	Код:

КАБИНЕТ 3. ГЕНЕТИКА (42 балла)

<u>ЗАДАНИЕ 1 (14 баллов).</u> Генетический анализ закономерностей наследования признаков у плодовой мушки дрозофилы (*Drosophila melanogaster L.*)

<u>Материалы и оборудование</u>: четыре пробирки с мушками, предварительно подвергнутыми наркотизации, ручная лупа с увеличением х2-х4, лист белой бумаги, препаровальная игла.

Генетический анализ — основной метод генетики, позволяющий с помощью логическо-математических и экспериментальных моделей определить тип наследования признака организма (ядерный или цитоплазматический), количество генов, его контролирующих, характер их взаимодействия и локализацию в группе сцепления. Принципы и методы генетического анализа являются той основой, которая позволяет перейти к выяснению молекулярных механизмов действия генов, к расшифровке генетического контроля метаболических путей, обуславливающих развитие признаков.

Весьма удобным объектом по изучению закономерностей наследования признаков является плодовая мушка дрозофила (*Drosophila melanogaster L*.). Ее преимущества перед другими объектами заключаются в непродолжительном цикле развития (10 суток от момента откладки яйца до вылета имаго), высокой плодовитости (50–200 потомков от одной пары мух) и обилию легко учитываемых признаков, различия по которым наследуются согласно моногибридной схеме.

1. Решите задачу. При скрещивании дрозофил получено следующее потомство:

	Самцы		Самки
75	с красными глазами, серым телом и длинными крыльями	92	с красными глазами, серым телом и длинными крыльями
70	с абрикосовыми глазами, желтым телом и длинными крыльями	75	с абрикосовыми глазами, желтым телом и длинными крыльями
21	с абрикосовыми глазами, желтым телом и загнутыми крыльями	20	с красными глазами, серым телом и загнутыми крыльями
27	с красными глазами, серым телом и загнутыми крыльями	28	с абрикосовыми глазами, желтым телом и загнутыми крыльями
2	с красными глазами, желтым телом и длинными крыльями		
1	с абрикосовыми глазами, серым телом и загнутыми крыльями		
	Итого: 196		Итого: 215

<u>1.1.</u>	(3	<u>балла,</u>	ПО	0,5	<u>балла</u>	<u> 3a</u>	позицию).	Определите,	как	наследун	отся
	пр	изнаки,	обо	знач	чьте до	МИІ	нантные и	рецессивные	алле.	ли генов.	Для
	обо	значения	я алл	елей	использ	уйт	е буквы лати	нского алфавит	$\mathbf{a} - \mathbf{A} \mathbf{v}$	ı а, В и b, C	'и с.

– темно-красные глаза
– абрикосовые глаза
– желтое тело
– серое тело
– загнутые крылья
– длинные(нормальные) крылья

1.2. (6 баллов). Определите, имеется ли в этом скрещивании сцепление признаков с полом, а также сцепление генов между собой. Напишите генотипы родителей — самки и самца. Для обозначения генотипов используйте следующий вид записи:

АБВГД	
	 (пример)
абвгд	

самка	самец

1.3. (5 баллов). Если гены сцеплены, определите расстояние между ними.

Гены окраски	Ген окраски глаз	Ген окраски тела
глаз и тела	и ген формы крыла	и ген формы крыла

<u>ЗАДАНИЕ 2 (12 баллов).</u> Рассмотрите при помощи ручной лупы предложенных Вам в пробирках плодовых мушек *Drosophila melanogaster L.* Определите их фенотипы. Результаты внесите в таблицу.

ВНИМАНИЕ!!! При заполнении таблицы укажите доминантным или рецессивным является определяемый признак. Доминантный признак

впишите в столбец таблицы «Д», рецессивный признак – в столбец таблицы «Р».

Таблица

Анализируемый	Проби	рка №1	Пробиј	рка №2	Пробиј	рка №3	Пробиј	Пробирка №4	
признак	Д	P	Д	P	Д	P	Д	P	
Окраска глаз									
Окраска тела									
Форма крыльев									

ПРИМЕЧАНИЕ (сокращения принятые в таблице): Д – доминантный признак, Р – рецессивный признак.

ЗАДАНИЕ 3 (16 баллов). Изучение экспрессии гена А у мышей.

<u>Материалы и оборудование</u>: четыре опытных пробирки (1-4), пробирка с реактивом (P), пипетки, лист белой бумаги в файле.

Экспрессия гена A у мышей дикого типа находится под контролем регуляторного элемента (энхансера), который значительно увеличивает уровень экспрессии гена A.

Продуктом гена A у мышей является белок, который при взаимодействии с реактивом **P** дает цветное окрашивание (малиновый цвет), причем интенсивность окрашивания прямо пропорциональна уровню экспрессии гена.

Было установлено, что взаимодействие реактива ${\bf P}$ и белка, у которого нарушена аминокислотная последовательность, приводит к изменению цвета окрашивания.

3.1. (4 балла). Для проведения эксперимента у разных линий мутантных мышей, отличающихся уровнем экспрессии гена A, были изъяты клетки, из которых получены клеточные экстракты (пробы 1 – 4), содержащие разное количество белка A. Вам предстоит изучить уровень накопления белка A в клеточных экстракта. Затем полученные данные использовать для анализа характера экспрессии гена A. Для этого на поверхность файла нанесите по одной капле раствора из каждой пробы. Затем к каждой из них добавьте по две капли реактива P. Отметьте изменение окраски и данные внесите в таблицу.

Номер пробы	Цвет пробы
1	
2	
3	
4	

3.2. (4 балла). Определите, какие линии мышей имеют мутации, влияющие на экспрессию гена А. Наличие мутации отметьте знаком «+», отсутствие – знаком « - ». Данные внесите в таблицу.

ВНИМАНИЕ!!! Каждая линия мышей может иметь только одну

мутацию, влияющую на экспрессию гена А.

Номер пробы	Наличие мутации
1	
2	
3	
4	

<u>3.3. (8 баллов).</u> Определите, в какой из перечисленных областей гена A и его регуляторных элементов произошли указанные мутации у мышей. Номер соответствующей пробирки внесите в таблицу.

ВНИМАНИЕ!!! Каждая линия мышей может иметь только одну мутацию.

Номер пробы	Область мутации
	промотор
	энхансер
	белок-кодирующая последовательность
	интрон