition literal, as well
as the type_definition.of() function:

var int_def = type_definition<int>

var real_def = type_definition<real>

var string_def = type_definition<string>

var dict_def = type_definition.of({"a":"b"})

var type_def_def = type_definition<type_definition>​
This last one is the same as the type_definition global constant

The static value of Custom Classes are also type definitions and can be used as such.

Members

is: function(value : *?) : boolean
readonly
Checks whether the given value is instance of the given type. Null values always return false.
Example:

log info type_definition<int>.is(5) # logs true

log info type_definition<string>.is("a") # logs true

log info type_definition<real>.is(5) # logs false

log info type_definition<real>.is(5.0) # logs true

log info type_definition<string>.is(null) # logs false

This acts identically to the is operator.

log info 5 is int # logs true

log info "a" is string # logs true

log info 5 is real # logs false

log info 5.0 is real # logs true

log info null is string # logs false

of: function(value : *?) : type_definition
readonly
Returns the type definition of a given value.
The type definition object you call this on has no effect on the return value; this is only found in all type definition instances so it can
be used via the global type_definition constant (which is the same as type_definition<type_definition>).​
Example:

log info type_definition.of(5) # logs type_definition<int>

log info type_definition.of(5.0) # logs type_definition<real>

log info type_definition.of("a") # logs type_definition<string>

log info type_definition.of(null) # logs type_definition<null>

https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt

Custom Classes
Trident allows you to create custom interpolation data types. These types can be instantiated using a defined constructor, which will
return an object of the class, containing custom data as defined by the class. They can have custom fields, methods, accessors and
even casting definitions. They can also extend one or more classes, sharing their definitions.

define [<access modifier>] [<symbol modifiers>] class <identifier> [: <superclasses...>]

define class MyClass {

 # fields, methods, accessors and cast definitions go here

}

Custom Class Declaration
Classes are declared using the define instruction. The declarations may have the following:

1.​ Access modifier (See Variable Visibility). One of: global, local, private. If omitted, defaults to local.​
Changes where the class symbol is initially accessible from.

2.​ Symbol modifiers. Any combination of:
a.​ static: Means the class cannot be instantiated. A static class may only have static members. This also prevents other

classes from extending this one.
b.​ final: Means the class cannot be extended.

3.​ Class Identifier: The name of the class.
4.​ Superclasses: A list of classes that this new class will inherit from.

Incomplete Declarations
Often you may want to have multiple classes which reference each other, but because instructions need to be run one after another,
you may run into an issue where one class is not defined when the other needs to reference it.​
To circumvent this, Trident allows for incomplete declaration of classes. They're simply the class declaration without the body, and
they must be declared in the same file as the complete definition.​
Example:

define class B

define class A {

 public static var bReference : B

 # Without the incomplete B declaration, this would throw an error

}

define class B {

 public static var aReference : A

}

While a class definition is incomplete, you may use it in type constraints and class inherits, but you may not instantiate it or access
static members.

There are certain restrictions when using incomplete definitions. The complete declaration header must be, more or less exactly the
same as the incomplete declaration header:

1.​ The symbol modifiers must be the exact same. For instance, if the incomplete declaration had only the static modifier, the
complete declaration must have the static modifier and the static modifier only.

2.​ The complete declaration must extend all the classes marked for extending by the incomplete declaration. The complete
declaration, however, may extend other classes in addition to the ones promised by the incomplete declaration.

Fields
Classes may have fields, which are essentially variables. They may either be static fields (if the static modifier is present) or
instance fields.​
Static fields can be accessed without the need for an instance, and are attached to the type definition of the class.
Instance fields are variables created for each instance of the class, and all the instances may each have different values for that field.
Syntax:

[<access modifier>] [<symbol modifiers>] var <identifier> [: <constraints>] [= <initial value>]

Example:

define class A {

 public static var someStaticField : int = -5

 public var someInstanceField : int = 1

}

log info A.someStaticField # -5

log info A.someInstanceField # ERROR

var firstInstance : = new A()

var secondInstance : = new A()

log info firstInstance.someStaticField # ERROR

log info firstInstance.someInstanceField # 1

eval firstInstance.someInstanceField = 8

log info firstInstance.someInstanceField # 8

log info secondInstance.someInstanceField # 1

Field inheritance

When a class inherits from another, the new class may not create a field with the same name as a field in the inherited class - that
field must be overridden to use that name.
To override a field, you must declare it in the new class, using the override keyword before the var keyword.
Overriding a field from an inherited class has the following requirements:

3.​ The inheriting class must have access to the field in the inherited class (e.g. the original field must not be private)
4.​ Both the original nor the new field must not be static
5.​ Both the original nor the new field must not be final
6.​ Both fields must have the exact same type constraints.

When a field is overridden, it simply changes what the initial value of the field becomes. Note that the original field's expression will
not be evaluated. e.g. if the default value of the original field calls a function, that function will not run when the new class is
instantiated.
Example:

define class A {

 public var someField : string? = "A"

}

define class B : A {

 public var someField : int = 5 # ERROR

 public override var someField : string = "B" # ERROR

 public override var someField : string? = "B" # OK

}

Methods
Classes may also have methods, which are essentially dynamic functions, but with one key difference: They can be overloaded.
This also means that class methods are not retainable objects. You cannot take a class's method and store it in a variable, since you
must call it for it to resolve into any function.
Static methods can be called without the need for an instance, and are attached to the type definition of the class.
Instance methods are methods created for each instance of the class. The this identifier can also be used inside instance methods
to access the current object.

Syntax:

[<access modifier>] [<symbol modifiers>] <identifier>([<formal parameters...>]) [: <return constraints>]

{

 <commands and instructions...>

}

Example:

define class A {

 public someMethod() {

 log info "Got nothing"

 }

 public someMethod(number : int) {

 log info "Got integer " + number

 }

 public someMethod(number : real) {

 log info "Got real " + number

 }

 public someMethod(message : string) {

 log info "Got message \"" + message + "\""

 }

}

var someA : = new A()

eval someA.someMethod() # 'Got nothing'

eval someA.someMethod(5) # 'Got integer 5'

eval someA.someMethod(5.0) # 'Got real 5.0'

eval someA.someMethod("5") # 'Got message "message"'

eval someA.someMethod("5", null) # ERROR: Overload not found for parameter types: (string, null)

Static methods and instance methods are completely separated, meaning you can have methods with the exact same signature and
different body, one as static and another as instance.

Picking an overload

Whenever a method is called, the best overload is picked based on the given parameter types and the type constraints. Each
overload is given a rating from 0 to 4 based on the average "score" of its parameters. The parameters are rated with the following
logic:

●​ 6 if the actual parameter matches perfectly the formal parameter (without coercion or inheritance)
●​ 5 if the actual parameter is an instance of the formal parameter type (without coercion)
●​ 3 if the actual parameter can be coerced into the formal parameter type
●​ 2 if the actual parameter is null and and the formal parameter constraint is nullable
●​ 1 if the actual parameter is omitted and and the formal parameter constraint is nullable
●​ 0 if the actual parameter does not match at all (and cannot be coerced) OR if the actual parameter is null and the formal

parameter is not nullable
Any parameters with a rating of 0 automatically discard the overload.
Also, overloads with fewer former parameters than the actual parameters are automatically discarded.
Given the above scores, the single overload with the highest average score is chosen and called.
If there's a tie for first place, an error is thrown for an "ambiguous call"; and if there are none, an error is thrown for "overload not
found for parameter types..."
Note that the calling context must have access to the chosen overload for it to be called correctly.

Symbols in context

In expressions within a class, static fields and methods of that class can be accessed without the need to use the class name.
Inside instance methods, you can access both static and instance methods without using the class name or this, unless a field is
obscured by some variable or parameter in the current context.​
Example:

define class A {

 private static var STATIC_FIELD : int = 2147483647

 private var instanceField : int = 255

 private var number : int = 128

 public someMethod() : string {

 return "Called someMethod()"

 }

 public someMethod(number : int) {

 log info someMethod() # Called someMethod()

 log info STATIC_FIELD # 2147483647

 log info A.STATIC_FIELD # 2147483647

 log info instanceField # 255

 log info this.instanceField # 255

 log info number # 5 (from parameter)

 log info this.number # 128 (from field)

 }

}

eval new A().someMethod(5)

Method inheritance

When a class inherits from another, the new class may not create an overload for a method with the same name. That overload must
be overridden.
To override a method, you must declare it in the new class, using the override keyword before the function name.
Overriding a method from an inherited class has the following requirements:

1.​ The inheriting class must have access to the method in the inherited class (e.g. the original method must not be private)
2.​ Both the original nor the new method must not be static
3.​ Both the original nor the new method must not be final
4.​ The new method must not assign weaker access privileges than the original (can turn a private method public, but not a

public method private)
5.​ The new method's return constraints must be entirely contained in the original method's return constraints. This means the

new constraints should be just as, if not more restrictive than the original. e.g: string? to string
Example:

define class A {

 public someMethod() : string? {

 return null

 }

}

define class B : A {

 public someMethod(num : int) {} # OK, different signature

 public someMethod() {} # ERROR

 public override someMethod() {} # ERROR

 local override someMethod() : string? { # ERROR

 return 0

 }

 public override someMethod() : string { # OK

 return ""

 }

}

Virtual Methods

In some situations you may want a method to be overridden by a subclass. However, as class inheritance is flat, and not hierarchical,
you may encounter issues trying to extend a class that overrides another class's method. The solution for this is the virtual keyword.
Place the virtual modifier on the class that defines the method. This will make it so, if there is a clash between a virtual method and a
non-virtual method, the non-virtual method will be chosen instead of throwing an error. Example:

define class A {

 public foo() {}

}

define class B : A {

 public override foo() {}

}

define class C : B {}

Uncaught Structural Error: Method 'foo()' is defined in multiple inherited classes: B, A.

Override it in the class body, or mark one of the two methods as virtual

define class A {

 public virtual foo() {} # virtual keyword added

}

define class B : A {

 public override foo() {}

}

define class C : B {}

OK, B's foo is chosen over A's

Constructors

Constructors are methods that are used to instantiate objects of a class. They are called using the keyword new, followed by a
reference to the class as a method call.
Constructors are defined just as a normal class method, but with the new keyword in place of the method name. Whenever a
constructor is called, a new object of the class is created, its fields are initialized to their default values, and the appropriate
constructor method's body is called as the newly constructed object.
At the end of a constructor, all final fields must be initialized, otherwise an exception will be thrown.
Note that Trident has no mechanism of ensuring that inherited classes run their own constructors appropriately. If you intend a class
to require proper initialization beyond fields upon construction, and want it to be extendable, consider creating an initialization method
and having all constructors (including in inheriting classes) call it.

Example:

define class A {

 private final var score : int

 public new(score : int) {

 eval this.score = score

 }

 private new(score : string) {

 eval this.score = score.length

 }

}

var a = new A(5) # OK

var a = new A("") # ERROR, private access

If a class does not explicitly declare any constructors, it will have an implicit empty public constructor.
Static classes may not declare any constructors.

Default Methods

All custom classes implicitly extend one base class, and it has the following methods defined, which can be overridden:

public toString() : string

Called whenever the object needs to be converted into a string (not to be confused with a cast). Called by language features such as
the log instruction or the string concatenation operator +.

Example:

define class A {

 private final var score : int

 public new(score : int) {

 eval this.score = score

 }

 public override toString() : string {

 return "score=" + score

 }

}

log info new A(5) # "score=5"

public getIterator()

Called whenever the object needs to be iterated through via a foreach loop. Must return a natively iterable object such as a list,
dictionary or string, or another iterable class.

Example:

define class ListWrapper {

 private final var list : list = [0,1,2,3,4]

 public override getIterator() {

 return list

 }

}

for(element in new ListWrapper()) {

 log info element # Prints 0, 1, 2, 3, 4

}

Indexer
Custom classes may define the behavior of square brace [] indexers, for use similar to lists and dictionaries.
Indexers are essentially two methods: One for setting, and another for getting, and they both share a parameter type, which will be
the value inside the square braces.

The syntax is as follows:

public this[<index parameter>] {

 get <return constraint> {

 # code for getting

 }

 set(<set parameter>) {

 # code for setting

 }

}

Where the index and set parameter may be constrained, the return constraint is optional, and the set block may be omitted.
Each get and set block may also have its own access modifier (before the get and set keywords).

Example:

define class BitField {

 private var field : int = 0

 public new(default : boolean) {

 if(default) eval field = ~0

 }

 public override toString() : string {

 return Integer.toUnsignedString(field, 2)

 }

 public this[bit : int] {

 get : boolean {

 return (this.field & (1 << bit)) != 0

 }

 set(value : boolean) {

 eval this.field &= ~(1 << bit)

 if(value) eval this.field |= (1 << bit)

 }

 }

}

var bitField : = new BitField(false)

#set

eval bitField[0] = true

eval bitField[1] = true

eval bitField[3] = true

eval bitField[31] = true

log info bitField # 10000000000000000000000000001011

#get

log info bitField[1] #true

log info bitField[2] #false

log info bitField[5] #false

log info bitField[31] #true

Indexer inheritance

When a class inherits from another, the new class may not create an indexer in the inherited class without overriding the original
indexer.
To override an indexer, you must declare it in the new class, using the override keyword before the this keyword.
Overriding an indexer from an inherited class has the following requirements:

6.​ The inheriting class must have access to both the getter and the setter (if it exists) in the inherited class (e.g. the original
indexer must not be private)

7.​ The old indexer's index parameter constraints must be entirely contained in the new indexer's index parameter constraints.
This means the new constraints should be just as, if not less restrictive than the original. e.g: string to string?

8.​ If the original indexer has a setter, the new indexer must also declare a setter.
9.​ The new indexer must not assign weaker access privileges than the original (can turn a private indexer public, but not a

public indexer private)
10.​The new indexer's getter return constraints must be entirely contained in the old indexer's getter return constraints. This

means the new constraints should be just as, if not more restrictive than the original. e.g: string? to string
11.​The old indexer's setter value constraints must be entirely contained in the new indexer's setter value constraints. This means

the new constraints should be just as, if not less restrictive than the original. e.g: string to string?​
This does not apply if the old indexer doesn't have a setter.

Properties
Custom classes may define properties that have their own get and set methods, similarly to indexers, but accessed via dot notation,
not bracket notation. Unlike accessors, properties can be static.

The syntax is as follows:

public <property identifier> {

 get <return constraint> {

 # code for getting

 }

 set(<set parameter>) {

 # code for setting

 }

}

where <set parameter> may be constrained, <return constraint> is optional, and the set block may be omitted.
Each get and set block may also have its own access modifier (before the get and set keywords).

Example:

define class PropertyTest {

 private var _count : int = 0

 public count {

 get : int {

 return this._count

 }

 set(value : int) {

 if(value < 0) throw "Count cannot be negative"

 eval this._count = value

 }

 }

}

eval new PropertyTest().count = -1 # ERROR: Count cannot be negative

eval new PropertyTest().count = 5 # OK

Property inheritance

To override a property, you must declare it in the new class, using the override keyword before the identifier.
Overriding an indexer from an inherited class has the following requirements:

1.​ The inheriting class must have access to both the getter and the setter (if it exists) in the inherited class (e.g. the original
property must not be private)

2.​ If the original property has a setter, the new property must also declare a setter.
3.​ The new property must not assign weaker access privileges than the original (can turn a private property public, but not a

public property private)
4.​ The new property's getter return constraints must be entirely contained in the old property's getter return constraints. This

means the new constraints should be just as, if not more restrictive than the original. e.g: string? to string
5.​ The old property's setter value constraints must be entirely contained in the new property's setter value constraints. This

means the new constraints should be just as, if not less restrictive than the original. e.g: string to string?​
This does not apply if the old property doesn't have a setter.

Conversion Definitions
Custom classes may define their behavior when objects of that class need to be cast or coerced into a type.
We call coercion "implicit conversion" and casting "explicit conversion". Coercion is what occurs when a value is passed through a
type constraint that doesn't exactly match the value, but the value has an implicit conversion into that type.
Casting is what occurs when a value is explicitly cast to another type, whether through parenthesis casting or the as operator.

The syntax for conversion definitions is as follows:

override explicit <<target_type>> {

 # code for casting

}

override implicit <<target_type>> {

 # code for coercing

}

Note the lack of access modifiers, as the visibility of conversion functions cannot be limited.

Example:

define class A {

 private final var score : int

 public new(score : int) {

 eval this.score = score

 }

 override implicit <real> {

 # Need to explicitly cast to real,

 # as the return values of implicit

 # conversion functions are not coerced

 return (real)score

 }

 override explicit <real> {

 return 10 * score

 }

}

log info Math.pow(new A(5),2) # Coercion, 25.0

log info new A(5) as real # Casting, 50.0

Important note: the implicit conversion function is not allowed to coerce its return value into the target value; it must return the exact
type.

Conversion inheritance

When a class inherits from another, the new class may freely change the conversion definitions, as the return constraints are already
very strict and well defined.

Operator Overloading
Custom classes may define custom operator behavior for any combination of types and operators. They are not limited to the
containing class, so a class may define operators for entirely different classes, or even primitives.
The operator definition to use is chosen the same way as overloaded methods.

The syntax for operator overloading is as follows:

operator <operator symbol>(<param 0>, <param 1>, ..., <param n>) {

 # code for operator

}

where:
<operator symbol> is the symbol of the operator to overload (e.g. *, +, !). For operators with more than 2 operands, only

the first symbol needs to be used (For instance, the conditional ternary operator ?:, which is grade 3, only needs the first symbol, ?)
<param 0>, <param 1>, ..., <param n> are the operands. This number will depend on how many operands the operator

you're overloading accepts. For example, if you're overloading the binary + operator, you'll need 2 operands. If you're overloading the
unary (left) + operator, you'll need 1 operand.

If the operator you're overloading is unary, it will choose the left hand variant of the operator, if it exists. Otherwise it'll overload the
right. At the moment though, there exists no right-hand unary operator in the language that doesn't also have a left-hand variant (++
and -- operators exist for both sides), so overloading a right unary operator is, in practice, impossible.

Compound assignment operators (such as +=, *=), as well as ?? cannot be overloaded. In the case of compound assignment
operators, the corresponding simple operator will be used (so a += b behaves the same as a = a + b)

Short-circuiting operators such as ?:, || and && will use their default behavior if the first operand is a boolean. Otherwise, custom
operator code will be used if all the arguments match the custom operator signature.

Note the lack of access modifiers, as the visibility of operators cannot be limited.

Example:

define static class CustomOperators {

 operator *(part : string, times : int) {

 var repeated = ""

 for(var i = 0; i < times; i++) {

 eval repeated += part

 }

 return repeated

 }

}

log info "ba" * 5 # Logs bababababa

Inheritance
Classes may inherit from from other classes, making objects of the new class behave as the inherited class. This is particularly useful
for extending the functionality of one or more classes.

define class A {

 public var aField : int = 5

}

define class B : A {

 public var bField : string = "five"

}

var bInstance : B = new B()

log info bInstance.bField # "five"

log info bInstance.aField # 5

Note that, unlike in most object-oriented programming languages, fields and methods can only have one form. This means that a field
declared in both A and B with the same name will effectively destroy the field in A, and only B's implementation will be accessible,
even by methods of A. To avoid unintentionally causing issues like these, the override keyword must be used to resolve issues like
these.

Also unlike in most object oriented programming languages, inheritance with Trident classes is iterative, not recursive. Because of
this, circular inheritance is possible.

define class A

define class B : A

define class C : A

define class A : C {

}

define class B : A {

}

define class C : B {

}

As any conflicts between inherited members is required to be resolved by the inheriting class, classes in a cycle are effectively one
large class with its members defined across three different classes.

Generics
Custom classes may define type parameters. Generic classes describe functionality that isn't specific to any particular data type, but
needs the data type to be consistent across all the features of a single instance of that class. This can be useful for things like typed
lists.

To define a generic class, the names of the type parameters need to be placed between angle brackets <>, separated by commas,
after the class name. Then inside that class, the generic types can be referenced via those names.
To instantiate (or reference a type with explicit type parameters), the actual types should be placed in much the same way after the
class name.
Example:

define class Pair<K, V> {

 public var key : K

 public var value : V

 public new(key : K, value : V) {

 eval this.key = key

 eval this.value = value

 }

}

var stringIntPair : Pair<string, int> = new Pair<string, int>("five", 5)

var itemBoolPair : Pair = new Pair<item, boolean>(item<stick>, true)

eval stringIntPair.key = "go" # OK

eval stringIntPair.key = true # ERROR

eval itemBoolPair.value = false # OK

eval itemBoolPair.value = 5 # ERROR

This describes a class that represents a pair of two values, where the type of each value is not known in advance, but upon
instantiation the types will be resolved. Assigning values to the key and value fields of type that doesn't match the types bound to that
object at instantiation is forbidden.

An object of a generic class cannot be instantiated without actual type parameters, and the number of type parameters must match
that of the generic class.
However, you can use a generic class without type parameters in places such as type constraints and the is operator, where the
objective is to verify the type of an object, not create one.

Native Libraries

typeOf: function(obj : *?) : type_definition
Deprecated, use type_definition.of(*?)
editable
Returns a string containing the type ID of the object passed into it.
Example:

log info typeOf("foo")

logs "string"

log info typeOf(nbt_value<[B; 0b, 1b, 2b, 3b]>)

logs "tag_byte_array"

log info typeOf(resource<minecraft:custom>)

logs "resource"

log info typeOf(null)

logs "null"

isInstance: function(obj : *?, type : string) : boolean
editable
Deprecated, use the is operator.
Checks whether the given object is of the type string passed into it.
Example:

log info isInstance(1, "int")

logs false

log info isInstance("foo","real")

logs false

log info isInstance(nbt_value<[0b, 1b, 2b, 3b]>,"nbt_value")

logs true

log info isInstance(null,"string")

logs false

Reflection
trident-util:native@Reflection
public static final class
This class provides several methods for dealing with Trident Files.

getMetadata(loc : resource) : dictionary
public static method
Returns the metadata object of the file represented by the resource location. If the specified file doesn't have metadata, an empty
object is returned. Note that the file to search must be a top-level file.
Example:

file: tdndemo:a.tdn

@ metadata {"foo": ["bar", "baz"]}

file: tdndemo:reflection.tdn

log info Reflection.getMetadata(resource<tdndemo:a>)

logs {"foo": ["bar", "baz"]}

getFilesWithTag(loc : resource) : list
public static method
Returns a list of all top-level Trident files whose functions are tagged with the given resource location. Whether the given resource
location is a tag or not does not affect the result. The resulting list contains the resource locations for all the matching top-level
functions.
Example:

file: tdndemo:a.tdn

@ tag custom

file: tdndemo:b.tdn

@ tag load

@ tag custom

file: tdndemo:reflection.tdn

log info Reflection.getFilesWithTag(resource<minecraft:custom>)

logs [tdndemo:a, tdndemo:b]

getFilesWithMetaTag(loc : resource) : list
public static method
Returns a list of all top-level Trident files with the given meta tag. The resulting list contains the resource locations for all the matching
top-level functions.
Example:

file: tdndemo:b.tdn

@ meta_tag custom

file: tdndemo:a.tdn

@ tag custom

file: tdndemo:reflection.tdn

log info Reflection.getFilesWithMetaTag(resource<minecraft:custom>)

logs [tdndemo:a]

insertToFile(loc : resource, writer : function)
public static method
Runs the given dynamic function within the context of the top-level file specified by the given resource location.
Example:

file: tdndemo:a.tdn

say Hello

file: tdndemo:reflection.tdn

eval Reflection.insertToFile(resource<tdndemo:a>, function() {

 say World!

})

output of file tdndemo:a

say Hello

say World!

getCurrentFile() : resource
public static method
Returns the resource location of the function this is called from.
Example:

file: tdndemo:reflection.tdn

var testfunct = function() {

 log info Reflection.getCurrentFile()

}

eval testfunct()

logs tdndemo:reflection

define function inner {

 log info Reflection.getCurrentFile()

 # logs tdndemo:reflection/inner

 eval testfunct()

 # logs tdndemo:reflection

}

getWritingFile() : resource
public static method
Returns the resource location of the function currently being written to.
Example:

file: tdndemo:reflection.tdn

var testfunct = function() {

 log info Reflection.getWritingFile()

}

eval testfunct()

logs tdndemo:reflection

define function inner {

 log info Reflection.getWritingFile()

 # logs tdndemo:reflection/inner

 eval testfunct()

 # logs tdndemo:reflection/inner

}

getCurrentFilePath() : string
public static method
Returns the path of the file this is called from

Example:

file: tdndemo:reflection.tdn

log info Reflection.getCurrentFilePath()

logs datapack/data/tdndemo/functions/reflection.tdn

File
trident-util:native@File
public static final class
Container class for File IO classes. The IO classes are defined all defined privately under trident-util:native, and the File class
exposes them publicly through static final fields. Any access to each of the IO classes must be through the File class.

File.in
trident-util:native@in
private static final class
This class provides methods for reading files within the project directory.

read(path : resource) : *
public static method
Returns the contents of the file at the given location, from the project directory.
If the specified path represents a file, its text data is returned as a string. If the specified path represents a directory, its children's
filenames are returned as a list of strings.
Example:

file: /structure_gen/oak_tree.json

{

 "trunk_block": "minecraft:oak_log",

 "leaf_block": "minecraft:oak_leaves",

 "trunk_length": [4, 7],

 "leaf_shape": "bush"

}

file: /structure_gen/birch_tree.json

{

 "trunk_block": "minecraft:birch_log",

 "leaf_block": "minecraft:birch_leaves",

 "trunk_length": [5, 9],

 "leaf_shape": "bush"

}

file: /datapack/data/tdndemo/functions/io.tdn

log info File.in.read("structure_gen")

logs ["oak_tree.json", "birch_tree.json"]

log info JSON.parse(File.in.read("structure_gen/birch_tree.json"))

logs {leaf_block: "minecraft:birch_leaves", leaf_shape: "bush", trunk_length: [5, 9], trunk_block:

"minecraft:birch_log"}

exists(path : string) : boolean
public static method
Returns whether the file at the specified path within the input project directory exists.
Example:

log info File.exists("datapack/data/test/functions")

isDirectory(path : string) : boolean
public static method
Returns whether the file at the specified path within the input project directory exists and is a directory.
Example:

log info File.isDirectory("datapack/data/test/functions")

write(path : string, content : string)
public static method
Writes the given string to the file at the specified path within the input project directory.
Example:

eval File.in.write(

 "datapack/data/test/functions/function_for_next_compilation.tdn",

 "@on compile\nlog info \"Hello from the past!\""

)

wasFileChanged(path : string) : boolean
public static method
Returns whether the file at the specified path within the input project directory was changed since the last successful compilation.
Example:

log info File.in.wasFileChanged(Reflection.getCurrentFilePath())

File.out
trident-util:native@out
private static final class
This object provides methods for writing to the output data pack and resource pack files.

writeData(path : string, content : string)
public static method
Writes the given string to the file at the specified path within the output data pack.
Example:

eval File.out.writeData(

 "data/custom/tags/blocks/unbreakable.json",

 JSON.stringify(

 {

 "values": [

 "minecraft:dark_oak_planks",

 "minecraft:chest",

 "minecraft:iron_block"

]

 },

 true

)

)

writeResource(path : string, content : string)
public static method
Writes the given string to the file at the specified path within the output resource pack, if there is a resource pack in the project.
Example:

eval File.out.writeResource(

 "assets/minecraft/sounds.json",

 JSON.stringify(

 {

 "block.enderchest.open": {

 "category": "block",

 "replace": true,

 "sounds": [

 "blank"

]

 }

 },

 true

)

)

JSON
trident-util:native@JSON
public static final class
This class provides several methods for converting from JSON strings to complex Trident values and vice versa.

parse(s : string) : *
public static method
Parses the string argument and attempts to convert it into Trident values, in the following manner:

●​ JSON Objects become dictionaries
●​ JSON Lists become lists
●​ JSON Numbers become integers (if they can be expressed as such), otherwise, real numbers
●​ JSON Booleans become booleans
●​ JSON Strings become strings

Example:

log info JSON.parse('{"a": 1.8, "b": ["1", 2.0, true]}')

logs {a: 1.8, b: ["1", 2, true]}

stringify (multiple overloads)
stringify(obj : string, prettyPrinting : boolean?) : string

stringify(obj : boolean, prettyPrinting : boolean?) : string

stringify(obj : int, prettyPrinting : boolean?) : string

stringify(obj : real, prettyPrinting : boolean?) : string

stringify(obj : list, prettyPrinting : boolean?) : string

stringify(obj : dictionary, prettyPrinting : boolean?) : string
public static method
Converts the given value into a JSON string, in the following manner:

●​ Dictionaries become JSON Objects
●​ Lists become JSON Lists
●​ Reals and Integers become JSON Numbers
●​ Strings and Resource Locations become JSON Strings
●​ Booleans become JSON Booleans

Any other values will not be present in the return value.
If prettyPrinting is true, the output will be spread over multiple lines and indented. If not specified, prettyPrinting is not enabled.
Example:

log info JSON.stringify({a: 1.8, b: ["1", 2, true, entity<@a>], c: resource<tick>}, true)

logs {

"a": 1.8,

"b": [

"1",

2,

true

],

"c": "minecraft:tick"

}

Text
trident-util:native@Text
public static final class
This class provides several methods for dealing with Text Components.

parse(s : string) : text_component
public static method
Parses the string argument and attempts to convert it into a Text Component. Roughly equivalent to passing the result of
JSON.parse(s) to new text_component(o)
Example:

log info Text.parse('["Hello ", {"text": "World", "color": "green"}]')

logs ["Hello ",{"text":"World","color":"green"}] (of type text_component)

Character
trident-util:native@Character
public static final class
This class provides methods for creating and getting info about characters.

fromCodePoint(codePoint : int) : string
public static method
Creates a single-character string with the unicode character of the given code point.
Example:

log info Character.fromCodePoint(230)

logs æ

toCodePoint(char : string) : int
public static method
Retrieves the code point value of the first character of the given string. Throws an exception if the string is empty.
Example:

log info Character.toCodePoint("æ")

logs 230

getName(char : string) : string
public static method
Returns the Unicode name of the first character in the given string. Throws an exception if the string is empty.
Example:

log info Character.getName("æ")

logs LATIN SMALL LETTER AE

isLetter(char : string) : boolean
public static method
Returns a boolean dictating whether the first character in the given string is a letter. Throws an exception if the string is empty.
Example:

log info Character.isLetter("æ") # logs true

log info Character.isLetter("5") # logs false

isDigit(char : string) : boolean
public static method
Returns a boolean dictating whether the first character in the given string is a digit. Throws an exception if the string is empty.
Example:

log info Character.isDigit("æ") # logs false

log info Character.isDigit("5") # logs true

isWhitespace(char : string) : boolean
public static method
Returns a boolean dictating whether the first character in the given string is whitespace. Throws an exception if the string is empty.
Example:

log info Character.isWhitespace(" ") # (space) logs true

log info Character.isWhitespace("5") # logs false

log info Character.isWhitespace("\n") # (line feed) logs true

isUpperCase(char : string) : boolean
public static method
Returns a boolean dictating whether the first character in the given string is an uppercase letter. Throws an exception if the string is
empty.
Example:

log info Character.isUpperCase("5") # logs false

log info Character.isUpperCase("a") # logs false

log info Character.isUpperCase("A") # logs true

isLowerCase(char : string) : boolean
public static method
Returns a boolean dictating whether the first character in the given string is a lowercase letter. Throws an exception if the string is
empty.
Example:

log info Character.isLowerCase("5") # logs false

log info Character.isLowerCase("a") # logs true

log info Character.isLowerCase("A") # logs false

Tags
trident-util:native@Tags
public static final class
This class provides methods for creating and getting info about type tags.

createTag(category : string, location : resource, values : list[resource])
public static method
Creates a tag of the given category at the given resource location, and adds the provided list of resource location values to that tag
(all must be valid types of the specified category, that is, they must exist).
Refer to the complementary documentation (Definition Packs > Types) for category names and info.
Example:

eval Tags.createTag(

 "block",

 resource<#custom:ignore>,

 [

 resource<minecraft:glass>,

 resource<minecraft:sponge>,

 resource<#minecraft:stained_glass>

]

)

exists(category : string, location : resource) : boolean
public static method
Checks whether the specified tag in the given category exists.​
Refer to the complementary documentation (Definition Packs > Types) for category names and info.
Returns true if a tag exists for it, false otherwise.
Example:

log info Tags.exists("entity", resource<#minecraft:skeletons>)

logs true

log info Tags.exists("block", resource<#minecraft:skeletons>)

logs false (unless a user-created #skeletons block tag exists in the project)

tagContainsValue(category : string, tagLocation : resource, valueLocation : resource) : boolean
public static method
Checks whether the specified tag in the given category contains the provided value.
Refer to the complementary documentation (Definition Packs > Types) for category names and info.
Example:

eval Tags.tagContainsValue(

 "block",

 resource<#minecraft:flower_pots>,

 resource<minecraft:potted_poppy>

)

logs true

eval Tags.tagContainsValue(

 "block",

 resource<#minecraft:slabs>,

 resource<#minecraft:wooden_slabs>

)

logs true

eval Tags.tagContainsValue(

 "block",

 resource<#minecraft:slabs>,

 resource<minecraft:oak_slab>

)

logs true

eval Tags.tagContainsValue(

 "block",

 resource<#minecraft:wooden_slabs>,

 resource<minecraft:stone_slab>

)

logs false

MinecraftTypes
trident-util:native@MinecraftTypes
public static final class
This class provides methods for gathering info about all minecraft-defined types.

getDefinitionsForCategory(category : string) : dictionary
public static method
Retrieves an object with all the names and properties of all types of a certain type category, provided by the definition pack used in
Trident. Refer to the complementary documentation (Definition Packs > Types) for category names and info.
Example:

log info MinecraftTypes.getDefinitionsForCategory("effect")

logs {"minecraft:speed": {"id": 1,"type": "positive"},"minecraft:slowness": {"id": 2,"type":

"negative"}, ...

exists (multiple overloads)
exists(category : string, name : string) : boolean
exists(category : string, location : resource) : boolean
public static method
Checks whether the given resource location or string represents a valid type of the given category. Refer to the complementary
documentation (Definition Packs > Types) for category names and info.
Returns true if a type exists for it, false otherwise.
Example:

log info MinecraftTypes.exists("enchantment", resource<minecraft:mending>)

logs true

log info MinecraftTypes.exists("gamemode", "hardcore")

logs false

Block
trident-util:native@Block
public static final class
This class provides several methods for dealing with block types.

exists(location : resource) : boolean
public static method
Checks whether the given resource location represents a valid block type. Returns true if a block type exists for it, false otherwise.
Example:

log info Block.exists(resource<minecraft:fire>) # logs true

log info Block.exists(resource<minecraft:string>) # logs false

getAll() : list
public static method
Creates and returns a list containing resource locations for all the block types in no particular order.
Example:

log info Block.getAll() # logs [minecraft:potted_acacia_sapling, minecraft:nether_brick_slab ...

minecraft:pink_concrete]

Item
trident-util:native@Item
public static final class
This class provides several methods for dealing with item types.

exists(location : resource) : boolean
public static method
Checks whether the given resource location represents a valid item type. Returns true if a item type exists for it, false otherwise.
Example:

log info Item.exists(resource<minecraft:fire>) # logs false

log info Item.exists(resource<minecraft:string>) # logs true

getAll() : list
public static method
Creates and returns a list containing resource locations for all the item types in no particular order.
Example:

log info Item.getAll() # logs [minecraft:nether_brick_slab, minecraft:andesite_slab, minecraft:egg ...

minecraft:carrot]

Project
trident-util:native@Project
public static final class
This class provides several methods for dealing with the current Trident Project.

getTargetVersion() : list
public static method
Returns a list representing the target version of the running project. The first element is the Major release, the second is the Minor
release, and the third number is the Patch. In practice, the Major number will always be 1 and the Patch number will always be 0.
Example:

log info Project.getTargetVersion() # logs [1, 16, 0] (on a project targeting 1.16)

getFeatureBoolean(key : string, defaultValue : boolean?) : boolean
public static method
Checks the feature map provided to the project via the build configuration for the given feature key, and returns a boolean based on
its value. If the given key corresponds to a boolean in the feature map, that value will be returned. Otherwise, defaultValue is returned
(or false if defaultValue is omitted).
Example:

log info Project.getFeatureBoolean("command.attribute")

logs true (on a project targeting 1.16)

log info Project.getFeatureBoolean("textcomponent.hex_color", false)

logs true (on a project targeting 1.16)

getFeatureInt(key : string, defaultValue : int?) : int
public static method
Checks the feature map provided to the project via the build configuration for the given feature key, and returns an integer based on
its value. If the given key corresponds to an integer in the feature map, that value will be returned. Otherwise, defaultValue is
returned (or 0 if defaultValue is omitted).
Example:

log info Project.getFeatureInt("objectives.max_length")

logs 16

getFeatureString(key : string, defaultValue : string?) : string?
public static method
Checks the feature map provided to the project via the build configuration for the given feature key, and returns a string based on its
value. If the given key corresponds to a string in the feature map, that value will be returned. Otherwise, defaultValue is returned (or
null if defaultValue is omitted).
Example:

log info Project.getFeatureString("objectives.regex")

logs "[A-Za-z0-9_.\-+]+"

log info Project.getFeatureString("function.export_path")

logs "data/$NAMESPACE$/functions/"

Math
trident-util:native@Math
public static final class
A port of java.lang.Math for Trident. The Math class contains methods for performing basic numeric operations such as the
elementary exponential, logarithm, square root, and trigonometric functions.

PI : real
public static final
The real value that is closer than any other to pi, the ratio of the circumference of a circle to its diameter.​
Example:

log info Math.PI #logs 3.141592653589793

E : real
public static final
The double value that is closer than any other to e (Euler's Number), the base of the natural logarithms.
Example:

log info Math.E #logs 2.718281828459045

pow(a : real, b : real) : real
public static method
Returns the real value of the first argument raised to the power of the second argument.
Example:

log info Math.pow(2, 8) # logs 256.0

log info Math.pow(2, -8) # logs 0.00390625

min (multiple overloads)
min(a : int, b : int) : int

min(a : real, b : real) : real
public static method
Returns the smallest (closest to negative infinity) of two values. If both parameters are integers, the returned value will also be an
integer. Otherwise a real number is returned.
Example:

log info Math.min(2, -8) # logs -8

max (multiple overloads)
max(a : int, b : int) : int

max(a : real, b : real) : real
public static method
Returns the largest (closest to positive infinity) of two values. If both parameters are integers, the returned value will also be an
integer. Otherwise a real number is returned.
Example:

log info Math.max(2, -8) # logs 2

abs (multiple overloads)
abs(x : int) : int

abs(x : real) : real
public static method
Returns the absolute value of a value. If the argument is not negative, the argument is returned. If the argument is negative, the
negation of the argument is returned.
The return value will match the type of the parameter (int stays int, real stays real).
Example:

log info Math.abs(-8) # logs 8

log info Math.abs(8) # logs 8

floor(x : real) : real
public static method
Returns the largest (closest to positive infinity) real value that is less than or equal to the argument and is equal to a mathematical
integer.
Example:

log info Math.floor(-0.1) # logs -1

log info Math.floor(0.1) # logs 0

ceil(x : real) : real
public static method
Returns the smallest (closest to negative infinity) real value that is greater than or equal to the argument and is equal to a
mathematical integer.
Example:

log info Math.ceil(-0.1) # logs 0

log info Math.ceil(0.1) # logs 1

round(x : real) : real
public static method
Returns the closest real value that is equal to a mathematical integer, with ties rounding to positive infinity.
Example:

log info Math.round(-0.9) # logs -1

log info Math.round(-0.1) # logs 0

log info Math.round(0.5) # logs 1

floorMod(x : int, y : int) : int
public static method
Returns the floor modulus of the int arguments.
The floor modulus is x - (floorDiv(x, y) * y), has the same sign as the divisor y, and is in the range of -abs(y) < r <
+abs(y)

The difference in values between floorMod and the % operator is due to the difference between floorDiv that returns the integer less
than or equal to the quotient and the / operator that returns the integer closest to zero.
Example:

log info Math.floorMod(4, 3) # logs 1

log info 4 % 3 # logs 1

log info Math.floorMod(4, -3) # logs -2

log info 4 % -3 # logs 1

log info Math.floorMod(-4, 3) # logs 2

log info -4 % 3 # logs -1

log info Math.floorMod(-4, -3) # logs -1

log info -4 % -3 # logs -1

floorDiv(x : int, y : int) : int
public static method
Returns the largest (closest to positive infinity) int value that is less than or equal to the algebraic quotient.
Normal integer division operates under the round to zero rounding mode (truncation). This operation instead acts under the round
toward negative infinity (floor) rounding mode. The floor rounding mode gives different results than truncation when the exact result is
negative.
Example:

log info Math.floorDiv(4, 3) # logs 1

log info 4 / 3 # logs 1

log info Math.floorDiv(-4, 3) # logs -2

log info -4 / 3 # logs -1

sin(rad : real) : real
public static method
Returns the trigonometric sine of an angle in radians.
Example:

log info Math.sin(0) # logs 0.0

log info Math.sin(Math.PI / 2) # logs 1.0

log info Math.sin(Math.PI) # logs 1.2246467991473532E-16

cos(rad : real) : real
public static method
Returns the trigonometric cosine of an angle in radians.
Example:

log info Math.cos(0) # logs 1.0

log info Math.cos(Math.PI / 2) # logs 6.123233995736766E-17

log info Math.cos(Math.PI) # logs -1.0

tan(rad : real) : real
public static method
Returns the trigonometric tangent of an angle in radians.
Example:

log info Math.tan(0) # logs 0.0

log info Math.tan(Math.PI / 2) # logs 1.633123935319537E16

log info Math.tan(Math.PI) # logs -1.2246467991473532E-16

sinh(x : real) : real
public static method
Returns the hyperbolic sine of a real value.​
The hyperbolic sine of x is defined to be (ex - e-x)/2 where e is Euler's number.
Example:

log info Math.sinh(0) # logs 0.0

log info Math.sinh(1) # logs 1.1752011936438014

cosh(x : real) : real
public static method
Returns the hyperbolic cosine of a real value.​
The hyperbolic cosine of x is defined to be (ex + e-x)/2 where e is Euler's number.
Example:

log info Math.cosh(0) # logs 1.0

log info Math.cosh(1) # logs 1.543080634815244

tanh(x : real) : real
public static method
Returns the hyperbolic tangent of a real value.​
The hyperbolic tangent of x is defined to be (ex - e-x)/(ex + e-x) where e is Euler's number.
Example:

log info Math.tanh(0) # logs 0.0

log info Math.tanh(1) # logs 0.7615941559557649

asin(a : real) : real
public static method
Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2 (in radians).
Example:

log info Math.asin(0) # logs 0.0

log info Math.asin(1) # logs 1.5707963267948966 (pi/2)

log info Math.asin(Math.sqrt(2)/2) # logs 0.7853981633974484 (pi/4)

acos(a : real) : real
public static method
Returns the arc cosine of a value; the returned angle is in the range -pi/2 through pi/2 (in radians).
Example:

log info Math.acos(0) # logs 1.5707963267948966 (pi/2)

log info Math.acos(1) # logs 0.0

log info Math.acos(Math.sqrt(2)/2) # logs 0.7853981633974484 (pi/4)

atan(a : real) : real
public static method
Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2 (in radians).
Example:

log info Math.atan(0) # logs 0.0

log info Math.atan(1) # logs 0.7853981633974484 (pi/4)

log info Math.atan(Math.sqrt(2)/2) # logs 0.6154797086703874

atan2(y : real, x : real) : real
public static method
Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates (r, theta). This method computes
the phase theta by computing an arc tangent of y/x in the range of -pi to pi.
Example:

log info Math.atan2(1,Math.sqrt(3)) # logs 0.5235987755982989 (pi/6)

log info Math.atan2(-1,Math.sqrt(3)) # logs -0.5235987755982989 (-pi/6)

log info Math.atan2(1,-Math.sqrt(3)) # logs 2.6179938779914944 (5*pi/6)

log info Math.atan2(-1,-Math.sqrt(3)) # logs -2.6179938779914944 (-5*pi/6)

toRadians(angdeg : real) : real
public static method
Converts an angle measured in degrees to an approximately equivalent angle measured in radians. The conversion from degrees to
radians is generally inexact; users should not expect Math.cos(Math.toRadians(90.0)) to exactly equal 0.0.
Example:

log info Math.toRadians(0) # logs 0.0

log info Math.toRadians(30) # logs 0.5235987755982988

log info Math.toRadians(45) # logs 0.7853981633974483

log info Math.toRadians(60) # logs 1.0471975511965976

log info Math.toRadians(90) # logs 1.5707963267948966

toDegrees(angrad : real) : real
public static method
Converts an angle measured in radians to an approximately equivalent angle measured in degrees. The conversion from radians to
degrees is generally inexact.
Example:

log info Math.toDegrees(0) # logs 0.0

log info Math.toDegrees(Math.PI/6) # logs 29.999999999999996

log info Math.toDegrees(Math.PI/4) # logs 45.0

log info Math.toDegrees(Math.PI/2) # logs 90.0

log info Math.toDegrees(Math.PI) # logs 180.0

log(a : real) : real
public static method
Returns the natural logarithm (base e) of a real value.
Example:

log info Math.log(0) # logs -Infinity

log info Math.log(1) # logs 0.0

log info Math.log(Math.E) # logs 1.0

log10(a : real) : real
public static method
Returns the base 10 logarithm of a real value.
Example:

log info Math.log10(0) # logs -Infinity

log info Math.log10(1) # logs 0.0

log info Math.log10(10) # logs 1.0

log info Math.log10(100) # logs 2.0

log2(a : real) : real
public static method
Returns the base 2 logarithm of a real value.
Example:

log info Math.log2(0) # logs -Infinity

log info Math.log2(1) # logs 0.0

log info Math.log2(2) # logs 1.0

log info Math.log2(4) # logs 2.0

log info Math.log2(8) # logs 3.0

sqrt(a : real) : real
public static method
Returns the correctly rounded positive square root of a real value.
Example:

log info Math.sqrt(2) # logs 1.4142135623730951

log info Math.sqrt(4) # logs 2.0

log info Math.sqrt(16) # logs 4.0

log info Math.sqrt(256) # logs 16.0

cbrt(a : real) : real
public static method
Returns the correctly rounded positive cube root of a real value.
Example:

log info Math.cbrt(3) # logs 1.4422495703074083

log info Math.cbrt(8) # logs 2.0

log info Math.cbrt(27) # logs 3.0

log info Math.cbrt(81) # logs 5.0

exp(a : real) : real
public static method
Returns Euler's number e raised to the power of a real value.
Example:

log info Math.exp(0) # logs 1.0

log info Math.exp(1) # logs 2.718281828459045

log info Math.exp(2) # logs 7.38905609893065

signum(x : real) : real
public static method
Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero, -1.0 if the
argument is less than zero.
Example:

log info Math.signum(-8) # logs -1.0

log info Math.signum(0) # logs 0.0

log info Math.signum(12) # logs 1.0

random (multiple overloads)
random() : real

random(min : real, max : real) : real
public static method
Returns a real value, in a range between the given min (inclusive) and max (exclusive), or 0.0 and 1.0 if the bounds are not specified.
Returned values are chosen pseudorandomly with (approximately) uniform distribution from that range.
Example:

log info Math.random() # logs 0.40657443943172444

log info Math.random() # logs 0.08285686880762

log info Math.random() # logs 0.7925125273103358

Don't expect to get the same numbers as this example

Integer
trident-util:native@Integer
public static final class
This class provides several methods for converting an int to a String and a String to an int, as well as other constants and methods
useful when dealing with an int.

MIN_VALUE : int
public static final
A constant holding the minimum value an int can have, -231.​
Example:

log info Integer.MIN_VALUE #logs -2147483648

MAX_VALUE : int
public static final
A constant holding the maximum value an int can have, 231 - 1.​
Example:

log info Integer.MAX_VALUE #logs 2147483647

parseInt (multiple overloads)
parseInt(s : string) : int

parseInt(s : string, radix : int) : int
public static method
Parses the string argument as a signed integer in the radix specified by the second argument. The resulting integer value is returned.
If the radix is left unspecified, it defaults to 10. Throws an exception if the resulting integer is outside of the valid signed integer range.
Example:

log info Integer.parseInt("48") # logs 48

log info Integer.parseInt("42", 8) # logs 34

log info Integer.parseInt("A0", 16) # logs 160

parseUnsignedInt (multiple overloads)
parseUnsignedInt(s : string) : int

parseUnsignedInt(s : string, radix : int) : int
public static method
Parses the string argument as an unsigned integer in the radix specified by the second argument. The resulting integer value is
returned. If the radix is left unspecified, it defaults to 10. Throws an exception if the resulting integer is outside of the valid unsigned
integer range.
Example:

log info Integer.parseInt("80000000", 16) # ERROR

log info Integer.parseUnsignedInt("80000000", 16) # -2147483648

log info Integer.parseInt("FFFFFFFF", 16) # ERROR

log info Integer.parseUnsignedInt("FFFFFFFF", 16) # -1

toString(multiple overloads)
toString(i : int) : string

toString(i : int, radix : int) : string
public static method
Returns a string representation of the first argument in the radix specified by the second argument. If the radix is left unspecified, it
defaults to 10. Calling this method with radix 10 is equivalent to casting the parameter to a string.
Example:

log info Integer.toString(48) # logs 48

log info Integer.toString(34, 8) # logs 42

log info Integer.toString(160, 16) # logs a0

https://docs.google.com/document/d/1HW5A6KVgC8VIcwJm6bLv31bzqVtZsnFqXRInZ_BXstM/edit#heading=h.hewp7bja7et0
https://docs.google.com/document/d/1HW5A6KVgC8VIcwJm6bLv31bzqVtZsnFqXRInZ_BXstM/edit#heading=h.hewp7bja7et0
https://docs.google.com/document/d/1HW5A6KVgC8VIcwJm6bLv31bzqVtZsnFqXRInZ_BXstM/edit#heading=h.hewp7bja7et0
https://docs.google.com/document/d/1HW5A6KVgC8VIcwJm6bLv31bzqVtZsnFqXRInZ_BXstM/edit#heading=h.hewp7bja7et0
https://docs.google.com/document/d/1HW5A6KVgC8VIcwJm6bLv31bzqVtZsnFqXRInZ_BXstM/edit#heading=h.hewp7bja7et0

toUnsignedString(multiple overloads)
toUnsignedString(i : int) : string

toUnsignedString(i : int, radix : int) : string
public static method
Returns a string representation of the first argument as an unsigned integer value in the radix specified by the second argument. If
the radix is left unspecified, it defaults to 10.
Example:

log info Integer.toUnsignedString(-1) # 4294967295

log info Integer.toUnsignedString(-1, 16) # ffffffff

Real
trident-util:native@Real
public static final class
This class provides several methods for converting a real to a String and a String to a real, as well as other constants and methods
useful when dealing with real numbers.

Infinity : real
public static final
A constant holding a positive infinity value.​
Example:

log info Real.Infinity #logs Infinity

NaN : real
public static final
A constant holding a Not-a-Number (NaN) value.​
Example:

log info Real.NaN #logs NaN

MIN_VALUE : real
public static final
A constant holding the minimum finite value a real number can have, -(2-2-52)·21023.​
Example:

log info Real.MIN_VALUE #logs -1.7976931348623157E308

MAX_VALUE : real
public static final
A constant holding the maximum finite value a real number can have, (2-2-52)·21023.​
Example:

log info Real.MAX_VALUE #logs 1.7976931348623157E308

MIN_POSITIVE_VALUE : real
public static final
A constant holding the minimum positive value a real number can have, 2-1074.​
Example:

log info Real.MIN_POSITIVE_VALUE #logs 4.9E-324

parseReal(s : string) : real
public static method
Returns a new real number initialized to the value represented by the specified String.
Example:

log info Real.parseReal("-0.3") # logs -0.3

log info Real.parseReal("1") # logs 1.0

log info Real.parseReal("15.0000001") # logs 15.0000001

isFinite(r : real) : boolean
public static method
Returns true if the argument is a finite floating-point value; returns false otherwise (for NaN and infinity arguments).
Example:

log info Real.isFinite(48) # logs true

log info Real.isFinite(Real.Infinity) # logs false

log info Real.isFinite(Real.NaN) # logs false

isInfinite(r : real) : boolean
public static method
Returns true if the specified number is infinitely large in magnitude, false otherwise.
Example:

log info Real.isInfinite(48) # logs false

log info Real.isInfinite(Real.Infinity) # logs true

log info Real.isInfinite(Real.NaN) # logs false

isNaN(r : real) : boolean
public static method
Returns true if the specified number is a Not-a-Number (NaN) value, false otherwise.
Example:

log info Real.isNaN(48) # logs false

log info Real.isNaN(Real.Infinity) # logs false

log info Real.isNaN(Real.NaN) # logs true

toString(r : real) : string
public static method
Returns a string representation of the real argument. Calling this method is equivalent to casting the parameter to a string.
Example:

log info Real.toString(-0.3) # logs -0.3

log info Real.toString(1) # logs 1.0

log info Real.toString(15.0000001) # logs 15.0000001

Random
trident-util:native@Random
public class
A port of java.util.Random for Trident. This class provides several methods for generating random numbers.

PROJECT_RANDOM : trident-util:native@Random
public static final
A random number generator that is always consistent between compilations. It's seeded using the hash of the project's name or,
alternatively, the random-seed key in the project properties file.

new() : trident-util:native@Random
public constructor
Creates a new random number generator, seeded with a value dependent on the current time.
new(seed : int) : trident-util:native@Random
public constructor
Creates a new random number generator with the given seed.

nextInt (multiple overloads)
nextInt() : int
public method
Returns the next pseudorandom, uniformly distributed int value from this random number generator's sequence. All 232 possible
int values are produced with (approximately) equal probability.
nextInt(bound : int) : int
public method
Returns the next pseudorandom, uniformly distributed int value between 0 (inclusive) and bound (exclusive), drawn from this random
number generator's sequence. All bound possible int values are produced with (approximately) equal probability.

nextReal() : real
public method
Returns the next pseudorandom, uniformly distributed real value between 0.0 and 1.0 from this random number generator's
sequence.

nextGaussian() : real
public method
Returns the next pseudorandom, Gaussian ("normally") distributed real value with mean 0.0 and standard deviation 1.0 from this
random number generator's sequence.

nextBoolean() : boolean
public method
Returns the next pseudorandom, uniformly distributed boolean value from this random number generator's sequence. The values
true and false are produced with (approximately) equal probability.

CoordinateType
trident-util:native@CoordinateType
public final class
This class provides several constants used in the Coordinate Set methods.

ABSOLUTE : trident-util:native@CoordinateType
public static final
Represents the Absolute coordinate type.
RELATIVE: trident-util:native@CoordinateType
public static final
Represents the Relative coordinate type.
LOCAL: trident-util:native@CoordinateType
public static final
Represents the Local coordinate type.

RotationType
trident-util:native@RotationType
public final class
This class provides several constants used in the Rotation methods.

ABSOLUTE : trident-util:native@RotationType
public static final
Represents the Absolute rotation type.
RELATIVE: trident-util:native@RotationType
public static final
Represents the Relative rotationtype.

Axis
trident-util:native@Axis
public final class
This class provides several constants used in the Coordinate Set and Rotation methods.

X : trident-util:native@Axis
public static final
Represents the west-east axis.
Y : trident-util:native@Axis
public static final
Represents the down-up axis.
Z : trident-util:native@Axis
public static final
Represents the north-south axis.

Documentation Terms
1.​ sequence-optional: Arguments are sequence-optional if they can all be omitted - but in order to specify an argument, all

arguments before it must also be specified, optional or not.
2.​ get-set: This means that internally, this member is not an editable symbol; but attempts to get and set the symbol may

succeed. There is no guarantee that retrieving the value and editing it will change the actual value in the symbol it was
retrieved from.

3.​ top-level file: A Trident function file that is not defined as an inner function of another, but rather as its own file.

	What's Trident?
	Trident Project Structure
	The Format
	An Important Note
	File Directives
	Language Levels
	Implicit execute
	Objectives
	Verbatim Commands
	Raw Modifiers

	Inner Function Syntax
	Via Define Instruction:
	Via function command:
	Relative Resource Locations

	Introduction to Custom Objects
	Object Inner Functions
	An object's directory
	Function declarations

	
	Custom Entities
	Custom Entity Declaration
	Custom Entity Body
	Custom Entity Functions
	Ticking Functions

	Entity Components
	Usage
	Summon
	Component add/remove command
	Component selector argument
	
	Entity Inheritance

	Abstract Entity Events
	
	Custom Items
	Custom Item Declaration
	Custom Item Body
	Custom Item Functions
	Item Event Functions

	
	Command Syntax Additions
	Blocks
	Items
	New-Entity literal
	Selectors
	score: isset

	Commands
	set
	
	tag update
	component
	event
	summon
	expand
	gamelog

	Execute Modifiers
	if/unless score: isset
	if/unless selector
	raw

	Instructions
	log
	
	using
	using tag
	using summon

	eval
	within
	Control Flow
	if - else
	while
	for
	switch
	break
	continue
	return

	Exceptions
	try-catch
	try-recovering-catch
	throw

	Variables
	Variable Visibility

	Type Constraints
	Inferred Constraints

	Type Checking and Type Conversion
	is operator
	Strict casting
	Weak casting (as operator)

	
	Interpolation Values
	Data Types
	Integers
	Reals
	Booleans
	Strings
	Integer Ranges
	Real Ranges
	Entities
	Blocks
	Items
	Text Components
	NBT Values
	Tag Compounds
	Tag Lists
	Other NBT Tag Types
	NBT Paths
	Coordinate Sets
	Rotations
	Resource Locations
	Pointers
	
	Dictionaries
	Lists
	Custom Entities
	
	Custom Items
	UUIDs
	Functions
	Exceptions
	Type Definitions

	
	Custom Classes
	Custom Class Declaration
	Incomplete Declarations
	Fields
	Field inheritance

	Methods
	Picking an overload
	Symbols in context
	Method inheritance
	Constructors
	Default Methods

	Indexer
	Indexer inheritance

	Properties
	Property inheritance

	Conversion Definitions
	Conversion inheritance

	
	Operator Overloading
	Inheritance
	Generics

	
	Native Libraries
	Reflection
	File
	File.in
	File.out
	JSON
	Text
	Character
	
	Tags
	MinecraftTypes
	Block
	Item
	Project
	Math
	Integer
	Real
	Random
	CoordinateType
	RotationType
	Axis

	Documentation Terms

