
In DevOps, "bake vs fry" refers to two approaches for provisioning and configuring
infrastructure, specifically related to how server images are prepared and deployed.

1. Bake (Pre-baked Images)

The bake method involves creating a fully-configured, pre-baked image (such as an AMI for
AWS, or a VM image) that contains everything needed to run an application, including the
operating system, application code, dependencies, configurations, and potentially even data.
This image is then deployed directly when spinning up new instances.

● How it works: Tools like Packer are used to create pre-baked images by automating the
build process. These images are then stored in an image repository (such as AWS AMIs
or Docker registries).

● Advantages:
○ Faster deployment: Since everything is pre-installed, new instances can be

deployed quickly.
○ Consistency: The same image is used across environments, ensuring

consistency between development, staging, and production.
○ Immutable infrastructure: The infrastructure doesn't need to be modified after

deployment, reducing configuration drift.
● Disadvantages:

○ Slower build process: Baking images can take time since everything must be
pre-configured in the image.

○ Requires new images for every change: If any configuration or code changes, a
new image must be baked.

Example:

● For AWS EC2 instances, you might use Packer to build an AMI with the application and
dependencies pre-installed. When launching instances, you use this AMI, and the server
is ready to go immediately after being spun up.



2. Fry (Bootstrapping on Startup)

The fry method involves deploying a basic, unconfigured base image (such as a plain OS
image) and frying or configuring the server during the boot or startup process. This
configuration typically involves installing application code, dependencies, and setting up
configurations on the fly, using tools like configuration management systems (e.g., Chef,
Puppet, Ansible), or through startup scripts.

● How it works: A base image is provisioned, and then tools or scripts (often called
bootstrapping) are used to install the necessary software and apply configurations.

● Advantages:
○ Flexibility: You can modify configurations or update code without needing to bake

a new image.
○ Smaller images: The base images are smaller and simpler, as they don’t include

all application dependencies upfront.
● Disadvantages:

○ Slower deployment: The instance takes longer to be fully configured because
installation and configuration happen during runtime.

○ Less predictable: There can be variability in setup time, or issues might arise
during installation, leading to failures or drift between environments.

Example:

● In AWS EC2, you might start with a base Ubuntu AMI, and during instance initialization,
use a user-data script or configuration management tool like Ansible to install and
configure the application.

Bake vs Fry: Key Differences

Aspect Bake (Pre-baked Images) Fry (Bootstrapping on Startup)

Speed of
Deployment

Fast (everything is pre-installed) Slow (configuration happens at
runtime)

Consistency High (same image is used
everywhere)

Lower (configuration applied
during startup)

Flexibility Low (requires re-baking for changes) High (can apply different
configurations at runtime)

Complexity Simple (deploy the image) Complex (scripts and
configuration management)

Use Cases Best for immutable infrastructure,
large fleets, auto-scaling

Best for dynamic environments,
testing setups



Use Cases

● Bake: Suitable for environments where fast, reliable scaling is important (e.g.,
auto-scaling groups in cloud environments) and consistency between environments is
crucial. It’s ideal for immutable infrastructure.

● Fry: More flexible and can be useful for mutable infrastructure, development
environments, or where configuration changes frequently and you don’t want to rebuild
the entire image each time.

In practice, many organizations use a hybrid approach where they pre-bake most of the
environment (OS, runtime, dependencies) and then fry the last bits (e.g., configurations or
environment-specific settings) during deployment.


