

Module-1 : Introduction to Algorithms

Contents

1.​ Introduction
1.1.​What is an Algorithm?
1.2.​Algorithm Specification
1.3.​Analysis Framework

2.​ Performance Analysis
2.1.​ Space complexity
2.2.​ Time complexity
3.​ Asymptotic Notations

3.1.​Big-Oh notation
3.2.​Omega notation
3.3.​Theta notation
3.4.​Little-oh notation
3.5.​Mathematical analysis

4.​ Important Problem Types
4.1.​Sorting
4.2.​Searching
4.3.​String processing
4.4.​Graph Problems
4.5.​Combinatorial Problems

5.​ Fundamental Data Structures
5.1.​Linear Data Structures

5.2.​Graphs
5.3.​Trees
5.4.​Sets and Dictionaries.

1.​Introduction

1.1.​ What is an Algorithm?

An algorithm is a finite set

of instructions to solve a particular problem. In
addition, all

algorithms must satisfy the following criteria:
a.​ Input. Zero or more quantities are externally supplied.
b.​ Output. At least one quantity is produced.
c.​ Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear

what should be done.
d.​ Finiteness. If we trace out the instruction of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.​
e.​ Effectiveness. Every instruction must be very basic so that it can be carried out, in

principle, by a person using only pencil and paper. It is not enough that each
operation be definite as in criterion c; it also must be feasible.

Algorithm design and analysis process - We now briefly discuss a sequence of steps one
typically goes through in designing and analyzing an algorithm

●​ Understanding the Problem - From a practical perspective, the first thing you need to
do before designing an algorithm is to understand completely the problem given. An
input to an algorithm specifies an instance of the problem the algorithm solves. It is very
important to specify exactly the set of instances the algorithm needs to handle.

●​ Ascertaining the Capabilities of the Computational Device - Once you completely
understand a problem, you need to ascertain the capabilities of the computational device
the algorithm is intended for. Select appropriate model from sequential or parallel

programming model.

●​ Choosing between Exact and
Approximate Problem Solving -

The next principal

decision is to choose between solving the problem exactly and solving it approximately.
Because, there are important problems that simply cannot be solved exactly for most of
their instances and some of the available algorithms for solving a problem exactly can be
unacceptably slow because of the problem’s intrinsic complexity.

●​ Algorithm Design Techniques - An
algorithm design technique

(or “strategy” or

“paradigm”) is a general approach to solving problems algorithmically that is applicable
to a variety of problems from different areas of computing. They provide guidance for
designing algorithms for
satisfactory algorithm.

new problems, i.e., problems
for which

there is no known

●​ Designing an Algorithm and Data Structures - One
should pay

close attention to

choosing data structures appropriate for the operations performed by the algorithm. For
example, the sieve of Eratosthenes would run longer if we used a linked list instead of an
array in its implementation. Algorithms + Data Structures = Programs

●​ Methods of Specifying an Algorithm- Once you have designed an algorithm; you need
to specify it in some fashion. These are the two options that are most widely used
nowadays for specifying algorithms. Using a natural language has an obvious appeal;
however, the inherent ambiguity of any natural language makes a concise and clear
description of algorithms surprisingly difficult. Pseudocode is a mixture of a natural
language and programming language like constructs. Pseudocode is usually more precise
than natural language, and its usage often yields more succinct algorithm descriptions.

●​ Proving an Algorithm’s Correctness - Once an algorithm has been specified, you have
to prove its correctness. That is, you have to prove that the algorithm yields a required
result for every legitimate input in a finite amount of time. For some algorithms, a proof
of correctness is quite easy; for others, it can be quite complex. A common technique for
proving correctness is to use mathematical induction because an algorithm’s iterations
provide a natural sequence of steps needed for such proofs.

●​ Analyzing an Algorithm - After correctness, by far the most important is efficiency. In
fact, there are two kinds of algorithm efficiency: time efficiency, indicating how fast the
algorithm runs, and space efficiency, indicating how much extra memory it uses. Another
desirable characteristic of an algorithm is simplicity. Unlike efficiency, which can be
precisely defined and investigated with mathematical rigor, simplicity, like beauty, is to a
considerable degree in the eye of the beholder.

●​ Coding an Algorithm - Most algorithms are destined to be ultimately implemented as

computer programs. Implementing an algorithm correctly is necessary but not sufficient:
you would not like to diminish your algorithm’s power by an inefficient implementation.
Modern compilers do provide a certain safety net in this regard, especially when they are
used in their code optimization mode.

1.2.​ Algorithm Specification

An algorithm can be specified in

1)​ Simple English
2)​ Graphical representation like flow chart
3)​ Programming language like c++ / java
4)​ Combination of above methods.

Using the combination of simple English and C++, the algorithm for selection sort is
specified as follows.

In C++ the same algorithm can be specified as follows

Here Type is a basic or user defined data type.

Recursive algorithms

An algorithm is said to be recursive if the same algorithm is invoked in the body (direct
recursive). Algorithm A is said to be indirect recursive if it calls another algorithm which in
turn calls A.

Example 1: Factorial computation n! = n * (n-1)!

Example 2: Binomial coefficient computation

Example 3: Tower of Hanoi problem
Example 4: Permutation Generator

1.3.​ Analysis Framework

General framework for analyzing the efficiency of algorithms is discussed here. There are
two kinds of efficiency: time efficiency and space efficiency. Time efficiency indicates how
fast an algorithm in question runs; space efficiency deals with the extra space the algorithm
requires.

In the early days of electronic computing, both resources time and space were at a premium.
Now the amount of extra space required by an algorithm is typically not of as much concern,
In addition, the research experience has shown that for most problems, we can achieve much
more spectacular progress in speed than in space. Therefore,

following
a well-established

tradition of algorithm textbooks, we primarily concentrate on time efficiency.

Measuring an Input’s Size

It is observed that almost all algorithms run longer on larger inputs. For example, it takes
longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to
investigate an algorithm's efficiency as a function of some parameter n indicating the
algorithm's input size.

There are situations, where the choice of a parameter indicating an input size does matter.
The choice of an appropriate size metric can be influenced by operations of the algorithm in
question. For example, how should we measure an input's size for a spell-checking
algorithm? If the algorithm examines individual characters of its input, then we should
measure the size by the number of characters; if it works by processing words, we should
count their number in the input.

We should make a special note about measuring the size of inputs for algorithms involving
properties of numbers (e.g., checking whether a given integer n is prime). For such
algorithms, computer scientists prefer measuring size by the number b of bits in the n's binary
representation: b = ⎝log2 n] + 1. This metric usually gives a better idea about the efficiency
of algorithms in question.

Units for Measuring Running lime

To measure an algorithm's efficiency, we would like to have a metric that does not depend
on these extraneous factors. One possible approach is to count the number of times each of
the algorithm's operations is executed. This approach is both excessively difficult and, as we
shall see, usually unnecessary. The thing to do is to identify the most important operation of
the algorithm, called the basic operation, the operation contributing the most to the total
running time, and compute the number of times the basic operation is executed.

For example, most sorting algorithms work by comparing elements (keys) of a list being
sorted with each other; for such algorithms, the basic operation is a key comparison.

As another example, algorithms for matrix multiplication and polynomial evaluation
require two arithmetic operations: multiplication and addition.

Let cop be the execution time of an algorithm's basic operation on a particular computer, and
let C(n) be the number of times this operation needs to be executed for this algorithm. Then
we can estimate the running time T(n) of a program implementing this algorithm on that
computer by the formula:

T(n) = copC(n)

unless n is extremely large or very small, the formula can give a reasonable estimate of the
algorithm's running time.

It is for these reasons that the efficiency analysis framework ignores multiplicative constants
and concentrates on the count's order of growth to within a constant multiple for large-size
inputs.​

Orders of Growth
Why this emphasis on the count's order of growth for large input sizes? Because for large
values of n, it is the function's order of growth that counts: just look at table which contains
values of a few functions particularly important for analysis of algorithms.

Table: Values
of several
functions

important for
analysis of
algorithms

Algorithms that require an exponential number of operations are practical for solving only
problems of very small sizes.

Worst-Case, Best-Case, and Average-Case Efficiencies

Definition: The worst-case efficiency of an algorithm is its efficiency for the worst-case
input of size n, for which the algorithm runs the longest among all possible inputs of that size.

Consider the algorithm for sequential search.

The running time of above algorithm can be quite different for the same list size n. In the
worst case, when there are no matching elements or the first matching element happens to
be the last one on the list, the algorithm makes the largest number of key comparisons
among all possible inputs of size n: Cworst(n) = n.

In general, we analyze the algorithm to see what kind of inputs yield the largest value of the
basic operation's count C(n) among all possible inputs of size n and then compute this worst-
case value Cworst (n). The worst-case analysis provides algorithm's efficiency by bounding its
running time from above. Thus it guarantees that for any instance of size n, the running time
will not exceed Cworst (n), its running time on the worst-case inputs.

Definition: The best-case efficiency of an algorithm is its efficiency for the best-case input
of size n, for which the algorithm runs the fastest among all possible inputs of that size.

We determine the kind of inputs for which the count C(n) will be the smallest among all
possible inputs of size n. For example, for sequential search, best-case inputs are lists of size
n with their first elements equal to a search key; Cbest(n) = 1.

The analysis of the best-case efficiency is not nearly as important as that of the worst-case
efficiency. Also, neither the worst-case analysis nor its best-case counterpart yields the
necessary information about an algorithm's behavior on a "typical" or "random" input. This
information is provided by average-case efficiency.

Definition: the average-case complexity of an algorithm is the amount of time used by the
algorithm, averaged over all possible inputs.

Let us consider again sequential search. The standard assumptions are that (a) the probability
of a successful search is equal top (0 ≤ p ≤ 1) and (b) the probability of the first match
occurring in the ith position of the list is the same for every i. We can find the average number
of key comparisons Cavg (n) as follows.

In the case of a successful search, the probability of the
first match

occurring in the ith

position of the list is p/n for every i, and the number of comparisons made by the algorithm
in such a situation is obviously i. In the case of an unsuccessful search, the number of
comparisons is n with the probability of such a search being (1- p). Therefore,

Investigation of the average-case efficiency is considerably more difficult than investigation
of the worst-case and best-case efficiencies. But there are many important algorithms for
which the average case efficiency is much better than the overly pessimistic worst-case
efficiency would lead us to believe. Note that average-case efficiency cannot be obtained by
taking the average of the worst-case and the best-case efficiencies.

Summary of analysis framework

●​ Both time and space efficiencies are measured as functions of the algorithm's input size.
●​ Time efficiency is measured by counting the number of times the algorithm's basic

operation is executed. Space efficiency is measured by counting the number of extra
memory units consumed by the algorithm.

●​ The efficiencies of some algorithms may differ significantly for inputs of the same size.
For such algorithms, we need to distinguish between the worst-case, average-case, and
best-case efficiencies.

●​ The framework's primary interest lies in the order of growth of the algorithm's running
time (or extra memory units consumed) as its input size goes to infinity.

2.​Performance Analysis

2.1​Space complexity

Total amount of computer memory required by an algorithm to complete its execution is
called as space complexity of that algorithm. The Space required by an algorithm is the sum
of following components

●​ A fixed part that is independent of the input and output. This includes memory space
for codes, variables, constants and so on.

●​ A variable part that depends on the input, output and recursion stack. (We call these
parameters as instance characteristics)

Space requirement S(P) of an algorithm P, S(P) = c + Sp where c is a constant depends
on the fixed part, Sp is the instance characteristics

Example-1: Consider following algorithm abc()

Here fixed component depends on the size of a, b and c. Also instance characteristics Sp=0

Example-2: Let us consider the algorithm to find sum of array.

For the algorithm given here the problem instances are characterized by n, the number of
elements to be summed. The space needed by a[] depends on n. So the space complexity can
be written as; Ssum(n) ≥ (n+3) n for a[], One each for n, i and s.

2.2​Time complexity

Usually, the execution time or run-time of the program is refereed as its time complexity
denoted by tp (instance characteristics). This is the sum of the time taken to execute all
instructions in the program.

Exact estimation runtime is a complex task, as the number of instruction executed is
dependent on the input data. Also different instructions will take different time to execute. So
for the estimation of the time complexity we count only the number of p ogram steps.

A program step is loosely defined as syntactically or semantically meaning segment of the
program that has and execution time that is independent of instance characteristics. For
example comment has zero steps; assignment statement has one step and so on.

We can determine the steps
two ways.

eeded by a program to solve a particular
problem instance in

In the first method we introduce a new variable count to the program which is initialized to
zero. We also introduce statements to increment count by an appropriate amount into the
program. So when each time original program executes, the count also incremented by the
step count.

Example-1: Consider the algorithm sum(). After the introduction of the count the program
will be as follows.

From the above we can estimate that invocation of sum() executes total number of 2n+3
steps.

The second method to determine the step count of an algorithm is to build a table in which
we list the total number of steps contributed by each statement. An example is shown below.

Example-2: matrix addition

The above thod is both excessively difficult and, usually unnecessary. The thing to do is to
identify the most important operation
contributing the m

operation of the algorithm, called the basic
operation, the st to the total running time,
and compute the number of times

the basic operation is executed.

Trade-off

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with
few computing time and low memory consumption. One has to make a compromise and to
exchange computing time for memory consumption or vice versa, depending on which
algorithm one chooses and how one parameterizes it.

3.​Asymptotic Notations

The efficiency analysis framework
concentrates on the order of growth

of an algorithm’s

basic operation count as the principal indicator of the algorithm’s efficiency. To compare and
rank such orders of growth, computer
scientists use three notations: omega), Θ (big
theta) and o(little oh)

O(big oh),​ Ω(big

3.1.​ Big-Oh notation

Definition: A function t(n) is said to be in O(g(n)), denoted t(n)∈O(g(n)), if t (n) is bounded
above by some constant multiple of g(n) for all large n, i.e., if there exist some positive
constant c and some nonnegative integer n0 such that

t(n) ≤ c g(n) for all n ≥ n0.

Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n)

Examples:

As another example, let us formally prove 100n + 5 ∈ O(n2)
100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n2. (c=101, n0=5)

Note that the definition gives us a lot of freedom in choosing specific values for constants c
and n0.

Example: To prove n2 + n = O(n3)

Strategies for Big-O Sometimes the easiest way to prove that f(n) = O(g(n)) is to take c to
be the sum of the positive coefficients. coefficients of f(n). We can usually ignore the

negative

3.2.​ Omega notation

Definition: A function t(n) is said to be in Ω(g(n)), denoted t(n)∈Ω(g(n)), if t(n) is bounded
below by some positive constant multiple of
g(n) for all large n, i.e., positive constant c
and some nonnegative integer n0 such that

t(n) ≥ c
g(n) for
all n ≥
n0.

if there exist some

3.3.​ Theta notation

A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈ Θ(g(n)), if t (n) is bounded both
above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist
some positive constants c1 and c2 and some nonnegative integer n0 such that

c2 g(n) S t(n) S c1g(n) for all n S n0.

Strategies for Ω and Θ

●​ Proving that a f(n) = Ω(g(n)) often requires more thought.
–​ Quite often, we have to pick c < 1.
–​ A good strategy is to pick a value of c which you think will work, and determine

which value of n0 is needed.
–​ Being able to do a little algebra helps.
–​ We can sometimes simplify by

ignoring terms of f(n) coefficients.
with the positive

●​ The following theorem shows us that proving f(n) = Θ(g(n)) is nothing

new: Theorem: f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =

Ω(g(n)).

Thus, we just apply the previous two strategies.

If the case-1 holds good in the above limit, we represent it by little-oh.

3.6.​ Mathematical Analysis of Non-recursive & Recursive Algorithms

Analysis of Non-recursive Algorithms
General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1.​ Decide on a parameter (or parameters) indicating an input’s size.
2.​ Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.)
3.​ Check whether the number of times the basic operation is executed depends only on

the size of an input. If it also depends on some additional property, the worst-case,
average-case, and, if separately. necessary, best-case efficiencies have to be

investigated
4.​ Set up a sum expressing the number of

times the algorithm’s executed.
5.​ Using standard formulas and rules of

sum manipulation, either

basic operation is

find a closedform

formula for the count or, at the very least, establish its order of growth.

Example-1: To find maximum element in the given array

Algorithm

Here comparison is the basic operation.

Note that number of comparisions will be same for all arrays of size n. Therefore, no need to
distinguish worst, best and average cases.

Total number of basic operations (comparison) are,

Example-2: To check whether all the elements in the given array are distinct

Here basic operation is comparison. The maximum no. of comparisons happen in the worst
case. (i.e. all the elements in the array are distinct and algorithms return true).

Total number of basic operations (comparison) in the worst case are,

Total running time:

Suppose if we take into account of addition; Algoritham also have same number of additions
A(n) = n3

Total running time:

Example-4: To count the bits in the binary representation

Algorithm

The basic operation is count=count + 1 repeats no. of times

Analysis of Recursive Algorithms

General plan for analyzing the time efficiency of recursive algorithms

1.​ Decide on a parameter (or parameters) indicating an input’s size.
2.​ Identify the algorithm’s basic operation.
3.​ Check whether the number of times the basic operation is executed can vary on

different inputs of the same size; if it can, the worst-case, average-case, and best-case
efficiencies must be investigated separately. Set up a recurrence relation, with an
appropriate initial condition, for the number of times the basic operation is executed.

4.​ Solve the recurrence or, at least, ascertain the order of growth of its solution.

Example-1

 ​ Algorithm

Since the function F(n) is computed according to the formula

The number of multiplications M(n) needed to compute it must satisfy the equality

Such equations are called recurrence Relations

Condition that makes the algorithm stop if n = 0 return 1. Thus recurrence relation and
initial condition for the algorithm’s number of multiplications M(n) can be stated as

We can use backward substitutions method to solve this

….

Example-2: Tower of Hanoi puzzle. In this puzzle, There are n disks of different sizes that
can slide onto any of three pegs. Initially, all the disks are on the first peg in order of size, the
largest on the bottom and the smallest on top. The goal is to move all the disks to the third
peg, using the second one as an auxiliary, if necessary. We can move only one disk at a time,
and it is forbidden to place a larger disk on top of a smaller one.

The problem has an elegant recursive solution, which is illustrated in Figure.

●​ To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary),
o​ we first move recursively n-1 disks from peg 1 to peg 2 (with peg 3 as auxiliary),
o​ then move the largest disk directly from peg 1 to peg 3, and,
o​ finally, move recursively n-1 disks from peg 2 to peg 3 (using peg 1 as auxiliary).

●​ If n = 1, we move the single disk directly from the source peg to the destination peg.

Figure: Recursive solution to the Tower of Hanoi puzzle
The number of moves M(n) depends only on n. The recurrence equation is

We have the following recurrence relation for the number of moves M(n):

We solve this recurrence by t e same method of backward substitutions:

The pattern of the first three sums on the left suggests that the next one will be
24 M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get

Since the initial condition is specified for n = 1, which is achieved for i = n - 1, we get the
following formula for the solution to recurrence,

Alternatively, by counting the number of nodes in the tree obtained by recursive calls, we
can get the total number of calls made by the Tower of Hanoi algorithm:

Figure: Tree of recursive calls made by the recursive algorithm for the Tower of Hanoi
puzzle.

Example-3

The recurrence relation can be written as

.
Also note that A(1) = 0.

The standard approach to solving such a recurrence is to solve it only for n = 2k and then
take advantage of the theorem called the smoothness rule which claims that under very
broad assumptions the order of growth observed for n = 2k gives a correct answer about the
order of growth for all values of n.

4.​Important Problem Types

In this section, we are going to introduce the most important problem types: Sorting,
Searching, String processing, Graph problems, Combinatorial problems.

4.1.​ Sorting

The sorting problem is to rearrange the items of a given list in non-decreasing order. As a
practical matter, we usually need to sort lists of numbers, characters from an alphabet or
character strings.

Although some algorithms are indeed better than others, there is no algorithm that would be
the best solution in all situations. Some of the algorithms are simple but relatively slow, while
others are faster but more complex; some work better on randomly ordered inputs, while
others do better on almost-s rted lists; some are suitable only for lists residing in the fast
memory, while others can be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algorithm is called
stable if it preserves the relative order of any two equal elements in its input. The second
notable feature of a sorting algorithm is the amount of extra memory the algorithm requires.
An algorithm is said to be in-place if it does not require extra memory, except, possibly, for a
few memory units.

4.2.​ Searching

The searching problem deals with finding a given value, called a search key, in a given set.
(or a multiset, which permits several elements to have the same value). There are plenty of
searching algorithms to choose from. They range from the straightforward sequential search
to a spectacularly efficient but limited binary search and algorithms based on representing
the underlying set in a different form more conducive to searching. The latter algorithms are
of particular importance for real-world applications because they are indispensable for storing
and retrieving information from large databases.

4.3.​ String Processing

In recent decades, the rapid proliferation of applications dealing with non-numerical data has
intensified the interest of
algorithms. A string is a

researchers and computing
practitioners sequence of
characters from an alphabet.

in string-handling
String-processing

algorithms have been important for computer science in conjunction with computer
languages and compiling issues.

4.4.​ Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a
graph can be thought of as a collection of points called vertices, some of which are connected
by line segments called edges. Graphs can be used for modeling a wide variety of
applications, including transportation, communication, social and economic networks, project

scheduling, and games. Studying different technical and social aspects of the Internet in

particular is one of the active areas of current research involving computer scientists,
economists, and social scientists.

4.5.​ Combinatorial Problems

Generally speaking, combinatorial problems are the most difficult problems in computing,
from both a theoretical and practical standpoint. Their difficulty stems from the following
facts. First, the number of combinatorial objects typically grows extremely fast with a
problem’s size, reaching unimaginable magnitudes even for moderate-sized instances.
Second, there are no known algorithms for solving most such problems exactly in an
acceptable amount of time.

5.​Fundamental Data Structures

Since the vast majority of algorithms of interest operate
on data,

particular ways of

organizing data play a critical role in the design and analysis of algorithms. A data structure
can be defined as a particular scheme of organizing related data items.

5.1.​ Linear Data Structures

The two most important elementary data structures are the array and the linked list.

A (one-dimensional) array is a sequence of n items of the same data type that are stored
contiguously in computer memory and made accessible by specifying a value of the array’s
index.

A linked list is a sequence of zero or more elements called nodes, each containing two kinds
of information: some data and one or more links called pointers to other nodes of the linked
list. In a singly linked list, each node except the last one contains a single pointer to the next
element. Another extension is the structure called the doubly linked list, in which every
node, except the first and the last, contains pointers to both its successor and its predecessor.

A list is a finite sequence of data items, i.e., a collection of data items arranged in a certain
linear order. The basic operations performed on this data structure are searching for,

inserting, and deleting an element. Two special types of lists, stacks and queues, are
particularly important.

A stack is a list in which insertions and deletions can be done only at the end. This end is
called the top because a stack is usually visualized not horizontally but vertically—akin to a
stack of plates whose “operations” it mimics very closely.

A queue, on the other hand, is a list from which elements are deleted from one end of the
structure, called the front (this operation is called dequeue), and new elements are added to
the other end, called the rear (this operation is called enqueue). Consequently, a queue
operates in a “first-in–first-out” (FIFO) fashion—akin to a queue of customers served by a
single teller in a bank. Queues also have many important applications, including several
algorithms for graph problems.

Many important applications require selection of an item of the highest priority among a
dynamically changing set of candidates. A data structure that seeks to satisfy the needs of
such applications is called a priority queue. A priority queue is a collection of data items
from a totally ordered universe (most often, integer or real numbers). The principal
operations on a priority queue are finding its largest element, deleting its largest element, and
adding a new element.

5.2.​ Graphs

A graph is informally thought of as a collection of points in the plane called “vertices” or
nodes,” some of them connected by line segments called “edges” or “arcs.” A graph G is
called undirected if every edge in it is undirected. A graph whose every edge is directed is
called directed. Directed graphs are also called digraphs.

The graph depicted in Figure (a) has six vertices and seven undirected edges:

V = {a, b, c, d, e, f }, E = {(a, c), (a, d), (b, c), (b, f), (c, e), (d, e), (e, f)}.

The digraph depicted in Figure 1.6b has six vertices and eight directed edges:

V = {a, b, c, d, e, f }, E = {(a, c), (b, c), (b, f), (c, e), (d, a), (d, e), (e, c), (e, f)}.

Graph Representations - Graphs for computer algorithms are usually represented in one of
two ways: the adjacency matrix and adjacency lists.

The adjacency matrix of a graph with n vertices is an n x n boolean matrix with one row
and one column for each of the graph’s vertices, in which the element in the ith row and the jth

column is equal to 1 if there is an edge from the ith vertex to the jth vertex, and equal to 0 if
there is no such edge.

The adjacency lists of a graph or a digraph is a collection of linked lists, one for each vertex,
that contain all the vertices adjacent to the list’s vertex (i.e., all the vertices connected to it by
an edge).

A graph is said to be connected if for every pair of its vertices u and v there is a path from u
to v. Graphs with several connected components do happen in real-world applications. It is
important to know for many applications whether or not a graph under consideration has
cycles. A cycle is a path of a positive length that starts and ends at the same vertex and does
not traverse the same edge more than once.

5.3.​ Trees

A tree (more accurately, a free tree) is a connected acyclic graph. A graph that has no cycles
but is not necessarily connected is called a forest: each of its connected components is a tree.
Trees have several important properties other graphs do not have. In particular, the number of
edges in a tree is always one less than the number of its vertices: |E| = |V| - 1

Rooted Trees: Another very important property of trees is the fact that for every two vertices
in a tree, there always exists exactly one simple path from one of these vertices to the other.
This property makes it possible to select an arbitrary vertex in a free tree and consider it as
the root of the so-called rooted tree. A rooted tree is usually depicted by placing its root on
the top (level 0 of the tree), the vertices adjacent to the root below it (level 1), the vertices two
edges apart from the root still below (level 2), and so on.

The depth of a vertex v is the length of the simple path from the root to v. The height of a
tree is the length of the longest simple path from the root to a leaf.

Ordered Trees- An ordered tree is a rooted tree in which all the children of each vertex are
ordered. It is convenient to assume that in a tree’s diagram, all the children are ordered left to
right. A binary tree can be defined as an ordered tree in which every vertex has no more than
two children and each child is designated as either a left child or a right child of its parent; a
binary tree may also be empty.

If a number assigned to each parental vertex is larger than all the numbers in its left subtree
and smaller than all the numbers in its right subtree. Such trees are called binary search
trees. Binary trees and binary search
trees have a wide variety of
applications in computer science.

5.4.​Sets and Dictionaries

A set can be described as an unordered collection (possibly empty) of distinct items called
elements of the set. A specific set is defined either by an explicit listing of its elements (e.g.,
S = {2, 3, 5, 7}) or by specifying a property that all the set’s elements and only they must
satisfy (e.g., S = {n: n is a prime number smaller than 10}).

The most important set operations are: checking membership of a given item in a given set;
finding the union of two sets, which comprises all the elements in either or both of them; and
finding the intersection of two sets, which comprises all the common elements in the sets.

Sets can be implemented in computer applications in two ways. The first considers only sets
that are subsets of some large set U, called the universal set. If set U has n elements, then any
subset S of U can be represented by a bit string of size n, called a bit vector, in which the ith
element is 1 if and only if the ith element of U is included in set S.

The second and more common way to represent a set for computing purposes is to use the list
structure to indicate the set’s elements. This is feasible only for finite sets. The requirement
for uniqueness is sometimes circumvented by the introduction of a multiset, or bag, an
unordered collection of items that are not necessarily distinct. Note that if a set is represented
by a list, depending on the application at hand, it might be worth maintaining the list in a
sorted order.

Dictionary: In computing, the operations we need to perform for a set or a multiset most
often are searching for a given item, adding a new item, and deleting an item from the
collection. A data structure that implements these three operations is called the dictionary.
An efficient implementation of a dictionary has to strike a compromise between the
efficiency of searching and the efficiencies of the other two operations. They range from an
unsophisticated use of arrays (sorted or not) to much more sophisticated techniques such as
hashing and balanced search trees.

A number of applications in computing require a dynamic partition of some n-element set
into a collection of disjoint subsets. After being initialized as a collection of n one-element
subsets, the collection is subjected to a sequence of intermixed union and search operations.
This problem is called the set union problem.

	Contents
	●​Choosing between Exact and Approximate Problem Solving -
	●​Designing an Algorithm
	1.2.​Algorithm Specification
	Recursive algorithms
	1.3.​Analysis Framework
	Measuring an Input’s Size
	Units for Measuring Running lime
	Orders of Growth
	Worst-Case, Best-Case, and Average-Case Efficiencies
	Summary of analysis framework

	2.​Performance Analysis
	2.1​Space complexity
	2.2​Time complexity
	Example-2: matrix addition
	Trade-off

	3.​Asymptotic Notations
	3.1.​Big-Oh notation
	Example: To prove n2 + n = O(n3)
	3.2.​Omega notation
	3.3.​Theta notation
	Strategies for Ω and Θ
	3.6.​Mathematical Analysis of Non-recursive & Recursive Algorithms
	Example-1: To find maximum element in the given array
	Example-2: To check whether all the elements in the given array are distinct
	Example-4: To count the bits in the binary representation
	Analysis of Recursive Algorithms

	 ​Algorithm
	Example-3

	4.​Important Problem Types
	4.1.​Sorting
	4.2.​Searching
	4.3.​String Processing
	4.4.​Graph Problems
	4.5.​Combinatorial Problems

	5.​Fundamental Data Structures
	5.1.​Linear Data Structures
	5.2.​Graphs
	5.3.​Trees
	5.4.​Sets and Dictionaries

