
Checkin 2: 
 
Introduction 
The current problem we have is that in a highly competitive and non-differentiable marketplace, 
where there are millions of customers and restaurants, we want to figure out how a restaurant’s 
image online affects their rating on apps like Yelp. We want to build a classifier to understand 
this problem, so that we can help restaurants build their image and online presence with the 
newest image advertisement techniques in our highly technological world today.  
 
The paper’s objective is to figure out the quality of a restaurant’s image in relation to its Yelp 
rating. The first part of the paper focuses on creating a classifier that works to assess the quality 
of the restaurant’s photographic representation online, by giving a restaurant’s image as an input, 
and a Yelp rating of 1 to 5 stars as the output. The second part then focuses on determining 
which features of a restaurant’s images can lead to a higher rating.  
 
We chose this paper because in such a highly competitive market place, even the slightest 
changes in a restaurant’s image can give it a marginally higher rating and lead to growth in 
revenues. Our goal is to determine first, how well an image can determine a restaurant’s rating, 
and our second goal is to determine what and how the different features of an image can impact a 
rating. In this way, we can see how we can perhaps make businesses more effective online, and 
how as consumers who are picky eaters, may have to become more wary as businesses learn to 
become more effective in their online presence in a way that might be more unrepresentative of 
their restaurant as a whole.  
 
Our project is a classification problem, as we are building a classifier that classifies images 
(input) based on their Yelp restaurant ratings (output). 
 
Challenges 
One of the challenges we encountered was combining our preprocessing and model codes. Since 
we are all working separately in different time zones (which is also one of our challenges), one 
group was working on preprocessing, while the other was working on the model. Thus, we had 
to make sure that the two were compatible and worked well together, which was definitely a 
difficult step in our project.  
 
Another big challenge we faced was that our data file was too large, which made the running 
process too long during the preprocessing stage. Thus, we resolved this by doing a brief 
“preprocessing” stage for the preprocessing of our data, and separated our data into multiple 
datasets “drink.json”, “food.json”, “inside.json”, “menu.json”, “outside.json” which we can test 
on individually.  



 
Another challenge was deciding on the number of layers we were going to use, and deciding on 
the overall structure of our model. We are still trying out different numbers for hyperparameters, 
and changing the structure within the call() function of our model.py. 
 
Finally, one of the biggest challenges we faced was implementing the ResNet model. Although 
we expected this process to be relatively simple, it was very difficult to get it to work and are still 
addressing the issues. Therefore, we started out by writing our own model (using what we 
learned from our previous assignments), which ended up actually running and producing pretty 
good results (accuracy and loss). This ultimately made us change our base, target, and stretch 
goals, which are outlined in the last response (regarding the things changed in our project). 
 
 
Insights 
Our model currently has 3 convolution layers and 3 dense layers. We used a batch size of 100 
and defined 5 classes each for 1-5 stars. We trained and tested our model for just one epoch on 
each of the different datasets so far and saw the following results: 
 

Image type Number of images* Average loss Average accuracy 

food 60559 1.0022095 0.65438014 

drink 6052 1.0745429 0.6508333 

menu 848 1.2926049 0.71 

inside 27148 0.8805003 0.695 

outside 7027 1.0501764 0.6714285 

* The images with a star rating in between whole stars (e.g. 1.5) were omitted from training and 
testing. 
 
 
The model’s accuracy is close to 70, and performs better than we had anticipated given that we 
have written our own model, but the accuracy is still not as high as what we would anticipate 
from a ResNet model for example. Since we have one model working so far, we expect to 
implement different models like ResNet and GAN and we expect the accuracies across these 
models to be a little higher. 
 



Plan 
We need to dedicate more time into researching more about implementing ResNet and GAN so 
that we are able to use different models to train and test. We also feel like we need to dedicate 
more time on adjusting our hyperparameters and the overall structure of our model (tweaking the 
number of convolution layers and linear layers) for the best outcome.  
 
After more research, we found out that ResNet18 may not be the best model for our image 
classification project. 
https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet 
The link above shows that Image Classification Training on ResNet18 usually outputs the 
highest validation error. Thus, we’re thinking about using ResNet-101 instead. 
 
Because we experienced difficulty with using the ResNet Model, our base, target, and stretch 
goal have changed as well. Our base goal is now implementing our own model and seeing decent 
results. Our target goal is now successfully implementing the Tensorflow ResNet model. Finally, 
our stretch goal would be to reach a good accuracy (close to Resnet) on our own model, as well 
as on a new model such as GAN. 

https://github.com/tensorpack/tensorpack/tree/master/examples/ResNet
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