Lesson 6: Serial to Boar

SERIAL TO BOARD

We are going to explore serial communications further by sending data in the opposite
direction, that is, from the computer to the Arduino board. We will see how this data is used
by the Arduino board to control the behavior of the components.

P

|~ ESTIMATED TIME: 45 min

L

YOU WILL LEARN ABOUT:

ARRAY VARIABLE TYPES COUNT ALGORITHM REPRESENTING DATA IMN DIFFERENT WAYS

READING DATA FROM VARIOUS INPUTS DESIGMING PROGRAMS BASED OM SPECIFICATIONS

Recap of previous lessons

Question 1

Identify which commands would generate which of the following outputs in the Serial
Monitor in a properly functioning program:

numbernumbernumb numbex 1010101010101010 10
number 10
numbex 10
numbex 10
Question 2

Identify which symbols/operators would result in the following actions:

#+ assignment of value to a variable

¢ comparison of values/variables

+ logical AND

+ logical OR

#+ incrementing a variable by 1

+ decrementing a variable by 1

declaring a text as a string

+ setting the follow-up text as a comment

#+ closing a command

ANSWERS AT THE END

Introduction

In this lesson, we are going to explore serial communications further by sending data in the
opposite direction, that is, from the computer to the Arduino board. We will see how this data
is used by the Arduino board to control the behavior of the components. We will also build a
two-way communication channel that will allow us to send data back and forth between the

board and the computer.

Today we will learn

+ new programming concepts that are used to send information from the computer to the
Arduino board,

#+ how information is stored and transmitted in digital devices,
+ how to read and process the bytes of information received on the Arduino board, and

+ how to create a two way communication channel.

Let's prepare the materials

-

1 ARDUINOE® UNO WIFI 1 BREADBOARD
REVZ2
- L
1 5MM RED LED 1 5MM GREEN LED
o~
i

10 MALE-MALE JUMPER
WIRE

1 USB CABLE

>

2 2200 RESISTOR

Different ways to display data

In this activity, we will learn how to store and represent the data we send from the computer

to the board in different ways.

Sending data to the board

As we know from the previous lesson, when data flows through serial communication, it is
flowing in binary code. There are different ways to work with the data that arrives through
serial communication to the board. We can store it using an 1nt wvariable - then we will see a
number that codifies the character arriving at the board - or we can use a new type of
variable called char - and then we will see what the character is that has arrived at the

board.

Numbers (0, 1, 2, 3) int

Characters (a, b, c, +, *, (,)) char

Programming the board

Let’s program the board to test the differences between storing data ona char variable and
on an 1nt variable. To do this, open the code in File > Examples > CTC GO CORE > Lessons

> SerialToBoard > SerialToBoard_Activity1 and upload it to the board.

Now that we have programmed the board, we need to open the Serial Monitor and configure

it as follows:

1
"

o

[— e B e B sis
T ——

The no line ending will configure the Serial Monitor in order not to send extra characters

when we press the ENTER key.

This program just shows in the Serial Monitor the data we sent to the board. It does this by

showing the differences between storing the data as 1nt or char.

Try out sending different characters (it is possible to try this using capital letters as well) and

numbers through the Serial Monitor and see what the number is that codifies it.

Not working?
Check that the correct board is selected.

+ Check that the correct port is selected.

Check that the number in the Serial Monitor matches the one written in the

Serial.begin() function.

Check that the Serial Monitor configuration matches with the configuration shown in the
Programming the board section.

Understanding the program

In the first part of the code, we initialize the variables and serial communication by selecting
the communication speed of 9688 bits/sec (bauds).

int incomingMum = 8;
char incomingChar:

vold setup()

Serial.begin(9668)
b

When we send data from the computer to the board, it is stored in a bujfer. A bufferis a
space in the memory in which, temporarily, some data is stored waiting to be read. To
know if there is data waiting to be read in the buffer, we use the function

Serial.available() , which checks how occupied that buffer is. It means, how many

characters are stored in it.

- - - - - ‘ Buffex_

Occupied

-

s

Bullex

Inside the loop, we are using:
Serial.available() = 8

With it, we are checking whether there is any data arriving through serial communication.

void loop()

if (Serial.available() = &)
{

The data that arrive at the buffer is organized following first in, first out (FIFO) method, this
means that when we want to retrieve this data from the buffer, we are going to start taking
the first character came into the buffer.

Once we know that there is data in the buffer, we are going to retrieve it. To do this, we need
a function that takes the data out of the buffer and stores it in a different variable. By doing

this, we are able to use the data that has arrived through serial communication.
The function we are going to use to do this is:
Serial.read()

Every time a character is taken from the buffer, the amount of occupied space on it

decreases. In our program, it continues until there is not data stored in the buffer.

0 o

Occupied

.
5

= Variable = Sezxial.Read();

oD

Occupied
Boarxd v

= Variable = Sezxial.Read();

Then, by using:
incomingNum = Serial.read();
We are taking the data arriving through serial communication and saving it in a variable.

In this case, we first store the incoming data in 1ncomingNum and then save itin

incomingChar , which is a different type of variable.

incominglum = Serial.read();
incomingChar = incomingMum:

COnce all is saved, we represent it in the Serial Monitor.

First, we print a row with the information we are going to print and then we print the
variables we want to see: incomingChar and incomingMNum .

Serial.println{"Character Code")}:
Serial.print{incomingChar):
Serial.print(" ")
Serial.println{incomingMNum) ;

Experiment

#+ Try changing the Serial Monitor configuration and observe how it affects the data we
send to the board.

W Al FR D SR WE0E Hil

LR e atdmrasbe 1 15 Pokarns Lo WoF i 51

B farescrdl Shas tirsaiang _E B0 hiasd H [bar oorpeat

O
T -
bumhi P & O

#+ To see how the buffer size changes, let's modify the program to save the buffer size in a

variable and then let's print its value after reading each character. To save the buffer size,
we need to use the following command:

bufferSize = Serial.available();

All codes for the different characters are presented according to the ASCII code; if you are
interested in it, you can investigate it further.

The Serial Monitor should generally be set to No line ending.

Char variables can store numbers (as characters) as well, but we cannot make
mathematical operations with them as characters properly.

You can demonstrate the effect with an example code, as shown below:

char firstNumber = "1°

char secondNumber = '

char newNMumber =

void setup() {
Serial.begin(9688)

void leoop() {
Serial.println{"Adding characters in the print function:");
Serial.println(firstNumber + secondNumber);
Serial.println();
Serial.println{”Adding characters together in another char variable:");
newNumber = firstNumber + secondNumber:
Serial.println{newNumber) ;
Serial.println();
delay(2868)

Ask students to guess why you might get these outputs.

Vowels detector

In this activity, we will learn how we can control the state of some LEDs by sending data to
the board through the serial communication.

/_. SSoooooaoDoonEnmE

Building the circuit

For this activity, we will need a circuit with two LEDs: a green LED connected to pin 13 and a

red one connected to pin 12.

 A——
5V
11
ARDUIND 12
UND WIFI 11 =
o EE N/
B = 'h ‘x
'\
T b
-6 =
- AR -5 f=
- Al 4 =
=4 A2 -3 b=
- AL 3 m
1x wf oo
= A5 G
GND

Programming the board

Let’s program the board to count the number of vowels a word has. Every time the board
detects a vowel, it will turn ON the green LED for half a second; however, if the board detects
a consonant, it will turn ON the red LED for half a second. To do this, open the code in File =
Examples > CTC GO CORE > Lessons > SerialToBoard > SerialToBoard_Activity2 and
upload it to the board.

Mow, to check if the program is working fine, we need to write a 10-letter word (i.e. a word

thatis 10 letters long, maximum}).

Not working?
¢ Check that the selected board is correct.
+ Check that the selected port is correct.
Check that the speeds of the program and the Serial Monitor match.
¢ Check that the Serial Monitor configuration matches the configuration from Activity 1.

+ Check that the connections are correct.

Understanding the program

The following flowchart shows the program behavior:

STAET

—_—

T
ES
HD
v

v rhe ks arvaed
Mo iy d

T

Frint thes wabus ol
it

el MO

Rosal wa ek T, ~
i Bk thes Green L5
. S -

In the first part of the code, we initialize the variables.

char incomingWord[1@]:
int counter = @;
int 1 = 8;

]

int redLED

= 13;
int greenLED =

12;
In this exercise, we are using a new type of variable called an array:

char incomingWord[18]:

An array is a group of same type variables stored together. The number between curly braces
indicates the number of elements that the array can store, in this case 10.

Array length is 10

int int int int int int int int int int
intarray [10]

array [0] array [9]

The buffer we saw in the previous activity is an array.

We can access an array element simply by referring to the array name and specifying the
particular element we want to access.

Axray

intaxrray [10] -

array [3]

We need to pay special attention when working with arrays. When we work with arrays, we

start counting from the number 0, so the first element of an array is:

array[8]

intarxray [10]

10 elements

int

In the setup, we initialize serial communication and the pins to which we connected the LEDs.

voild setup()
pinMode(redLED, OUTPUT);
pinMode(greenLED, OUTPUT),

Serial.begin(9668)
b

In the loop, we check to see if there is any data coming.

In case there is data coming, we are going to store it in the incomingWord array element
that is indicated by the variable 1 thatstartsat 8.

void loop()

if (Serial.available() = 8)
{

incomingWord[i] = Serial.read();

Using char variables introduces changes to the way we are used to checking the value of a
variable:

When we check the type int value, we compare it with a number:

incomingWord ==

When we check the type char value, we need to compare it with a character. To do so,
we need to place it between

incomingWord == '@’

Then, we are going to check if the letter that has arrived is a vowel or not; in case itis a
vowel: We will blink the green LED once for half a second, and then we will increase 1 unit in

the counter variable.

if (incomingWord[i] == "a")

{
digitalWrite(greenLED, HIGH);
delay(5688)
digitalWrite(greenLED, LOW),
delay(568) ;
counter += 1;

We will repeat the same process for each vowel: a, , i, 0, and u.

else if (incomingWord[i]
{
digitalWrite(greenLED,
delay(588);
digitalWrite(greenLED,
delay(568);
counter += 1;

else if (incomingWord[i]

digitalWrite(greenLED,
delay(568)
digitalWrite(greenLED,
delay(568);
counter += 1;
}
else if (incomingWord[i]
{
digitalWrite(greenLED,
delay(568)
digitalWrite(greenLED,
delay(588);
counter += 1;
}
else if (incomingWord[i]
{
digitalWrite(greenLED,
delay(568)
digitalWrite(greenLED,
delay(568)
counter += 1:

Once we know whether the letter that has arrived is a vowel or not, we will increase by 1 the
value of the variable i in order to store the next letter arriving through serial

communication.

HIGH) ;

LOW) ;

i)
HIGH) ;

LOW) :

HIGH) ;

LOW) :

HIGH) ;

LOW) :

TEACHER NOTES

Students may come up with the idea to simplify the code by swapping multiple
conditionals with a single expression that combines conditions with or,or || .

If students don't volunteer it, you can ask them if they can think of such a
simplification.

To print the incomingWord array elements, we need to use a loop that is called a for()

loop.

The for() loop executes the commands between the curly braces a certain number of

times, which are indicated between the parentheses nextto for() in the following way:

@ Since i valueis 8 , and while i wvalue is smaller than 18 , it will execute the

commands between the curly braces.

Once all the commands between the curly braces have been executed once, it will
increase the value of 1 and repeat the process.

+ When i value is bigger than or equal to 18 , go out of the loop.

for {(int 1 =8; i = 18; i++)

{

To better understand the for() loop, let's see a simulation of the execution of the next

for() loop code:

for (int i = 8; i < 18; i++)
{

Serial.print(incomingWord[i]):

Array

intarray [10]

array [3]

for (int 1=0; 1<10; i++)

{

Serial.print(incomingWord[i]);

As you can see, the Tor() loopis going to be repeated 10 times, since the value of variable

1 is 8. Itwill do so until the variable 1 wvalueis 9.

The way we apply this in our program is: if there is no more data arriving, let’s print the data
we have: First, we will print the word that has arrived, Second, we will print the number of

vowels we have found in the word that has arrived, Third, we will wait 5 seconds.

else

{

Serial.print("The word introduced is: ");
for (int 1 = 8; 1 < 18; i++)

Serial.print(incomingWord[i]):
}
Serial.println("");
Serial.print("It has: ");
Serial.print (counter);
Serial.println{" Vowels");
delay(5868)

And the last step of the program is to reset all the variables in order to get them ready for the

next piece of data arriving.

Weuse a for() loopinthisstepto puta 8 in all the elements of the incomingWord array.

counter = @;

i=8;
for (int i = 8; 1 < 18; it+)
{

incomingWord[i] = @;

Experiment

Modify the code, using a for loop, to blink the red LED 3 times whenever the program detects

a consonant.

Guessing word

In this activity, we will learn how to store data in arrays, how to modify it, and how to check it

while we build a game.

void setup() {
pinMode (LED_BUILTIN, OQUTPUT);

}

void loop() {
digitalwWrite(LED_BUILTIN, HIGH);

delay(1000);
}

Programming the board

Let's program the board to build a game, where one of the group members chooses a secret
word and the other ones have to guess it by introducing letters through the Serial Monitor.
The basic configuration allows the players three mistaken letters. To do this, open the code in
File > Example > CTC GO CORE > Lessons > SerialToBoard > SerialToBoard_Activity3 and
upload it to the board.

Once the program is open, we need to find the array called selectedWord and to change
the word between " " with the one we want the others to guess. Then, we upload the

sketch to the board and open the Serial Monitor.

To restart the game, we have to close the Serial Monitor and reopen it.

Not working?

Check that the selected board is correct.

+ Check that the selected port is correct.

Check that the speeds of the program and the Serial Monitor match.

Check that the Serial Monitor configuration matches the configuration from Activity 1.

Understanding the program

The following flowchart shows how the code works:

Is there any data

arnving?

Store the data in
"incoming”

Is "incoming”
Store the data in
"incoming” any letter of number elements of
"selected word"? "selectedWord™?

Store it in the array Increase "mistake” by 1
"guessingWord" Print message: Wrong
Increase "success” by 1 letter

Is "success"
number elements of
"selectedWord"?

Is "mistakes" Is "mistakes” Is "mistakes”
> <
"chances"? "chances"? "chances"?

Print message: Winner
reset "Success”

Print Print "guessingWord”
message: Game Over Print "mistakes”

End of game

o . *Do nothing*
mistakes” = 5 < "mistakes” = 5 Reset "counter”

First, let’s initialize the variables and arrays that we are going to use.

char selectedWord[] = {"HelloWorld"}:
char guessingWord[sizeof(selectedWord)]:
char incoming = 8

int counter = 8;

int mistakes = 8:
int success
int chances

8,
3,

When we want to initialize an array with specific data, we have to introduce this data

between curly braces { }.

In case the data consists of characters, they should be between ™ " as well, same as in

Serial.print() :

char selectedWord[] = {"HelloWorld"}:

In this case, we have not indicated the array size with a number between the curly braces.
The array size is the amount of letters we have added betweenthe " " + 1. When we
initialize an array with characters, a symbol that tells the microcontroller that the array

finishes there is added automatically just after the last letter.
The selectedWord array length is 5 (letters) + 1 = 6.

In case the data consists of numbers, we can add them between curly braces:

gelectedNumber[] = {16821312}:

In this case, the size of the array is the amount of numbers that we added between the curly

braces. The selectedNumber arraylength=7.

When we are working with arrays that could change their size and we need to know the array
size, to do this, we can use the function:

sizeof(array).

It will give us the number of elements that the array has between the parentheses.

In the following example, the array guessingWord always has the same number of

elements (letters) as the selectedWord .

char guessingWord[sizeof(selectedWord)];

In the setup, we initialize serial communication.

Then, we fill the guessingWord array with an underscore, "_" , which will allow the players
to know the position of the achieved letters.

vold setup()

{
Serial.begin(9668)
for (int 1 = 8; i < sizeof(selectedWord) - 1; i++)
{

guessingWord[i] = '_°;

Serial.print("The Word you are looking for is: "),
Serial.println{guessingWord)

In the loop, the first thing we do, if there is data arriving, is to store it in the 1nceming
variable.

Then, we will go through the selectedWord array, by usinga for() loop, checking if
incoming value is the same as any of the elements of the selectedWord array.

In case we want to find an element with the same value as incoming , we store incoming
in the same element number of the guessingWord and increase the success variable by
one.

In case we do not find any element of selectedWord with the same value as incoming,
we just increase the value of the counter variable by one and print a message.

void leop()
{

if (Serial.available() = &)

{
incoming = Serial.read();
for (int 1 = 8; i < sizeof(selectedWord); i++)
{
if (incoming == selectedWord[i])
{
guessingWord[i] = incoming;
success += 1;
}
else
{

counter = counter + 1;

}
}

d loop ()
(
if(Serial.available() > 0)
}

incoming = Serial.read();
i < sizeof(selectedword); ir+)

selectedWoxrd H E L L 0 for(int 1 = 0; 3
{
if (incoming == selectedWord [i])

{

guessingWord[i] = incoming;

success + = 1;

guessingWord X X L L X
counter = counter + 1;

}
}
if (counter ==

{

sizeof(selectedword))

mistakes + = 1;
"

Serial.printIn (“Wrong letter! Try again...

}

counter = 3 success = 2

After checking the incoming data, we check the value of counter.

If counter value is equal to the number of elements that the selectedWord has, it
means that there is no match between the letter that has arrived and the selectedWord,
which means that the player made a mistake.

In that case, we increase the mistakes variable by one and print a message.

if (counter == sizeof(selectedWord))

{

mistakes += 1:
Serial.println{"Wrong letter!! Try again..."):
¥
b

When there is no data arriving and the value of the mistakes value is smaller than that
of the chances variable, we show the player the game state.

To do this, we print guessingWord array that shows what letters the player has guessed
and the number of mistakes made.

We also reset the counter to have it ready for the next letter.

if (mistakes =< chances)

{
Serial.print("The Word you are looking for is: ");
for (int 1 = 8; 1 < sizeof(selectedWord); i++)

Serial.print(guessingWord[i]):
}
Serial.print(” Mistakes: ")
Serial.println{mistakes);
counter = @;

delay(1888)

When the number of mistakes is equal to the number of allowed chances, the game
finishes.

When the variable mistakes is bigger than chances , the program enters a certain state,
in it, the program is stuck doing nothing.

else if (mistakes == chances)

{
Serial.println();
Serial.println("Game Over"”);
mistakes = 5:

}

else

{}

Ifthe success value is equal to the number of selectedWord elements without the end
of array character, it means that all the letters are guessed and that the player won the
game.

if (success == sizeof(selectedWord) - 1)

{
Serial.println();
Serial.print("WINEER!'"):
success = 8
mistakes = 5:

"

Experiment

Modify the number of mistaken letters that the game allows the players in order to make the
game more difficult.

Challenge

Modify the code from Activity 3 in order to:

Add a green LED that will blink once for each correct letter that is introduced through the

Serial Monitor and that will stay ON when the player wins the game.

Add a red LED that will blink once for each mistaken letter that is introduced through the
Serial Monitor and that will stay ON when the game is over.

COMPLETE PROGRAM

C/C++

/*
CTC GO! CORE MODULE
LESSON 06 - Serial to Board

This sketch is written to accompany Activity 3 in Lesson 06 of the CTC GO! core module
&Y/

char selectedWord[] = {"HelloWorld"};
char guessingWord[sizeof(selectedWord)];
char incoming = 9;

int counter = 9;
int mistakes = 0;
int success

1 1
w o

int chances

//Add the pinout
int greenLED = 13;
int redLED = 12;

void setup()

{
//Set up the LEDs

pinMode(greenLED , OUTPUT);
pinMode (redLED, OUTPUT);

Serial.begin(9600) ;

for (int i = 0; i < sizeof(selectedWord) - 1; i++)

{

guessingWord[i] = '_"';
}
Serial.print("The Word you are looking for is: ");
Serial.println(guessingWord);

void loop()
{

if (Serial.available() > 9)
{
incoming = Serial.read();
for (int i = 0; i < sizeof(selectedWord); i++)
{
if (incoming == selectedWord[i])
{
guessingWord[i] = incoming;
success += 1;

//green LED blink
digitalWrite(greenLED , HIGH);

delay(500) ;
digitalWrite(greenLED , LOW);
}
else
{
counter = counter + 1;
}
}
if (counter == sizeof(selectedWord))
{

mistakes += 1;
Serial.println("Wrong letter!! Try again...");

//red LED Blink
digitalWrite(redLED , HIGH);
delay(5600);
digitalWrite(redLED , LOW);

if (mistakes < chances)
{
Serial.print("The Word you are looking for is: ");
for (int i = 0; i < sizeof(selectedWord); i++)
{
Serial.print(guessingWord[i]);
}
Serial.print(" Mistakes: ");
Serial.println(mistakes);
counter = 0;
delay(1000) ;

else if (mistakes == chances)
{
Serial.println();
Serial.println("Game Over");
mistakes = 5;

//red LED ON
digitalWrite(redLED , HIGH);

else

{
//green LED ON
digitalWrite(greenLED ,HIGH);}

if (success == sizeof(selectedWord) - 1)
{
Serial.println();
Serial.print("WINEER!!");
success = 0;
mistakes = 5;

Conclusions

In this lesson, we learned:

#+ about the different variables that allow us to store various types of data,

Mumbers (0, 1, 2, 3) int
Characters (a, b, c, +, *, (L)) char

+ whatis a buffer and how to read data from the Arduino board buffer,

. ",

LV S N

v N

o2 B n B
|
- = Wariable = Serial . Read():

= VvVariable = Serial Read():

a
|

+ how to use the data that has been stored in the buffer through the concept of arrays,

Arzay

intarzay [l0]

azzay [3]

#+ accessing the elements of the array using a special programming concept called for-
loops,and

intarzxay [10] A, = =

for (int i=0; 1<10: 1i++)

Serial print{incomingWozd[i]):

+ sending and receiving data between an arduino board and a computer creating a two

way communication channel.

f 5V A
13
ARDUINO 12
UNO WIFI 11 b=
10 o= LED SZ
~Q [LED SZ \
8 = WY X
7 p—
~G [
- AQ ~5 fom
= Al 4 =
= A2 ~3 _—
- A3 2 b= 220Q
=1 * ™31 - 2200
=1 A5 RX< 0 fom
L GND y

Wrapping up

At the end of the class, all materials should be organized in their respective boxes to make
sure that they are ready for use in the next lesson.

Before leaving, make sure that:

#+ the battery is disconnected from the battery holder,
there are no components on the floor, and

that broken components (if any) are reported to the teacher.

Afterclass

Since you might have created some really clever solutions for heme automation for this

lesson, it would be a shame not to do some tinkering in connection with it.

That wonderful invention most probably happens to be quite complicated, so try thinking of

a simpler approach for now and make a plan for how you could make use of what you have
learned thus far.

Create an algorithm and a schematic circuit built with Arduino for a basic solution to the tool
suggested in the last Afterclass. You can have just one function for the product.

In case you do not have an idea or do not want to work on your own invention, there is
one here that you can use:

A Smart Fridge

Main functions

4 Automatic reorder

< Makes a list of different food products and assigns a value to each of the

products that represents the ideal amount of that product

< Orders food if the amount of it drops below a set value and if automatic
ordering is turned on for the product.

< The amount of order is x and it is calculated as x= ideal+1-current

#+ Tracks expiry dates

< Notifies about expired food.

Pro

Convenience

< Itis not necessary to bother thinking about shopping every day.

Contra

+ Too much waste
4+ Probably buys more than what is needed.
+ Stocks everything we set, so we might not be able to eat everything before it

expires.

Additional costs over a simple product

4+ Barcode scanner.
#+ Information panel.
+ Internet connection for ordering, purchase option.

+ Database with all products, where to buy them, when they expire, how much they
cost.

SOLUTIONS TO RECAPPED LESSON 5
QUESTION 1

TEACHER NOTES

The matching commands for the outcomes in order are:

Serial.print("number");

*
+ Serial.printin("number”);
+ Serial.print{number);

*

Serial.printin(number);

QUESTION 2

The matching symbols for the actions are:

assignment of value to a variable
comparison of values/variables
logical AND
logical OR
incrementing a variable by 1
decrementing a variable by 1
declaring a text as a string
setting the follow-up text as a comment

closing a command

	
	SOLUTIONS TO RECAPPED LESSON 5

