What We Know

- Many products of bodily metabolism are <u>waste</u> products that the body does not need or cannot use.
- The three organ systems that indirectly help to remove toxins from the body are:
 - <u>Respiratory System</u> removes toxic gases and volatile chemicals from the body
 - <u>Integumentary System</u> can remove toxins through sweating
 - <u>Digestive System</u> eliminates toxins taken in by eating or drinking through feces
- The two organs with the biggest roles in detoxification are the <u>liver</u> and <u>kidneys</u>
- Liver
 - The liver is unique because blood flows <u>into</u> the organ from the gut.
 - o The two steps that the liver takes to detoxification are
 - When <u>Kupffer cells</u> engulf/eat sludge trapped in the small spaces between cells
 - When Kupffer cells add materials to a chemical to make it non-harmful, a process called <u>conjugation</u>

Kidneys

 Blood goes from the liver to the heart and then to the kidneys.

- Kidneys regulate the balance of <u>water</u>, <u>minerals</u>, and <u>salts</u> in the body
- About <u>150</u> liters of blood are pumped through the kidney every day.
- Blood flows into the kidney through the <u>renal artery</u>
 and leaves through the <u>renal vein</u>.
- Each filtering unit in the kidney is called a <u>nephron</u>.
- The <u>glomerulus</u> is a cluster of small blood vessels that allow small molecules of waste and fluid pass through them into the tubule.
- Water, minerals, and nutrients are <u>reabsorbed</u> from the tubule into the blood.
- Urine travels from the kidney through the <u>ureter</u> to the <u>bladder</u> where it is stored. Then when urine is ready to leave the body, it exits through the <u>urethra</u>.

How We Know

- Kidney Function
 - Medical technicians examine urine through a procedure called <u>urinalysis</u> to look for any abnormalities. Diseases that can be detected by this method include:
 - Diabetes
 - Kidney stones
 - Chronic urinary tract infections
 - The three ways we analyze urine are:
 - Unmagnified/macroscopic: check for amount, color, clarity
 - Chemical analysis: check for acidity, density, amount of protein, glucose, ketones, nitrites, and white blood cells.
 - Magnified/microscopic: check for crystals, squamous cells, bacteria, and other large objects
 - A small amount of urine could indicate that the kidneys (are/are not) filtering blood well.
 - The presence of <u>white blood cells</u> in urine could indicate infection of the kidneys, bladder, or other parts of the urinary tract.

Liver Function

- We can tell a lot about the liver by observing it:
 - Large <u>veins</u> come into the liver from the gut
 - Blood flows past single rows of liver cells
 - The path of flow exposes blood to many <u>phagocytic_cells</u>
- We can also tell a lot about the liver by seeing how the chemical contents of blood change between entering and exiting the liver. The liver:
 - Makes <u>urea</u>, a protein waste product
 - Makes <u>bile</u>, which is released to from the gallbladder and makes fat easier to digest in the intestines
 - Removes low density lipids and adds high density lipids to blood, protecting against <u>hardening of the</u> <u>arteries</u>
 - Converts and detoxifies many drugs and toxins
- A symptom of poor liver function is yellowing of the skin and eyes, called <u>jaundice</u>, as well as prolonged bleeding, and swelling and hardening of the liver.
- The most common causes of liver damage are <u>alcohol</u> abuse and viral hepatitis

Common Hazards

- Hepatitis is irritation/inflammation of the liver and can end up resulting in the death of liver cells and eventual replacement with scar tissue (<u>cirrhosis</u>).
 - Causes of hepatitis include
 - Excessive <u>drug</u> or <u>alcohol</u> consumption
 - Viruses
 - Our own <u>immune</u> system
 - There are six different hepatitis viruses.
 - Hepatitis A (does/does not) have a vaccine.
 Spread by feces of infected person.
 - Hepatitis B (does/does not) have a vaccine. Spread by blood and bodily fluids from infected person.
 - Hepatitis C (does/does not) have a vaccine. Spread by blood and bodily fluids from infected person.
 - Hepatitis D (does/does not) have a vaccine.
 Spread by <u>blood</u> and <u>bodily fluids</u> from infected person. Only occurs in presence of Hepatitis <u>B</u> infection
 - Hepatitis E (does/does not) have a vaccine.
 Spread by feces of infected person.
- Heavy metals like <u>cadmium</u>, <u>mercury</u>, <u>lead</u>, and <u>chromium</u>
 are toxic to the kidneys and cause damage to the liver.

Lead

- List 4 sources of lead exposure:
 - Old paint
 - Old pipes
 - Contaminated water
 - Batteries
 - Industrial processes
 - Leaded gasoline
 - Cosmetics
 - Toys
 - Containers made of metal
- <u>Children</u> are most susceptible to the effects of lead.

Mercury

- The kidneys <u>concentrate</u> mercury
- Mercury <u>bioaccumulates</u> in food chains (it accumulates in organisms that eat other organisms that contain mercury). For example, eating large quantities of contaminated fish or shellfish can lead to mercury toxicity.

Cadmium

- Cadmium damages kidney <u>tubules</u> (also causes <u>anemia</u> and <u>bone and mineral</u> loss)
- Cadmium reacts with <u>proteins</u> and accumulates in the kidneys.

Chromium

- Chromium-3 is an essential dietary requirement for humans, and is found in vegetables, fruits, meats, grains, and yeast
- Chromium-6 is toxic and can be found in the environment but is also produced by industrial processes.
- Chromium is <u>reabsorbed</u> by tubule cells and becomes very <u>concentrated</u>. It can also become corrosive and cause kidney failure.

Free Radicals

- Name 3 external sources of free radicals
 - Pollution
 - Cigarette smoke
 - X-rays
 - Ozone
 - Industrial chemicals
 - Medication
- Free radicals can be both toxic and beneficial
- At excessive levels, free radicals can damage cell parts like the <u>cell membrane</u> and <u>DNA</u>.