
[WIP] [RFC] Lexical Builder API

See also:
●​ https://lexical-builder.pages.dev/
●​ https://lexical-builder.pages.dev/docs/intro
●​ https://lexical-builder.pages.dev/docs/migration
●​ https://lexical-builder.pages.dev/docs/faq
●​ https://github.com/etrepum/lexical-builder

Use Case

Plug-ins are not the solution that users want. Lexical Builder attempts to solve several problems
with code reuse and scaffolding in Lexical.

●​ Plug-ins can only support code that can be asynchronously added to a LexicalEditor
after construction, but most use cases also require configuration that must be specified
synchronously during construction (such as any new nodes or replacements that are
being registered)

●​ Plug-ins are all React dependent. There is no standard to package code that can
support both React and non-React use cases from the same package, whether or not
the package has React dependencies

●​ Nodes and Plug-ins can not declare their dependencies or conflicts, for example
@lexical/yjs conflicts with @lexical/history. Markdown pretty much requires
@lexical/rich-text. There is the workaround where Plug-ins can throw runtime exceptions
if their Node requirements are not met, but there is no reasonable way for a node to
detect a missing plug-in!

●​ Configuration is verbose, several properties of the editor or LexicalComposer have
"obvious" defaults that must be specified

●​ Configuration is not composable, it is not easy to copy and paste an editor together
because at minimum you must edit two places (config and plug-ins) and the config
section requires manual merging of the nodes and theme properties.

●​ Using a context and hooks to set up the editor with bespoke plug-ins is cumbersome,
most people are not used to authoring top-level components for each piece of code that
has to interact with the editor.

Requirements
●​ Be the entrypoint to creating and configuring the editor

○​ Synchronous configuration of the editor

https://lexical-builder.pages.dev/
https://lexical-builder.pages.dev/docs/intro
https://lexical-builder.pages.dev/docs/migration
https://lexical-builder.pages.dev/docs/faq
https://github.com/etrepum/lexical-builder

○​ Synchronous registration with the editor after creation
■​ These synchronous calls can dispatch asynchronous work
■​ Synchronous cleanup

●​ Composable
○​ Plug-ins depend on and extend other plug-ins
○​ Configuration is specified in pieces, with sensible merge policies
○​ Sensible and extensible defaults

●​ Framework Independent
○​ Plug-ins that don’t use React shouldn’t need React!
○​ Should still provide a best-in-class React experience, with no reason (other than

legacy) to continue with the existing plug-in convention
●​ Not dependent on bundlers and is not a package manager

○​ This mostly means that a Plan must be imported by the user, not referenced by
name (as is common in node environment configurations, like eslint or webpack,
to allow them to be written in JSON)

○​ Shouldn’t know anything about versions, parsing version requirements, etc. That
should be done by npm/pnpm/yarn/etc. from metadata in package.json.

Terminology
I’m not married to any of these terms. They seemed like reasonable choices given the real-world
metaphor (architects/engineers make plans, builders execute those plans) and the Builder
pattern in software parlance. I think plug-in would’ve been the obvious choice, but that was
already used for the existing convention.

Plan - What plug-ins should’ve been
Plan is what all plug-in developers would author. It’s metadata, partial configuration for the
editor, plus a register method to add behavior to the editor after creation.

Builder - Creates an editor from Plans
This is the (mostly opaque/internal) API that combines Plans to create and manage the Editor.

Core Changes
This is designed to be an entirely additive solution, but the following changes would be very
useful for adoption

Add Plan types & helpers to lexical module
This has almost no runtime or bundle size effects (<1kb, see @etrepum/lexical-builder-core
index.js). The helper functions are identity functions only for type inference and will only add a
few bytes to the runtime. They are not strictly necessary but would be very helpful for users.

Types
●​ LexicalPlan - This is the type that matters, that all plug-in use cases should implement

and export. The associated utility/helper types below would also make sense to export
and have no runtime representation.

○​ AnyLexicalPlan
○​ AnyLexicalPlanArgument
○​ PlanConfigBase
○​ NormalizedLexicalPlanArgument
○​ RegisterState
○​ LexicalPlanArgument
○​ LexicalPeerConfig
○​ LexicalPlanConfig
○​ LexicalPlanName
○​ LexicalPlanOutput
○​ LexicalPlanDependency
○​ RootPlan
○​ RootPlanArgument
○​ RegisterCleanup
○​ NormalizedPeerDependency
○​ EditorHandle
○​ InitialEditorStateType

Helper functions (for inference only)
●​ definePlan - provides inference assistance in creating a LexicalPlan
●​ configPlan - provides inference assistance in creating a NormalizedLexicalPlanArgument

for specifying configuration of a Plan dependency
●​ defineRootPlan - convenience for creating an app’s root plan which has a default name

and no configuration
●​ provideOutput - convenience for attaching the output property to the return value of a

Plan’s register (RegisterCleanup) which aids in inference of the Output of a Plan
●​ safeCast - an identity function that’s like the satisfies operator in TypeScript, but does not

narrow. Useful for defining configuration.
●​ declarePeerDependency - allows a peer dependency tuple to be constructed with a type

argument

https://cdn.jsdelivr.net/npm/@etrepum/lexical-builder-core@latest/dist/index.js

JavaScript

JavaScript

New @lexical/builder package
This implements the LexicalBuilder class which can take a set of Plans and create/manage an
Editor. We may choose to only expose this only as a factory function (e.g.
createEditorFromPlan) and keep the class as an implementation detail.

/**
 * @param {AnyLexicalPlan} plan
 * @param {AnyLexicalPlan[]} plans
 * @returns {EditorHandle}
 */
export function buildEditorFromPlans(plan, ...plans) {
 // implementation details using the LexicalBuilder class
 return { editor, dispose };
}

Export Plans from each package
Packages that implement plug-ins and nodes should export a Plan to configure them
accordingly, e.g. @lexical/rich-text, @lexical/plain-text, @lexical/code, and so on. The runtime
overhead of exposing this object should be negligible as it’s only a little bit of metadata and
generally does not require adding any new code at all (the register property uses the same
calling convention as existing functionality. For example:

export const RichTextPlan = definePlan({
 config: {},
 conflictsWith: ["@lexical/plain-text"],
 name: "@lexical/rich-text",
 nodes: [HeadingNode, QuoteNode],
 register: registerRichText,
});

New @lexical/react/LexicalPlanComposer module & component
LexicalPlanComposer is a replacement for LexicalComposer that uses a plan instead of an
initialConfig. Alternatively, LexicalComposer could be modified to take an initialConfig or a plan,
but I think it would be cleaner to have a separate component and not have to maintain that sort
of branching for legacy code.

JavaScript

Add Plan/Builder awareness to @lexical/devtools
Since everything LexicalBuilder does during construction is synchronous, it should be
straightforward to capture metadata when the editor is constructed. We could know exactly
which Plan registered a transform, command, or listener by using module-level state (or
equivalent) on enter/exit of a Plan’s register method.

WIP Prototype

Monorepo with prototype
https://github.com/etrepum/lexical-builder
Docs page [WIP]
https://lexical-builder.pages.dev/docs/intro

Implementation notes:
●​ All of the plans in @lexical/builder should be colocated with the modules that implement

their functionality (e.g. RichTextPlan should be exported by @lexical/rich-text). I
centralized them all to make it very clear that this is an additive change and to prevent
rebase issues at this early stage. The overhead of exporting these Plans should be
negligible.

●​ If this were accepted it would also make sense to move the Plan related types into the
lexical package so that any package can export a Plan without any sort of dependency
on @lexical/builder (maybe also add the definePlan and configPlan helper functions to
help with type inference too)

Usage:

Vanilla JS

const { editor, dispose } = buildEditorFromPlans({
 dependencies: [
 RichTextPlan,
 configPlan(EmojiPlan, { emojiBaseUrl: "/assets/emoji" }),
],
});
editor.setRootElement(document.getElementById("lexical-editor"));

https://github.com/etrepum/lexical-builder
https://lexical-builder.pages.dev/docs/intro

JavaScript

React:

const plan = defineRootPlan({
 dependencies: [
 RichTextPlan,
 // By default a ContentEditable renders first in the composer
 configPlan(ReactPlan, { contentEditable: null }),
 configPlan(EmojiPlan, { emojiBaseUrl: "/assets/emoji" }),
],
});
function Editor() {
 return (
 <LexicalPlanComposer plan={plan}>
 <h1>The Editor</h1>
 <ContentEditable className="editor-input" />
 </LexicalPlanComposer>
);
}

What is a Plan?

●​ What users expected plug-ins to be. Adding functionality to the editor is as simple as
importing it, and then specifying the plan in the configuration

●​ A convention and schema that plug-in developers want to support to reduce
documentation and support burdens

●​ A data type including the arguments to createEditor, metadata (name, dependencies,
conflicts), Plan-specific configuration with defaults that can be augmented, and optional
functions to add behavior after the editor is created

●​ May depend on some specific framework using a Plan dependency, e.g. ReactPlan

Plan can:

●​ Be used at most once when building a LexicalEditor
●​ Have configuration
●​ Have dependencies on other Plans by concrete reference (like commands), optionally

augment their Config, and access their finalized config (using the concrete reference as
a key) during register

●​ Can have (always optional) peerDependencies on other plans by name, although you
could throw a runtime exception during register if they are not present (used by
ReactPlan to detect whether LexicalPlanComposer or ReactPluginHost are present)

●​ Register Nodes, replacements, transforms, etc. and any other initial configuration in
general by manipulating the initial configuration

●​ Update the initial state before reconciliation
●​ Configure the editor
●​ Optionally do registration/cleanup with the editor
●​ Use an AbortSignal to help manage finalization of asynchronous tasks
●​ Allow a Vanilla JS user to host React plug-ins (it’s all just portals anyway)
●​ (TODO - only React or no framework right now) Optionally have framework-specific

integrations
●​ (TODO) Allow dev tools to capture metadata about the Plan (e.g. commands that are

registered while the Plan is executing could be tagged with the plan’s name)

Plan can not:

●​ Be loaded asynchronously, but their registration function can do async work, so an async
import could be done at that time

What is a Builder?

●​ A framework agnostic tool to manage creating the LexicalEditor from PlanArguments,
which may either be a Plan or a [Plan, Config] pair that is used to augment the
configuration for that plan

Builder does:

●​ Synchronously build the LexicalEditor’s initial configuration from an Array of plans
●​ Merge Plan configurations after flattening dependencies w/ a topological sort (e.g.

merge([...dependencyConfigs, explicitConfig]))
●​ Provide callbacks for plans to do registration (and clean-up) on the LexicalEditor after it

is constructed
●​ Provide a decorate protocol so that any Plan can render Vanilla JS (compatible with any

framework) or Framework-Specific UX (e.g. an alternative to the current React Plug-in
Convention)

●​ Demonstrate maximal automatic and manual lazy-loading strategies for a Plan (e.g.
dynamically import UX code only if the Editor becomes editable)

●​ Exports TypeScript types that plug-in developers can use to author LexicalBuilder Plans
with only a devDependencies entry and no runtime import

Builder does not:
●​ Offer any sort of module resolution, e.g. you can not specify a plan by the name of a

module, it must be a module that was already imported
●​ Allow for plans to be asynchronously loaded. A Plan can have behavior that does

asynchronous work (possibly asynchronously loading its supporting code) after the
LexicalEditor is constructed, but the Plan itself is already completely reified before the
Builder constructs the LexicalEditor.

●​ Allow modifications of any sort to the Builder’s inputs after the LexicalEditor is
constructed. To make such changes, the LexicalEditor must be re-created, because
Nodes can not be unregistered or replaced after construction.

●​ Add any cross-framework compatibility. Vanilla JS Plan Decorators can work in any
framework, but React decorators only work in React projects.

	[WIP] [RFC] Lexical Builder API
	See also:
	Use Case
	Requirements
	Terminology
	Plan - What plug-ins should’ve been
	Builder - Creates an editor from Plans

	Core Changes
	Add Plan types & helpers to lexical module
	Types
	Helper functions (for inference only)

	New @lexical/builder package
	Export Plans from each package
	New @lexical/react/LexicalPlanComposer module & component
	Add Plan/Builder awareness to @lexical/devtools

	WIP Prototype
	Implementation notes:
	Usage:
	What is a Plan?
	Plan can:
	Plan can not:
	What is a Builder?
	Builder does:
	Builder does not:

