
 

 

 

Module-1 : Introduction to Algorithms 

 

Contents 

 

1.​ Introduction 
1.1.​What is an Algorithm? 
1.2.​Algorithm Specification 
1.3.​Analysis Framework 

2.​ Performance Analysis 
2.1.​ Space complexity 
2.2.​ Time complexity 
3.​ Asymptotic Notations 

3.1.​Big-Oh notation 
3.2.​Omega notation 
3.3.​Theta notation 
3.4.​Little-oh notation 
3.5.​Mathematical analysis 

4.​ Important Problem Types 
4.1.​Sorting 
4.2.​Searching 
4.3.​String processing 
4.4.​Graph Problems 
4.5.​Combinatorial Problems 

5.​ Fundamental Data Structures 
5.1.​Linear Data Structures 

5.2.​Graphs 
5.3.​Trees 
5.4.​Sets and Dictionaries. 

 
 



 

1.​Introduction 

1.1.​ What is an Algorithm? 

An algorithm is a finite set 
 

 
 
 
of instructions to solve a particular problem. In 
addition, all 

algorithms must satisfy the following criteria: 
a.​ Input. Zero or more quantities are externally supplied. 
b.​ Output. At least one quantity is produced. 
c.​ Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear 

what should be done. 
d.​ Finiteness. If we trace out the instruction of an algorithm, then for all cases, the 

algorithm terminates after a finite number of steps.​  
e.​ Effectiveness. Every instruction must be very basic so that it can be carried out, in 

principle, by a person using only pencil and paper. It is not enough that each 
operation be definite as in criterion c; it also must be feasible. 

 
Algorithm design and analysis process - We now briefly discuss a sequence of steps one 
typically goes through in designing and analyzing an algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

●​ Understanding the Problem - From a practical perspective, the first thing you need to  
do before designing an algorithm is to understand completely the problem given. An  
input to an algorithm specifies an instance of the problem the algorithm solves. It is very 
important to specify exactly the set of instances the algorithm needs to handle. 

●​ Ascertaining the Capabilities of the Computational Device - Once you completely 
understand a problem, you need to ascertain the capabilities of the computational device 
the algorithm is intended for. Select appropriate model from sequential or parallel 

 



 

programming model. 

 



 

●​ Choosing between Exact and 
Approximate Problem Solving - 

The next principal 

decision is to choose between solving the problem exactly and solving it approximately. 
Because, there are important problems that simply cannot be solved exactly for most of 
their instances and some of the available algorithms for solving a problem exactly can be 
unacceptably slow because of the problem’s intrinsic complexity. 

●​ Algorithm Design Techniques - An 
algorithm design technique 

(or “strategy” or 

“paradigm”) is a general approach to solving problems algorithmically that is applicable 
to a variety of problems from different areas of computing. They provide guidance for 
designing algorithms for 
satisfactory algorithm. 

new problems, i.e., problems 
for which 

there is no known 

●​ Designing an Algorithm and Data Structures - One 
should pay 

close attention to 

choosing data structures appropriate for the operations performed by the algorithm. For 
example, the sieve of Eratosthenes would run longer if we used a linked list instead of an 
array in its implementation. Algorithms + Data Structures = Programs 

●​ Methods of Specifying an Algorithm- Once you have designed an algorithm; you need 
to  specify  it  in  some  fashion.  These  are  the  two  options  that  are  most  widely used 
nowadays for specifying algorithms. Using a natural language has an obvious appeal; 
however,  the  inherent  ambiguity  of  any  natural  language  makes  a  concise  and clear 
description  of  algorithms  surprisingly difficult.  Pseudocode  is  a  mixture  of  a natural 
language and programming language like constructs. Pseudocode is usually more precise 
than natural language, and its usage often yields more succinct algorithm descriptions. 

●​ Proving an Algorithm’s Correctness - Once an algorithm has been specified, you have 
to prove its correctness. That is, you have to prove that the algorithm yields a required 
result for every legitimate input in a finite amount of time. For some algorithms, a proof 
of correctness is quite easy; for others, it can be quite complex. A common technique for 
proving correctness is to use mathematical induction because an algorithm’s iterations 
provide a natural sequence of steps needed for such proofs. 

●​ Analyzing an Algorithm - After correctness, by far the most important is efficiency. In 
fact, there are two kinds of algorithm efficiency: time efficiency, indicating how fast the 
algorithm runs, and space efficiency, indicating how much extra memory it uses. Another 
desirable characteristic of an algorithm is simplicity. Unlike efficiency, which can be 
precisely defined and investigated with mathematical rigor, simplicity, like beauty, is to a 
considerable degree in the eye of the beholder. 

●​ Coding an Algorithm - Most algorithms are destined to be ultimately implemented as 

 



 

computer programs. Implementing an algorithm correctly is necessary but not sufficient: 
you would not like to diminish your algorithm’s power by an inefficient implementation. 
Modern compilers do provide a certain safety net in this regard, especially when they are 
used in their code optimization mode. 

 



 

1.2.​ Algorithm Specification 

An algorithm can be specified in 

1)​ Simple English 
2)​ Graphical representation like flow chart 
3)​ Programming language like c++ / java 
4)​ Combination of above methods. 

Using the combination of simple English and C++, the algorithm for selection sort is 
specified as follows. 

 
 
 
 
 
 
 

In C++ the same algorithm can be specified as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here Type is a basic or user defined data type. 
 

Recursive algorithms 

An algorithm is said to be recursive if the same algorithm is invoked in the body (direct 
recursive). Algorithm A is said to be indirect recursive if it calls another algorithm which in 
turn calls A. 

Example 1: Factorial computation n! = n * (n-1)! 

Example 2: Binomial coefficient computation 

 
 
 

Example 3: Tower of Hanoi problem 
Example 4: Permutation Generator 

 



 

1.3.​ Analysis Framework 

General framework for analyzing the efficiency of algorithms is discussed here. There are 
two kinds of efficiency: time efficiency and space efficiency. Time efficiency indicates how 
fast an algorithm in question runs; space efficiency deals with the extra space the algorithm 
requires. 

In the early days of electronic computing, both resources time and space were at a premium. 
Now the amount of extra space required by an algorithm is typically not of as much concern, 
In addition, the research experience has shown that for most problems, we can achieve much 
more spectacular progress in speed than in space. Therefore, 

following 
a well-established 

tradition of algorithm textbooks, we primarily concentrate on time efficiency. 
 

Measuring an Input’s Size 

It is observed that almost all algorithms run longer on larger inputs. For example, it takes 
longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to 
investigate an algorithm's efficiency as a function of some parameter n indicating the 
algorithm's input size. 

There are situations, where the choice of a parameter indicating an input size does matter. 
The choice of an appropriate size metric can be influenced by operations of the algorithm in 
question.  For   example,   how  should   we  measure   an  input's  size  for   a  spell-checking 
algorithm?  If  the  algorithm  examines  individual  characters  of  its  input,  then  we should 
measure the size by the number of characters; if it works by processing words, we should 
count their number in the input. 

We should make a special note about measuring the size of inputs for algorithms involving 
properties  of  numbers  (e.g.,  checking  whether  a  given  integer  n  is  prime).  For  such 
algorithms, computer scientists prefer measuring size by the number b of bits in the n's binary 
representation: b = ⎝log2 n ] + 1. This metric usually gives a better idea about the efficiency 
of algorithms in question. 

 
Units for Measuring Running lime 

To measure an algorithm's efficiency, we would like to have a metric that does not depend 
on these extraneous factors. One possible approach is to count the number of times each of 
the algorithm's operations is executed. This approach is both excessively difficult and, as we 
shall see, usually unnecessary. The thing to do is to identify the most important operation of 
the algorithm, called the basic operation, the operation contributing the most to the total 
running time, and compute the number of times the basic operation is executed. 

For example, most sorting algorithms work by comparing elements (keys) of a list being 
sorted with each other; for such algorithms, the basic operation is a key comparison. 

As another example, algorithms for matrix multiplication and polynomial evaluation 
require two arithmetic operations: multiplication and addition. 

 



 

Let cop be the execution time of an algorithm's basic operation on a particular computer, and 
let C(n) be the number of times this operation needs to be executed for this algorithm. Then 
we can estimate the running time T(n) of a program implementing this algorithm on that 
computer by the formula: 

T(n) = copC(n) 

unless n is extremely large or very small, the formula can give a reasonable estimate of the 
algorithm's running time. 

It is for these reasons that the efficiency analysis framework ignores multiplicative constants 
and concentrates on the count's order of growth to within a constant multiple for large-size 
inputs.​  

 
Orders of Growth 
Why this emphasis on the count's order of growth for large input sizes? Because for large 
values of n, it is the function's order of growth that counts: just look at table which contains 
values of a few functions particularly important for analysis of algorithms. 

Table: Values 
of several 
functions 

important for 
analysis of 
algorithms 

 
 

Algorithms that require an exponential number of operations are practical for solving only 
problems of very small sizes. 

 
Worst-Case, Best-Case, and Average-Case Efficiencies 

Definition: The worst-case efficiency of an algorithm is its efficiency for the worst-case 
input of size n, for which the algorithm runs the longest among all possible inputs of that size. 

Consider the algorithm for sequential search. 

 



 

The running time of above algorithm can be quite different for the same list size n. In the 
worst case, when there are no matching elements or the first matching element happens to 
be the last one on the list, the algorithm makes the largest number of key comparisons 
among all possible inputs of size n: Cworst(n) = n. 

In general, we analyze the algorithm to see what kind of inputs yield the largest value of the 
basic operation's count C(n) among all possible inputs of size n and then compute this worst- 
case value Cworst (n). The worst-case analysis provides algorithm's efficiency by bounding its 
running time from above. Thus it guarantees that for any instance of size n, the running time 
will not exceed Cworst (n), its running time on the worst-case inputs. 

Definition: The best-case efficiency of an algorithm is its efficiency for the best-case input 
of size n, for which the algorithm runs the fastest among all possible inputs of that size. 

We determine the kind of inputs for which the count C(n) will be the smallest among all 
possible inputs of size n. For example, for sequential search, best-case inputs are lists of size 
n with their first elements equal to a search key; Cbest(n) = 1. 

The analysis of the best-case efficiency is not nearly as important as that of the worst-case 
efficiency.  Also,  neither  the  worst-case  analysis  nor  its  best-case  counterpart  yields  the 
necessary information about an algorithm's behavior on a "typical" or "random" input. This 
information is provided by average-case efficiency. 

Definition: the average-case complexity of an algorithm is the amount of time used by the 
algorithm, averaged over all possible inputs. 

Let us consider again sequential search. The standard assumptions are that (a) the probability 
of a successful search is equal top (0 ≤ p ≤ 1) and (b) the probability of the first match 
occurring in the ith position of the list is the same for every i. We can find the average number 
of key comparisons Cavg (n) as follows. 

In the case of a successful search, the probability of the 
first match 

occurring in the ith 

position of the list is p/n for every i, and the number of comparisons made by the algorithm 
in such a situation is obviously i. In the case of an unsuccessful search, the number of 
comparisons is n with the probability of such a search being (1- p). Therefore, 

 

Investigation of the average-case efficiency is considerably more difficult than investigation 
of the worst-case and best-case efficiencies. But there are many important algorithms for 
which the average case efficiency is much better than the overly pessimistic worst-case 
efficiency would lead us to believe. Note that average-case efficiency cannot be obtained by 
taking the average of the worst-case and the best-case efficiencies. 

 



 

Summary of analysis framework 

●​ Both time and space efficiencies are measured as functions of the algorithm's input size. 
●​ Time efficiency is measured by counting the number of times the algorithm's basic 

operation is executed. Space efficiency is measured by counting the number of extra 
memory units consumed by the algorithm. 

●​ The efficiencies of some algorithms may differ significantly for inputs of the same size. 
For such algorithms, we need to distinguish between the worst-case, average-case, and 
best-case efficiencies. 

●​ The framework's primary interest lies in the order of growth of the algorithm's running 
time (or extra memory units consumed) as its input size goes to infinity. 

 

2.​Performance Analysis 

 

2.1​Space complexity 

Total amount of computer memory required by an algorithm to complete its execution is 
called as space complexity of that algorithm. The Space required by an algorithm is the sum 
of following components 

●​ A fixed part that is independent of the input and output. This includes memory space 
for codes, variables, constants and so on. 

●​ A variable part that depends on the input, output and recursion stack. ( We call these 
parameters as instance characteristics) 

Space requirement S(P) of an algorithm P,    S(P) = c + Sp     where c is a constant depends 
on the fixed part, Sp is the instance characteristics 

Example-1: Consider following algorithm abc() 
 
 
 
 
 

Here fixed component depends on the size of a, b and c. Also instance characteristics Sp=0 

Example-2: Let us consider the algorithm to find sum of array. 

For the algorithm given here the problem instances are characterized by n, the number of 
elements to be summed. The space needed by a[ ] depends on n. So the space complexity can 
be written as; Ssum(n) ≥ (n+3) n for a[ ], One each for n, i and s. 

 



 

2.2​Time complexity 

Usually, the execution time or run-time of the program is refereed as its time complexity 
denoted by tp (instance characteristics). This is the sum of the time taken to execute all 
instructions in the program. 

Exact  estimation  runtime  is  a  complex  task,  as  the  number  of  instruction  executed  is 
dependent on the input data. Also different instructions will take different time to execute. So 
for the estimation of the time complexity we count only the number of p ogram steps. 

 

A program step is loosely defined as syntactically or semantically meaning segment of the 
program  that  has  and  execution  time  that  is  independent  of  instance  characteristics. For 
example comment has zero steps; assignment statement has one step and so on. 

 

We can determine the steps 
two ways. 

eeded by a program to solve a particular 
problem instance in 

 

In the first method we introduce a new variable count to the program which is initialized to 
zero. We also introduce statements to increment count by an appropriate amount into the 
program. So when each time original program executes, the count also incremented by the 
step count. 

Example-1: Consider the algorithm sum( ). After the introduction of the count the program 
will be as follows. 

 
 
 
 
 
 
 
 
 
 
 

From the above we can estimate that invocation of sum( ) executes total number of 2n+3 
steps. 

The second method to determine the step count of an algorithm is to build a table in which 
we list the total number of steps contributed by each statement. An example is shown below. 

 

 



 

Example-2: matrix addition 
 

 
 
 
 
 
 
 
 
 
 
 

The above thod is both excessively difficult and, usually unnecessary. The thing to do is to 
identify the most important operation 
contributing the m 

operation of the algorithm,  called  the  basic  
operation,  the st to the total running time, 
and compute the number of times 

the basic operation is executed. 

Trade-off 

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with 
few computing time and low memory consumption. One has to make a compromise and to 
exchange computing time for memory consumption or vice versa, depending on which 
algorithm one chooses and how one parameterizes it. 

 

3.​Asymptotic Notations 

The efficiency analysis framework 
concentrates on the order of growth 

 

 
of an algorithm’s 

basic operation count as the principal indicator of the algorithm’s efficiency. To compare and 
rank such orders of growth, computer 
scientists use three notations: omega), Θ (big 
theta) and o(little oh) 

O(big oh),​ Ω(big 

 

3.1.​ Big-Oh notation 

Definition: A function t(n) is said to be in O(g(n)), denoted t(n)∈O(g(n)), if t (n) is bounded 
above by some constant multiple of g(n) for all large n, i.e., if there exist some positive 
constant c and some nonnegative integer n0 such that 

 



 

t(n) ≤ c g(n) for all n ≥ n0. 

 



 

 
 

Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n) 

Examples: 

 
 
 

As another example, let us formally prove 100n + 5 ∈ O(n2) 
100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n2. (c=101, n0=5) 

Note that the definition gives us a lot of freedom in choosing specific values for constants c 
and n0. 

 

Example: To prove n2 + n = O(n3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strategies for Big-O Sometimes the easiest way to prove that f(n) = O(g(n)) is to take c to 
be the sum of the positive coefficients. coefficients of f(n). We can usually ignore the 

negative 
 

 

 



 

3.2.​ Omega notation 

Definition: A function t(n) is said to be in Ω(g(n)), denoted t(n)∈Ω(g(n)), if t(n) is bounded 
below by some positive constant multiple of 
g(n) for all large n, i.e., positive constant c 
and some nonnegative integer n0 such that 

t(n) ≥ c 
g(n) for 
all n ≥ 
n0. 

if there exist some 

 

 
 

3.3.​ Theta notation 

A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈ Θ(g(n)), if t (n) is bounded both 
above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist 
some positive constants c1 and c2 and some nonnegative integer n0 such that 

 



 

c2 g(n) S t(n) S c1g(n) for all n S n0. 

 



 

 

 
 
 

Strategies for Ω and Θ 

●​ Proving that a f(n) = Ω(g(n)) often requires more thought. 
–​ Quite often, we have to pick c < 1. 
–​ A good strategy is to pick a value of c which you think will work, and determine 

which value of n0 is needed. 
–​ Being able to do a little algebra helps. 
–​ We can sometimes simplify by 

ignoring terms of f(n) coefficients. 
with the positive 

●​ The following theorem shows us that proving f(n) = Θ(g(n)) is nothing 

new: Theorem: f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = 

Ω(g(n)). 
 



 

Thus, we just apply the previous two strategies. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

If the case-1 holds good in the above limit, we represent it by little-oh. 
 

 



 

 
 

 

 



 

3.6.​ Mathematical Analysis of Non-recursive & Recursive Algorithms 

Analysis of Non-recursive Algorithms 
General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms 

1.​ Decide on a parameter (or parameters) indicating an input’s size. 
2.​ Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.) 
3.​ Check whether the number of times the basic operation is executed depends only on 

the size of an input. If it also depends on some additional property, the worst-case, 
average-case, and, if separately. necessary, best-case efficiencies have to be 

investigated 
4.​ Set up a sum expressing the number of 

times the algorithm’s executed. 
5.​ Using standard formulas and rules of 

sum manipulation, either 

basic  operation is 
 
find  a closedform 

formula for the count or, at the very least, establish its order of growth. 

Example-1: To find maximum element in the given array 

Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 

Here comparison is the basic operation. 

Note that number of comparisions will be same for all arrays of size n. Therefore, no need to 
distinguish worst, best and average cases. 

Total number of basic operations (comparison) are, 
 
 

Example-2: To check whether all the elements in the given array are distinct 

 



 

Here basic operation is comparison. The maximum no. of comparisons happen in the worst 
case. (i.e. all the elements in the array are distinct and algorithms return true). 

Total number of basic operations (comparison) in the worst case are, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Total running time: 

Suppose if we take into account of addition; Algoritham also have same number of additions 
A(n) = n3 

Total running time: 

 



 

Example-4: To count the bits in the binary representation 

Algorithm 
 
 
 
 
 
 
 
 
 
 
 

The basic operation is count=count + 1 repeats   no. of times 

Analysis of Recursive Algorithms 

General plan for analyzing the time efficiency of recursive algorithms 

1.​ Decide on a parameter (or parameters) indicating an input’s size. 
2.​ Identify the algorithm’s basic operation. 
3.​ Check whether the number of times the basic operation is executed can vary on 

different inputs of the same size; if it can, the worst-case, average-case, and best-case 
efficiencies must be investigated separately. Set up a recurrence relation, with an 
appropriate initial condition, for the number of times the basic operation is executed. 

4.​ Solve the recurrence or, at least, ascertain the order of growth of its solution. 
 
 

Example-1 
 
 
 
 
 
 
 

 ​ Algorithm 
 
 
 
 
 
 
 

Since the function F(n) is computed according to the formula 

The number of multiplications M(n) needed to compute it must satisfy the equality 
 

 



 

Such equations are called recurrence Relations 

Condition that makes the algorithm stop if n = 0 return 1. Thus recurrence relation and  
initial condition for the algorithm’s number of multiplications M(n) can be stated as 

 

We can use backward substitutions method to solve this 
 
 
 
 
 

…. 

 
Example-2: Tower of Hanoi puzzle. In this puzzle, There are n disks of different sizes that 
can slide onto any of three pegs. Initially, all the disks are on the first peg in order of size, the 
largest on the bottom and the smallest on top. The goal is to move all the disks to the third 
peg, using the second one as an auxiliary, if necessary. We can move only one disk at a time, 
and it is forbidden to place a larger disk on top of a smaller one. 

The problem has an elegant recursive solution, which is illustrated in Figure. 

●​ To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), 
o​ we first move recursively n-1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), 
o​ then move the largest disk directly from peg 1 to peg 3, and, 
o​ finally, move recursively n-1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). 

●​ If n = 1, we move the single disk directly from the source peg to the destination peg. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: Recursive solution to the Tower of Hanoi puzzle 
The number of moves M(n) depends only on n. The recurrence equation is 

We have the following recurrence relation for the number of moves M(n): 

 

 



 

We solve this recurrence by t e same method of backward substitutions: 
 

 

The pattern of the first three sums on the left suggests that the next one will be 
24 M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get 

 
Since the initial condition is specified for n = 1, which is achieved for i = n - 1, we get the 
following formula for the solution to recurrence, 

 
 
 
 
 
 

Alternatively, by counting the number of nodes in the tree obtained by recursive calls, we 
can get the total number of calls made by the Tower of Hanoi algorithm: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: Tree of recursive calls made by the recursive algorithm for the Tower of Hanoi 
puzzle. 

Example-3 
 

The recurrence relation can be written as 

. 
Also note that A(1) = 0. 

 



 

The standard approach to solving such a recurrence is to solve it only for n = 2k and then 
take advantage of the theorem called the smoothness rule which claims that under very 
broad assumptions the order of growth observed for n = 2k gives a correct answer about the 
order of growth for all values of n. 

 
 
 
 

 



 

4.​Important Problem Types 

In this section, we are going to introduce the most important problem types: Sorting, 
Searching, String processing, Graph problems, Combinatorial problems. 

4.1.​ Sorting 

The sorting problem is to rearrange the items of a given list in non-decreasing order. As a 
practical matter, we usually need to sort lists of numbers, characters from an alphabet or 
character strings. 

Although some algorithms are indeed better than others, there is no algorithm that would be 
the best solution in all situations. Some of the algorithms are simple but relatively slow, while 
others are faster but more complex; some work better on randomly ordered inputs, while 
others do better on almost-s rted lists; some are suitable only for lists residing in the fast 
memory, while others can be adapted for sorting large files stored on a disk; and so on. 

Two properties of sorting algorithms deserve special mention. A sorting algorithm is called 
stable if it preserves the relative order of any two equal elements in its input. The second 
notable feature of a sorting algorithm is the amount of extra memory the algorithm requires. 
An algorithm is said to be in-place if it does not require extra memory, except, possibly, for a 
few memory units. 

4.2.​ Searching 

The searching problem deals with finding a given value, called a search key, in a given set. 
(or a multiset, which permits several elements to have the same value). There are plenty of 
searching algorithms to choose from. They range from the straightforward sequential search 
to a spectacularly efficient but limited binary search and algorithms based on representing 
the underlying set in a different form more conducive to searching. The latter algorithms are 
of particular importance for real-world applications because they are indispensable for storing 
and retrieving information from large databases. 

4.3.​ String Processing 

In recent decades, the rapid proliferation of applications dealing with non-numerical data has 
intensified the interest of 
algorithms. A string is a 

researchers and computing 
practitioners sequence of 
characters from an alphabet. 

in string-handling 
String-processing 

algorithms have been important for computer science in conjunction with computer 
languages and compiling issues. 

4.4.​ Graph Problems 

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a 
graph can be thought of as a collection of points called vertices, some of which are connected 
by  line  segments  called  edges.  Graphs  can  be  used  for  modeling  a  wide  variety  of 
applications, including transportation, communication, social and economic networks, project 

 



 

scheduling,  and  games.  Studying different  technical  and  social  aspects  of  the  Internet in 

 



 

particular is one of the active areas of current research involving computer scientists, 
economists, and social scientists. 

4.5.​ Combinatorial Problems 

Generally speaking, combinatorial problems are the most difficult problems in computing, 
from both a theoretical and practical standpoint. Their difficulty stems from the following 
facts.  First,  the  number  of  combinatorial  objects  typically  grows  extremely  fast  with  a 
problem’s size, reaching unimaginable magnitudes even for moderate-sized instances. 
Second, there are no known algorithms for solving most such problems exactly in an 
acceptable amount of time. 

 

5.​Fundamental Data Structures 
 

Since the vast majority of algorithms of interest operate 
on data, 

particular ways of 

organizing data play a critical role in the design and analysis of algorithms. A data structure 
can be defined as a particular scheme of organizing related data items. 

5.1.​ Linear Data Structures 

The two most important elementary data structures are the array and the linked list. 

A (one-dimensional) array is a sequence of n items of the same data type that are stored 
contiguously in computer memory and made accessible by specifying a value of the array’s 
index. 

 
 
 

A linked list is a sequence of zero or more elements called nodes, each containing two kinds 
of information: some data and one or more links called pointers to other nodes of the linked 
list. In a singly linked list, each node except the last one contains a single pointer to the next 
element. Another extension is the structure called the doubly linked list, in which every 
node, except the first and the last, contains pointers to both its successor and its predecessor. 

 
 

 
A list is a finite sequence of data items, i.e., a collection of data items arranged in a certain 
linear  order.  The  basic  operations  performed  on  this  data  structure  are  searching  for, 

 



 

inserting, and deleting an element. Two special types of lists, stacks and queues, are 
particularly important. 

A stack is a list in which insertions and deletions can be done only at the end. This end is 
called the top because a stack is usually visualized not horizontally but vertically—akin to a 
stack of plates whose “operations” it mimics very closely. 

A queue, on the other hand, is a list from which elements are deleted from one end of the 
structure, called the front (this operation is called dequeue), and new elements are added to 
the other end, called the rear (this operation is called enqueue). Consequently, a queue 
operates in a “first-in–first-out” (FIFO) fashion—akin to a queue of customers served by a 
single teller in a bank. Queues also have many important applications, including several 
algorithms for graph problems. 

Many important applications require selection of an item of the highest priority among a 
dynamically changing set of candidates. A data structure that seeks to satisfy the needs of 
such applications is called a priority queue. A priority queue is a collection of data items 
from a totally ordered universe (most often, integer or real numbers). The principal  
operations on a priority queue are finding its largest element, deleting its largest element, and 
adding a new element. 

5.2.​ Graphs 

A graph is informally thought of as a collection of points in the plane called “vertices” or 
nodes,” some of them connected by line segments called “edges” or “arcs.” A graph G is 
called undirected if every edge in it is undirected. A graph whose every edge is directed is 
called directed. Directed graphs are also called digraphs. 

The graph depicted in Figure (a) has six vertices and seven undirected edges: 

V = {a, b, c, d, e, f }, E = {(a, c), (a, d), (b, c), (b, f ), (c, e), (d, e), (e, f )}. 

The digraph depicted in Figure 1.6b has six vertices and eight directed edges: 

V = {a, b, c, d, e, f }, E = {(a, c), (b, c), (b, f ), (c, e), (d, a), (d, e), (e, c), (e, f )}. 
 

 

Graph Representations - Graphs for computer algorithms are usually represented in one of 
two ways: the adjacency matrix and adjacency lists. 

The adjacency matrix of a graph with n vertices is an n x n boolean matrix with one row 
and one column for each of the graph’s vertices, in which the element in the ith row and the jth 

 



 

column is equal to 1 if there is an edge from the ith vertex to the jth vertex, and equal to 0 if 
there is no such edge. 

The adjacency lists of a graph or a digraph is a collection of linked lists, one for each vertex, 
that contain all the vertices adjacent to the list’s vertex (i.e., all the vertices connected to it by 
an edge). 

 

A graph is said to be connected if for every pair of its vertices u and v there is a path from u 
to v. Graphs with several connected components do happen in real-world applications. It is 
important to know for many applications whether or not a graph under consideration has 
cycles. A cycle is a path of a positive length that starts and ends at the same vertex and does 
not traverse the same edge more than once. 

 
 

5.3.​ Trees 

A tree (more accurately, a free tree) is a connected acyclic graph. A graph that has no cycles 
but is not necessarily connected is called a forest: each of its connected components is a tree. 
Trees have several important properties other graphs do not have. In particular, the number of 
edges in a tree is always one less than the number of its vertices: |E| = |V| - 1 

 



 

 
 

Rooted Trees: Another very important property of trees is the fact that for every two vertices 
in a tree, there always exists exactly one simple path from one of these vertices to the other. 
This property makes it possible to select an arbitrary vertex in a free tree and consider it as 
the root of the so-called rooted tree. A rooted tree is usually depicted by placing its root on 
the top (level 0 of the tree), the vertices adjacent to the root below it (level 1), the vertices two 
edges apart from the root still below (level 2), and so on. 

 
 
 
 
 
 
 
 
 
 
 
 

The depth of a vertex v is the length of the simple path from the root to v. The height of a 
tree is the length of the longest simple path from the root to a leaf. 

Ordered Trees- An ordered tree is a rooted tree in which all the children of each vertex are 
ordered. It is convenient to assume that in a tree’s diagram, all the children are ordered left to 
right. A binary tree can be defined as an ordered tree in which every vertex has no more than 
two children and each child is designated as either a left child or a right child of its parent; a 
binary tree may also be empty. 

If a number assigned to each parental vertex is larger than all the numbers in its left subtree 
and smaller than all the numbers in its right subtree. Such trees are called binary search 
trees. Binary trees and binary search 
trees have a wide variety of 
applications in computer science. 

 



 

5.4.​Sets and Dictionaries 

A set can be described as an unordered collection (possibly empty) of distinct items called 
elements of the set. A specific set is defined either by an explicit listing of its elements (e.g., 
S = {2, 3, 5, 7}) or by specifying a property that all the set’s elements and only they must 
satisfy (e.g., S = {n: n is a prime number smaller than 10}). 

The most important set operations are: checking membership of a given item in a given set; 
finding the union of two sets, which comprises all the elements in either or both of them; and 
finding the intersection of two sets, which comprises all the common elements in the sets. 

Sets can be implemented in computer applications in two ways. The first considers only sets 
that are subsets of some large set U, called the universal set. If set U has n elements, then any 
subset S of U can be represented by a bit string of size n, called a bit vector, in which the ith 
element is 1 if and only if the ith element of U is included in set S. 

The second and more common way to represent a set for computing purposes is to use the list 
structure to indicate the set’s elements. This is feasible only for finite sets.  The requirement 
for  uniqueness  is  sometimes  circumvented  by  the  introduction  of  a  multiset,  or  bag, an 
unordered collection of items that are not necessarily distinct. Note that if a set is represented 
by a list, depending on the application at hand, it might be worth maintaining the list in a 
sorted order. 

Dictionary: In computing, the operations we need to perform for a set or a multiset most 
often are searching for a given item, adding a new item, and deleting an item from the 
collection. A data structure that implements these three operations is called the dictionary. 
An  efficient  implementation  of  a  dictionary  has  to  strike  a  compromise  between  the 
efficiency of searching and the efficiencies of the other two operations. They range from an 
unsophisticated use of arrays (sorted or not) to much more sophisticated techniques such as 
hashing and balanced search trees. 

A number of applications in computing require a dynamic partition of some n-element set 
into a collection of disjoint subsets. After being initialized as a collection of n one-element 
subsets, the collection is subjected to a sequence of intermixed union and search operations. 
This problem is called the set union problem. 

***** 
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