\ ¥
2.

2.1
2.2.

3.

Module’y1 : Introduction to Algorithms

e

1. Introducti ;1‘
1.1. Whatis an Algorithm?
D 1.2.‘Algorithm cification
1.3. Analysis Bramework
Performence Analysis
Space complexity
Time complexity
Asymptotic Notations
3.1. Big-Oh notation
3.2. Omega notation
3.3. Theta notation
3.4. Little-oh notation

3.5. Mathematical analysis

\ Contents

. Important Problem Types

4.1. Sorting

4.2. Searching

4.3. String processing

4.4. Graph Problems

4.5. Combinatorial Problems

. Fundamental Data Structures

5.1.Linear Data Structures
5.2. Graphs

5.3. Trees

5.4. Sets and Dictionaries.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

1.Introduction

1.1. What is an Algorithm?

of instructions to solve a particular problem. In

An algorithm is a finite set addition, all

algorithms must satisfy the following criteria:

a.
b.
C.

Input. Zero or more quantities are externally supplied.

Output. At least one quantity is produced.

Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear
what should be done.

Finiteness. If we trace out the instruction of an algorithm, thel} f(?aﬂcases, the

algorithm terminates after a finite number of steps. C:;I Y
Effectiveness. Every instruction must be very basic so,that it can be carried out, in
principle, by a person using only pencil and paper. It is not enough that each
operation be definite as in criterion c; it also mugt be feasible. -

Algorithm design and analysis process - We now‘%ﬂéefly dﬁscuss;p s;cﬂLl&lce of steps one

typically goes through in desi;

4} 3) Algorithm design technique
¢ ~ Design the algorithm
‘ .J Prove the correctness
;’ Analyze the algorithm
e ¢

Understand the problem

v

Decide on: 1) computational means
2) Exact vs. approximate solving

Code the algorithm

e Understanding the Problem - From a practical perspective, the first thing you need to

do before designing an algorithm is to understand completely the problem given. An

input to an algorithm specifies an instance of the problem the algorithm solves. It is very

important to specify exactly the set of instances the algorithm needs to handle.

e Ascertaining the Capabilities of the Computational Device - Once you completely

understand a problem, you need to ascertain the capabilities of the computational device

the algorithm is intended for. Select appropriate model from sequential or parallel

Leciure Hofes | ISC54EE - Deesign i Anelysis of Algoerithbems | Maodule B
It rosdlesctioon

programming model.

=

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Choosing between Exact and The next principal

Approximate Problem Solving -

decision is to choose between solving the problem exactly and solving it approximately.
Because, there are important problems that simply cannot be solved exactly for most of
their instances and some of the available algorithms for solving a problem exactly can be
unacceptably slow because of the problem’s intrinsic complexity.

Algorithm Design Techniques - An (or “strategy” or

algorithm design technique

“paradigm”) is a general approach to solving problems algorithmially that is applicable
to a variety of problems from different areas of computing. They provide guidance for
designing algorithms for new problems, i.e., problems there is no known
satisfactory algorithm. for which

and Data Struqﬁ??e&- One close attention to
should pay <
] v

Designing an Algorithm

choosing data structures appropritite for the Q}?e?’ations performed by the algorithm. For
example, the sieve of Eratostitenes would@yn longer if we used a linked list instead of an
array in its implementatioy™Ztlgoriilims + Data Structures = Programs

Methods of Specifying an Algorit m?a@ce you have designed an algorithm; you need
to specify it in io‘me fashionethese are the two options that are most widely used
nowadays for sﬁ“cifying algggithms. Using a natural language has an obvious appeal;
however, the inherent ambiguity of any natural language makes a concise and clear
descrip‘tion of algc>11£hms surprisingly difficult. Pseudocode is a mixture of a natural
langyage and prog;amming language like constructs. Pseudocode is usually more precise
tl‘*m natural lagghage, and its usage often yields more succinct algorithm descriptions.

Proving an Algorithm’aCorrectness - Once an algorithm has been specified, you have
to prove its correctness. That is, you have to prove that the algorithm yields a required
reg‘%;l for every legitimatg input in a finite amount of time. For some algorithms, a proof
of correctness is_quite easy; for others, it can be quite complex. A common technique for

< proving correcfhess is tq use mathematical induction because an algorithm’s iterations

provide a natural sequense of steps needed for such proofs.
A’

e Analyzing an AlgiMm - After correctness, by far the most important is efficiency. In

"’fact, there are twopkinds of algorithm efficiency: time efficiency, indicating how fast the

algorithm runs, and space efficiency, indicating how much extra memory it uses. Another
desirable claracteristic of an algorithm is simplicity. Unlike efficiency, which can be
precisely defined and investigated with mathematical rigor, simplicity, like beauty, is to a
considerable degree in the eye of the beholder.

e Coding an Algorithm - Most algorithms are destined to be ultimately implemented as

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

computer programs. Implementing an algorithm correctly is necessary but not sufficient:
you would not like to diminish your algorithm’s power by an inefficient implementation.
Modern compilers do provide a certain safety net in this regard, especially when they are

used in their code optimization mode.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

1.2. Algorithm Specification

An algorithm can be specified in
1) Simple English
2) Graphical representation like flow chart
3) Programming language like c++ / java
4) Combination of above methods.

for (i=1; i<=n; i++) A

s

(N .
n fo!r selection sort is

Using the « - ;
fied examine a[i] to al[n] and suppose
spectiied a the smallest element is at al[jl; | v
interchange ali] and aljl; &
} b
L)
‘ ~=h

void SelectionSort(Type al[], int n)
// Sort the array al[l:n] into nondecreasing order.

{
for (int i=1; i<=n; i++) {
int j = i;
for (int k=i+1; k<=n; k++)
if (alkl<al[jl) j=k;
Type t = alil; a[il = a[j]; a[j] = t;
}

A J,l
o
&
Here Type is a basic or user d'eﬁned data type.

Recursive algoritl’ms :
An alg&ithn1 1s said to be ’recursive if the same algorithm is invoked in the body (direct
reqursive). Algorithmaﬁ is said to be indirect recursive if it calls another algorithm which in

turn calls A. e

(w) = (') + (25 =

Example 3: Tower of Hanoi problem
Example 4: Permutation Generator

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

1.3. Analysis Framework

General framework for analyzing the efficiency of algorithms is discussed here. There are
two kinds of efficiency: time efficiency and space efficiency. Time efficiency indicates how
fast an algorithm in question runs; space efficiency deals with the extra space the algorithm
requires.

In the early days of electronic computing, both resources time and space were at a premium.
Now the amount of extra space required by an algorithm is typically not of as much concern,
In addition, the research experience has shown that for most problems, we can achieve much

more spectacular progress in speed than in sipﬁ'e.f Therefore, a well-established
following
| v
tradition of algorithm textbooks, we primarily concendrate on time eff&iency.

¥

Measuring an Input’s Size O
= - .

It is observed that almost all{algozr:éthms nr? longer on larger inputs. For example, it takes
rge

longer to sort larger ai*f'?fysx multiply?a
investigate an alggrithm's cfficidf®y as a function of some parameter n indicating the

%atrices, and so on. Therefore, it is logical to

algorithm's input size. A

There are situa?h:rns, where the choice of a parameter indicating an input size does matter.
The choicefof an appropiiate size metric can be influenced by operations of the algorithm in
quest'c;rT For exampre, how should we measure an input's size for a spell-checking
ii‘;gor hm? If th:glgorithm examines individual characters of its input, then we should
measure the size by the number of characters; if it works by processing words, we should

kount their number in the inp}lt.

We should make a sgecial note about measuring the size of inputs for algorithms involving
iﬂgoperties of numbers (e.g., checking whether a given integer n is prime). For such
algorithms, computer _scientists prefer measuring size by the number b of bits in the n's binary
representation: b =‘\l0g2 n |+ 1. This metric usually gives a better idea about the efficiency
of algog;thms lasguestion. ’

e

Ugits for Measuring gunning lime

To measure an algorithm's efficiency, we would like to have a metric that does not depend
on these extrapeous factors. One possible approach is to count the number of times each of
the algorithm's operations is executed. This approach is both excessively difficult and, as we
shall see, usually unnecessary. The thing to do is to identify the most important operation of
the algorithm, called the basic operation, the operation contributing the most to the total
running time, and compute the number of times the basic operation is executed.

For example, most sorting algorithms work by comparing elements (keys) of a list being
sorted with each other; for such algorithms, the basic operation is a key comparison.

As another example, algorithms for matrix multiplication and polynomial evaluation
require two arithmetic operations: multiplication and addition.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Let c,, be the execution time of an algorithm's basic operation on a particular computer, and
let C(n) be the number of times this operation needs to be executed for this algorithm. Then
we can estimate the running time 7(n) of a program implementing this algorithm on that
computer by the formula:

T(n) = c;,C(N)

unless n is extremely large or very small, the formula can give a reasonable estimate of the
algorithm's running time.

.

It is for these reasons that the efficiency analysis framewqri; igndres multiplicative constants
and concentrates on the count's order of growth to wit‘%in a constar multiple for large-size

inputs. , 9

{ A 4

="

Orders of Growth

Why this emphasis on the count's order t growth for_large input sizes? Because for large
valnee af n it ic the fiinction'e arder of orow th ﬂ'mit (‘(\1] L inet]nnl(at table which contains

n log, n n nlog, n n?

10 3.3 w3300 10° 1° 10° 3.6.10°
107 6.6 102 66102 10 106 1.310% 93.10'%
10° 10 10 o100t 108 10°

104 13 10 1.3107 108 1012

10° 17 17 17106 100 103

106 20 106 20107 102 o

algorithn‘as

-9

F
Algorithms that "P@)lre an e'xponentlal number of operations are practical for solving only
problems of { vgry small sizes.

N

Worst-Case, Best-tiase. and‘ Average-Case Efficiencies

Definition: "'he worst-ease efficiency of an algorithm is its efficiency for the worst-case
input of size n, for Wh@h the algorithm runs the longest among all possible inputs of that size.
ALGORITHM SequentialSearch(A[0..n — 1], K)

/ISearches for a given value in a given array by sequential search

/Input: An array A[0..n — 1] and a search key K

//Output: The index of the first element in A that matches K

/ or —1 if there are no matching elements

i <0

while i <n and Ali]# K do

i <—i+1
ifi <nreturni
else return —1

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

The running time of above algorithm can be quite different for the same list size n. In the
worst case, when there are no matching elements or the first matching element happens to
be the last one on the list, the algorithm makes the largest number of key comparisons
among all possible inputs of size n: C,,,,x(n) = n_

In general, we analyze the algorithm to see whqa,t kind of inputs yield the largest value of the
basic operation's count C(n) among all posgible mputs adsize n and then compute this worst-
case value C,,,, (n). The worst-case smalysis providgs algorithm's efficiency by bounding its
running time from above. Thus it guarantees that for any instance of size n, the running time
will not exceed C,,, (1), its running time on tﬁ-e’worst-case inputs.

Definition: The best-case eéﬁciemy of anﬁmlgorithm is its efficiencyafor the best-case input
of size n, for which the ‘f@gthm runs?he fastbst among all possible inputs of that size.
§ <=

We determine the gRind of inp;sg for which the count C(n) will be the smallest among all
possible input(sﬁof size n. For example, for sequential search, best-case inputs are lists of size
n with thei‘(first elements eqﬁal to a search key; Cyp(n) = 1.

The analysis of the bes)t-:ase efficiency is not nearly as important as that of the worst-case
Ffﬁci‘tncy. Also, <aelther the worst-case analysis nor its best-case counterpart yields the
necessary information about an algorithm's behavior on a "typical" or "random" input. This
informations i)rovided by average-case efficiency.

D(sﬁniﬂ;'én: the average-case complexity of an algorithm is the amount of time used by the
ialgori”[hm, averaged over all possible inputs.

Let us consider again sequeﬁfial search. The standard assumptions are that (a) the probability
of a successful search is equal top (0 < p < 1) and (b) the probability of the first match
occurring in the i fosition Q.f the list is the same for every i. We can find the average number

of key comparisons C,,, (n) as follows.

avg
search, the probability of the occurring in the i

In the case of a SucfeSSﬁﬂ ‘ first match

> |)
Cavg(m) =[1- £ 4 Bl 4 e LD A s R ,ﬂ]_‘_” . (1 — p) >ns made by the algorithm
n n n 4 ful search, the number of

:f[1+2+---—f+---+nj+mt—p) Therefore,
_pna+l g . pa+l) Ay difficult than investigation
n 2 2 important algorithms for

which the average case efficiency is much better than the overly pessimistic worst-case
efficiency would lead us to believe. Note that average-case efficiency cannot be obtained by
taking the average of the worst-case and the best-case efficiencies.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Summary of analysis framework

Both time and space efficiencies are measured as functions of the algorithm's input size.
Time efficiency is measured by counting the number of times the algorithm's basic
operation is executed. Space efficiency is measured by counting the number of extra
memory units consumed by the algorithm.

e The efficiencies of some algorithms may differ significantly for inputs of the same size.
For such algorithms, we need to distinguish between the worst-case, average-case, and
best-case efficiencies.

e The framework's primary interest lies in the order of growt]m the algorithm's running

time (or extra memory units consumed) as its input size goes to infinity.
9

2.Performance Analysis R . ¥
]

2.1Space complexity € ~

Total amount of computer memory reqlﬁ?c‘dkby an algorithm’ to complete its execution is
called as space complexity of that ag]gﬁrithm. The Space required by an algorithm is the sum

of following components >

e A fixed part that is inde;endent of thevi)nput and output. This includes memory space
for codes, Variablcﬁsg__com stants and 30 on.

® A variable parf that depends on the input, output and recursion stack. (We call these
parameterg as instanﬁ characteristics)

Space requirement S(F) of aﬁ~a1:gorithm P S(P) =c+Sp where cis a constant depends
on the fixed part, Spfis tlﬁﬁnitance characteristics

Fvamnla_1+ Cancider fhllawina alanrithm aheN

float abc(float a, float b, float c)
{ return (a + b + bxc + (a+b-c)/(a+b) + 4.0);
}

A
Here fixed compoftefit depends on the size of a, b and c. Also instance characteristics Sp=0

\ —

Example-2: Leb us consider the algorithm to find sum of array.

For the algorithm given here the problem instances are characterized by n, the number of
elements to be summed. The space needed by af / depends on n. So the space complexity can
be written as; S,,,(n) = (n+3) n for a[], One each for n, i and s.

float Sum(float a[], int n)
{ float s = 0.0;
for (int i=1; i<=n; i++)
s += al[i];
return s;

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

2.2Time complexity

Usually, the execution time or run-time of the program is refereed as its time complexity
denoted by ¢, (instance characteristics). This is the sum of the time taken to execute all
instructions in the program.

Exact estimation runtime is a complex task, as the number of instruction executed is
dependent on the input data. Also different instructions will take different time to execute. So
for the estimation of the time complexity we count only the number of p ogram steps.

A program step is loosely defined as syntactically or semantically meaning segment of the
E— N

program that has and execution time that is independent ‘df instance characteristics. For

example comment has zero steps; assignment statement has ionc step d&%so on.

eeded by a program to solve a particular
problem instance in

-~ C)

We can determine the steps
two ways.

i

In the first method we introduce a new Vaxéable count t0%he program which is initialized to
zero. We also introduce statements t(fﬁ?(:(ement co}nt by)an appropriate amount into the
program. So when each time ori%j.nﬁl program executes, the count also incremented by the

step count.
A =
Mmool T e Ml e dlan Alcnitdlacan weeand N A Lbmae 4l :ML..A,J.‘AL:OH Of the count the program
float Sum(float a[], int n)
{ float s = 0.0;
count++; // count is global
for (int i=1; i<=n; i++) {
count++; // For ‘for’
s += al[i]; count++; // For assignment
}
count++; // For last time of ‘for’
count++; // For the return
return s;

S)
e
Frém the above we cali'estimate that invocation of sum() executes total number of 2n+3

steps.

The second method to determine the step count of an algorithm is to build a table in which
we list the total number of steps contributed by each statement. An example is shown below.

Statement [s/e | frequency | total steps
float Sum(float al[], int n) | O — 0
{ float s = 0.0; j | 1 1
for (int i=1; i<=n; i++) 1 n+1 n+1
s += al[i]; 1 n n
return s; 1 1 1
} 0 = 0

Total H | [2n +3

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Statement | s/e | freq | total

void Add(Type al]l [SIZE], ...) [0 - 0

{ for (int i=1; i<=m; i++) 1 m+1 m+1

for (int j=1; j<=n; j++) 1 m(n+1) | mn4+m
c[il[j]1 = alil[j] 9
+ bli] [j]1; 1 mn mn
} 0 — 0
Total [[| 2mn + gm + 1

- -’

The above thod is both excessively difficult and, usually unnecessary. The thing to do is to

identify the most impbrtant cgeration operation of the algorithm, called the basic

contributing the m operation, the st to the total running time,
> ,
{,; and compute the number of times

the basic operation is executed.
Trade-off

There is often a time-spaceatradeoff involved in a problem, that is, it cannot be solved with
few computing time and low memory consumption. One has to make a compromise and to
exchange computing time for memory consumption or vice versa, depending on which
algorithm one chooses and hdw one parameterizes it.

3.Asymptotic ‘lotatio'\s

’ of an algorithm’s
The eﬂfeienc‘r analysis feamework
coEcentrates on the orc;;:r of growth

S

basic operation count as the principal indicator of the algorithm’s efficiency. To compare and
rank such ordef® of growth, computer O(big oh), Q(big

scientists use three notations: omega), ® (big

theta) and o(little oh)

3.1. Big-Oh notation

Definition: A function #(n) is said to be in O(g(n)), denoted #(n)€0(g(n)), if t (n) is bounded
above by some constant multiple of g(n) for all large n, i.e., if there exist some positive
constant ¢ and some nonnegative integer n, such that

Leciure Hofes | ISC54EE - Deesign i Anelysis of Algoerithbems | Maodule B
It rosdlesctioon

t(n) <c g(n) for all n > n,,

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

i /cg(n) e

;) VLIS VT, MO P NM-_ﬂl e mae A ddin _/Z)

! neomn), 100n +5 O(n° } —ﬁ'(ﬂ — 1) e 0 }
n’ iz O(.’Iz}. 0.00001x° z O(HEJ. 1 Z Om“}.))- -

i/ _ o
doesn't | Q}
matter

' wve 100n + 5 € O(p” ;
10"1|, =5)

| alln>5)=101n <101#". (ci
o >N ;,

Note that the definition gives us a lot of freedom m(ckoosmo Spesitic Values for constants ¢

and n,. N 9

A

Example: To prove >+ n=0(1n% ¢

Here, we have f(n) = n? 4 n, and g(n) = n® ~

b
Notice that if n > 1, n < n? is clear.

Also, notice that if n > 1, n? < n* is clear.

Therefore,

n? 4+ n < n? +nt = n?
We have just shown that

n® +n <20 foralln > 1

Thus, we have shown that n? 4+ n = O(n?)
(by dehnmon of Big-O, with ng = 1, and ¢ = 2))

Strategies for Big-O Sometimes the easiest way to prove that f(n) = O(g(n)) is to take c to

be the sum of the positive coefficients. coefﬁ.cients of f(n). We can usually ignore the
negative

Example: To prove 5n° + 3n + 20 = O(n?), we
pick c =543+ 20 =28 Thenitn > ng =1,

5n%+3n+20 < 5n% 4+ 3n? +20n° = 28n2,
thus 5n2 + 3n + 20 = O(n?).

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

3.2. Omega notation

Definition: A function t(n) is said to be in Q(g(n)), denoted #(n) €Q(g(n)), if t(n) is bounded
below by some positive constant multiple of if there exist some
g(n) for all large n, i.e., positive constant ¢
and some nonnegative integer n, such that
t(n) =2 c

g(n) for
alln>

n,.

F 3
 tin)
cglnl
‘ n
Q <«
dosen't Big-omega notation: ¢(n) Q[g[ri)]_
matter ‘ ’
.. c} -
| _|-)
Here is an example of the ﬁn‘nal proof that n’ F}ﬂi —
(n’):n’ =n’ foralln=0, : v
i.e., we can selectc =1 and n, = U._l % -
n e Q). ;n{n ~ 1) eQm?, but 100n 4+ 5 & Q(n?).
Example: = y
- -
Here, we have f(n) = n3 + 4n2, and g(n) = n?
It is not too hard to see that if n > OJ Thus whenn > 1,
n® < n®+an? n® <n’<n’—4n?

o Theretore,
We have already seen that if n > 1,
. 1n? < n®+4nforalln > 1
n? < n?

Thus, we have shown that n* + 4n? = Q(n?)

Y (by definition of Big-{2, with ny = 1,and c = 1))

3.3. Theta notation

A function t(n) is said to be in @(g(n)), denoted t(n) € O(g(n)), if t (n) is bounded both
above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist
some positive constants ¢, and ¢, and some nonnegative integer n, such that

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

¢, g(n) S t(n) S ¢,g(n) for all n S n,,.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

cigln)

tin)

Crgln)

Big-theta notation: 7(n) € @(g(n))

doesn't
matter

.
> N ‘ N

0 0 q
For example, let us prove that %n(n — 1) € ®(n?). First, we prove the right 9
inequality (the upper bound):

e |

' 1, 1 1,
—nin—1)=—-n"——n<—-n~ foralln=0.

2 2

Second, we prove the left inequality (the lower bound):

iﬁ'(n -1 = ln2 - lu > ln2 - l.-zln (foralln =>2)= lnz.
2 2 2 2 22 4

Hence, we can select ¢y = 1. ¢; = 1, and ny = 2.

< =
Example: n° + 5n+7=0 P >
Whenn > 1, | Thus, when n > 1
n? +5n+7 < n®+5n% + 7n? < 13024 1n2 <n?+5n+7<13n2

When n > 0, | Thus, we have shown that n? + 5n + 7 = 0(n?)

n? < 4 5”j 7 gby jlteli?gn)ition of Big-©, with ng = 1, ¢; = 1, and

1 v 2T
>)
-
Stfategies for Q anJ’O
-

e Proving that a f(n) = Q(g(n)) often requires more thought.
— Quite often, we have to pick ¢ < 1.
— A good strategy is to pick a value of ¢ which you think will work, and determine
which value of n, is needed.
— Being able to do a little algebra helps.
— We can sometimes simplify by with the positive

ignoring terms of f(n) coefficients.

° The following theorem shows us that proving f(n) = ®(g(n)) is nothing
new: Theorem: f(n) = ®(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Q(g(n)).

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Thus, we just apply the previous two strategies.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Notice thatif n > 1, So

; i
1 ; 7 —n* 4+ 3n = Q(n”)
;?1?‘ +3n < En‘a 302 = ;-?12 2

Since +n? +3n = O(n?) and 1n? 4 3n = Q(n?).

Thus, y
1 2 2 - o L
gn T+ 3n=0(n") 5" +3n = B(n")
Also. whenn > 0.
%ng < %-n': + In ‘“
Q q
| v
Show that (nlogn — 2n+ 13) = Q(nlogn) ‘ T
.. c} -
Proof: We need to show that there exist positive -
constants ¢ and 72 such that ""]'
)

0 <enlogn <nlogn —2n+13foralln > ng. —=

Since nlogn —2n <nlogn —2n+ 13,

we will instead show that
cnlogn < nlogn —2n,

which 1s equivalent to

c<1-—

. whenn > 1.
log n

| ¥
If n > 8, then 2/(logn) < 2/3, and picking ¢ = 1/3
suffices. Thus if ¢ = 1/3 and ng = 8, then for all
n > ng, we have

0<cnlogn <nlogn—2n<nlogn—2n+ 13.

Thus (nlogn —2n+13) = Q(nlogn).

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

We need to find positive constants ¢y, ¢z, and ng
such that

1 .
0<ecn? < 571,2 —3n < eon? forall n > ng

Dividing by 12, we get

ru\l—'

0 <er <

e .

implies that 7(n) has a smaller order of growith than g(n).

lim M ¢ implies that t(n) has the same order of growth as g(n).
n—eo g(n) oo implies that 7(n) has a larger order of growth than g(n).-
‘ A 4
Thus, if ¢1 = 1/5, ¢c2 = 1, and ng = 10, then for - c -
all n > ny, — -
! , l
0 < cln < § = —3n < CQ'T?Q foralln = ng. - ;, ‘“)
Thus we have shown that sn? = 3n = 0(n?). Y
& >
3.4. Little Oh The function f(n) = gfg(n)) [i.e | nf n is a little oh of g of n | if and
Iy af
on }r] e Liram}’_
i o=
a | 5=

Example 1.14 The function 3n + 2 = o(n?) since limy, 00 <57 an=2 _ 3'n +

2 = o(nlogn). 3n+2 = o(nloglogn). 62" + n? = o(3™). 6 on +n?
o(2% logn). 3n 4 2 £ o(n). 6% 2" +n? # o(2").

y

e

For comparing t'u. order c'{ growth limit is
used
S 4 ™ }
‘ =
¢ .

9
If the case-1 holds good in the above limit, we represent it by little-oh.

EXAMPLE 1 Compare the orders of growth of 3n(n — 1) and n”. (This is one of
the examples we used at the beginning of this section to illustrate the definitions.)

nn—=1 1. wl-n 1 1 I
£ 7~ lim s— = im (1 ——)=c
n— 00 _.1.2 2 A—DQ n= 2 n—oo n 2

Since the limit is equal to a positive constant, the functions have the same order
of growth or, symbolically, %n(n —Deem). [|

4

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:

It rosdlesctioon

EXAMPLE 2 Compare the orders of growth of log, n and /n. (Unlike Exam-
ple 1, the answer here is not immediately obvious.) ° (‘ N

lim

A—00

1

il 7

loggn _ . (lozon) _ (logse) 1y, e

= lim ——————~ =Zlop, ¢ lim
r n—od 71#_; &2 e ,,/E -’

log n

il

nlogn

b
n-

a2

n-

.

consrani

logarithmic

linear

linearithmic

quadratic

cubic

exponential

factorial

Short of best-case efficiencies. very few reasonable
examples can be given since an algorithm’s running
time typically goes to infinity when its input size grows
infinitely large.

Typically. a result of cutting a problem’s size by a
constant factor on each iteration of the algorithm (see
Scction 4.4). Notc that a logarithmic algorithm cannot
take into account all its input or even a fixed fraction
of it: any algorithm that does so will have at least inear
running time,

Algorithms that scan a list of sizc n (c.g., scquential
search) belong Lo this class.

Many divide-and-conquer algorithms (see Chapter 5),
including mergesort and quicksort in the average case.
fall into this category.

Typically, characterizes efficiency of algorithms with
two cmbedded loops (sce the next scetion). Elemen-
tary sorting algorithms and certain operationsonn X n
matrices are standard examples.

‘Iypically, characterizes efficiency of algorithms with
threc embedded loops (sce the next section). Scveral
nontrivial algorithms from linear algebra fall into this
class.

Typical for algorithms that generate all subsets of an
n-element set. Often, the term “exponential” 1s used
in a broader sensc to include this and larger orders of
growth as well.

Typical for algorithms that generate all permutations
of an n-element set.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

3.6. Mathematical Analysis of Non-recursive & Recursive Algorithms

Analysis of Non-recursive Algorithms
General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.)

3. Check whether the number of times the basic operation is executed depends only on
the size of an input. If it also depends on some additional property, the worst-case,

average-case, and, if separately. necessary, best-case efﬁcienq@xave to be
investigated <

4. Set up a sum expressing the number of basic operation is o | v
times the algorithm’s executed. q ~

5. Using sta.ndard. formylas and rules of find a closedform - -
sum manipulation, either |-

ALGORITHM MaxElement(A[0..n — 1]) ‘u(
rowgh.

//Determines the value of the largest element in a given a
/Mnput: An array A[0..n — 1] of rcal numbers
/IOutput: The value of the largest elementin A
maxval < A|0]
fori < 1ton —1do

if A[/] > maxval

maxval < Ali]

return maxval

B
¢ R h n—l1
Here comparison is the basic operation. Cn) = Z 1= T EBY.
Note that number compari'ions will be same for all . | i=l , dto

distinguish wasst, best and ayerage cases.
A’

Total number‘of basic operations (comparison) are,

¢

e

PALGORITHM UniqueFElements(A[0.n — 1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n — 1]
//Oulpul: Returns “true™ il all the elements in A are distinct
it and “false” otherwise
fori <~ 0Oton —2do

for j <« i+ 1ton—1do

if Ali]|= A|j]return false

return true

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Here basic operation is comparison. The maximum no. of comparisons happen in the worst
case. (i.e. all the elements in the array are distinct and algorithms return true).

Total number of basic operations (comparison) in the worst case are,

Other than the worst case, the total comparisons are less ﬂ]a%lj n?. (For example if the

&vﬁﬁ elements of the array are equal, only one comparison is computed). So in general C(n)
=0(n’)

Example-3: To perform matrix multiplication

Algorithm

Nunj_l,)er

fhof bagjc
ﬂﬁifé.'ﬂtiﬂn.“ =

multiplications) l‘-;’
S

T n—2 n—l1 n—2 n—2
Cumra(B) = T n—1D—-—0G+D+1|= (n—1—1)
S) FZ:(:, j:ZH:-L ,Z:(;[] ig(; ber of additions
% n—2 n=2 n—2
e 4 B fon — idlos — AN _
T = Z(” “Tn)=~c,M(n)+c,A(n) = cmn3 + can?' = (c,y + Ca)f1'3
i=0 1=u 1=u
12— n—2)(n—1) . (n—1)n " 1”2 " @(”2). N N
2 2 2
L] <
p @

L |
ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1, 0..n — 1])

//Multiplies two square matrices of order n by the definition-based aleorithm

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

ExamALGORITHM Binary(n)
4 //Input: A positive decimal integer
//Output: The number of binary digits in n’s binary representation
count < 1
while n > 1 do
counl — couni + l
n<«|n/2|

return count

N
; {
) 9
The basic operation is count=count + 1 repeats logyn] +1 4, of?mes S
!
Analysis of Recursive Algorithms = e -
i)

General plan for analyzing the time efficiency of recursive algor‘ﬂm

1. Decide on a parameter (or parameters) indicating an_jnput’s size. ‘lll)

2. Identify the algorithm’s basic operation. < { = ;'

3. Check whether the number of times the basic afferation is exgeuted can vary on
different inputs of the same size; if it can, ghe worst-case, average-case, and best-case
efficiencies must be investigated separiltely Set up a recurrence relation, with an
appropriate initial condition, for the number of t w*}es Sthe basic operation is executed.

4. Solve the recurrence or, at least, §scertain the order of growth of its solution.

EXAMPLE 1 Compute the factorial function F(n) = n!for an arbitrary nonneg-

ative integer n. Since
Exai

nl=1-...-m—LD-n=m—-DD!n forn>1

and 0! =1 by definition. we can compute F(n) = F(n — 1) - n with the following
recursive algorithm.

ALGORITHM F(n)

A /IComputes n! recursively
v /Input: A nonnegative integer n
/IOutput: The value of n!
it n =0 return 1
else return F(n — 1) % n

Since the function F(n) is computed according to the formula
Fny=Fn—-1)-n forn=>0,
The number of multiplications M(n) needed to compute it must satisfy the equality

Mn)y=Mmn —-1) + 1 forn > 0.

to compute to multiply
F(n—1) F(n—1) by n

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

Such equations are called recurrence Relations

Condition that makes the algorithm stop if n = 0 return 1. Thus recurrence relation and
initial condition for the algorithm’s number of multiplications M(n) can be stated as

Mn)y=Mmn -1 +1 forn >0,
M(0) =

We can use backward substitutions method to solve this

Mn)=Mmn-1)+1 substitute M(n — D =Mn —-2)+1
=[Mn—-2)+1]+1=M(n—2)+2 substitute M(n —2) = M(n—3)+1
=[Mn—-3)+1]4+2=Mmn—3)+3 ¢‘ i 1t sizes that

can slide onto any of three pegs Imtlally, all the disks are on the ﬁrjst peg in omgr of size, the
la— M(n— ,) 4= - M(n—n) + n=n.sto move all the fhsks to the third
peg, using the second one as an auxiliary, if necessary. We can move only, one disk at a time,
and it is forbidden to place a larger disk on top of a smalléF one. Ll

E

The problem has an elegant recursive solution, Whicl‘ 1S ili,x.lstratedi.ﬁ Figure.

o To move n>1 disks from peg 1 to peg 3 (wqu'?eg 2 as aux';?iary), J
o we first move recursively n-1 dj ﬁ from peg 110 peg 2 (with peg 3 as auxiliary),
o then move the largest disk dire etly from peg Pto peg 3, and,
o finally, move recursively nfl disks from peg 2 to peg 3 (using peg 1 as auxiliary).
e Ifn=1, we move the single di¢k directly frog the source peg to the destination peg.

P . }
b g ’
(v
2 ‘ w? _ ’
N
< Ve)
1
C
Fi | puzzle
The number of move N tion is
/ =8
We have the followir C M(n):

My =20 — 1)+ L Torn s 4
M) =1.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

We solve this recurrence by t e same method of backward substitutions:
Mn)=2Mn —1) +1 sub. M(n — 1) =2Mm —2)+ 1
=22M(n —2) +1]+1=22M@n —2)+2+1 sub. M(n —2)=2M(@n —3) +1
=22M(m—3) + 1]+241=2Mn =3)+22+2+ 1.

The pattern of the first three sums on the left suggests that the next one will be
2*M(n — 4) +2° + 2%+ 2 + 1, and generally, after i substitutions, we get

M) =2Mn—i)+2 14224+ ...424+1=2Mn—-i)+2 -1

Since the initial condition is specified for n = 1, which is achieved fqr‘i“i n - 1, we get the
q

following formula for the solution to recurrence, \
| «

M(n) = 2_?1—111,[(” —Gi— 1)) +2”_1 .

=My 42t —1=m ol 1=
Alternatively, by counting the number of nodes il! the iree ﬁbtem':jl by recursive calls, we
can get the total number of calls made by tpé Tower of Hanbi algorithm:

,i‘* @
n—I1

C(n) = Z 2" (where [is the level in the tree in Figure 2.5) =2" — 1

=0
P = Ny b

/g/n\\
n—Z/ \n—z n—Z/’ -\n--z
/2\1 1//2\1 1/2\\1 i/2\1

< - puzzle.
ALGORITHM BinRec(n)

[Mnput: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation
ifn=1returnl Am)=A(n/2))+1 lorn=>1

else return BinRec(|n/2]) + 1

ywer of Hanoi

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

~k ~k—1 - = A .
AZY) = A2)+ 1 Tfork >0, p a recurrence is to solve it only for n = 2% and then

\ | the smoothness rule which claims that under very

ACY =0,

broad assumptions the order ot growth observed for n = 2* gives a correct answer about the

order of growth for all values of n.

Now backward substitutions encounter no problems:

A = AR +1 substitute A2 1) = A2 %) +1

=[AQ* 2 +1]+1=A2"2) +2 substitute AQ*2) = A2 H +1
=[AQ) +1]+2= 42 +3
= A +i

= A2 + k.
Thus, we end up with
A=A +k=k,
or, after returning to the original variable n = 2% and hence k = log, n,

A(n) =log, n € O(log n).

. b

N\D)
T
- (‘ ‘_JQ
¢)

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

4.Important Problem Types

In this section, we are going to introduce the most important problem types: Sorting,
Searching, String processing, Graph problems, Combinatorial problems.

4.1. Sorting

The sorting problem is to rearrange the items of a given list in non-decreasing order. As a
practical matter, we usually need to sort lists of numbers, characters from an alphabet or
character strings.

.

Although some algorithms are indeed better Qh‘m others, there is no algorithm that would be
the best solution in all situations. Some of t}gﬁ; algorithmgare simple b§ relatively slow, while
others are faster but more complex; some work bette;;;on randomly ordered inputs, while
others do better on almost-s rted lists;qs.ome are suitable only for lists residing in the fast

memory, while others can be adapted for sortirﬁghlarge files stored on a disk; and so on.

Two properties of sorting aligorithms desese special mention. A sorting algorithm is called
stable if it preserves tlimﬂfelfuivs ordéy of ally two equal elements in its input. The second
notable feature of a sbrting algor# is the amount of extra memory the algorithm requires.
An algorithm is sald to be in-plate if it does not require extra memory, except, possibly, for a
few memory uftits. o

4.2. Segrching -

b
The gearching problém deals with finding a given value, called a search key, in a given set.

(or a multiset, which permits several elements to have the same value). There are plenty of
searching algorithms to choése from. They range from the straightforward sequential search
B a spegtacularly eiﬁcient but limited binary search and algorithms based on representing
the ugderlying set in a differént form more conducive to searching. The latter algorithms are
bﬁparticular importapge for real-world applications because they are indispensable for storing

and retrieving infor"nation frqm large databases.
4.3. &trinfﬁocessing ,
Ingecent decades, the ?pid proliferation of applications dealing with non-numerical data has

intensified the interest of researchers and computing in string-handling

algorithms. A s‘tging isa practitioners sequence of String-processing
characters from an alphabet.

algorithms have been important for computer science in conjunction with computer
languages and compiling issues.

4.4. Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a
graph can be thought of as a collection of points called vertices, some of which are connected
by line segments called edges. Graphs can be used for modeling a wide variety of

applications, including transportation, communication, social and economic networks, project

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

scheduling, and games. Studying different technical and social aspects of the Internetin

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

particular is one of the active areas of current research involving computer scientists,
economists, and social scientists.

4.5. Combinatorial Problems

Generally speaking, combinatorial problems are the most difficult problems in computing,
from both a theoretical and practical standpoint. Their difficulty stems from the following
facts. First, the number of combinatorial objects typically grows extremely fast with a
problem’s size, reaching unimaginable magﬂﬁi@% even for moderate-sized instances.
Second, there are no known algorithms fj)r solving gost such problems exactly in an

acceptable amount of time.
p v

. - Q
5.Fundamental Data Structures @

Since the vast majority of ‘ algorithms @E‘tnterest operate particular ways of
. 0D data,;’
<
organizing data pla)cfcriti,cal rol@in the design and analysis of algorithms. A data structure

can be defined a&s a particular gcheme of organizing related data items.

5.1. Lindar Data Structures

ltem[ol | Jtem 1] e ltemin-111" s are the array and the linked list.

Array of n slements. items of the same data type that are stored
contiguously-in computer memory and made accessible by specifying a value of the array’s
index.

by N

<+

PN

A linked list is a sequence of zero or more elements called nodes, each containing two kinds
of information: som€ data and one or more links called pointers to other nodes of the linked
list. In a singly linrted list, Zthach node except the last one contains a single pointer to the next
element Anf‘}'l-é? extension’is the structure called the doubly linked list, in which every

e
node, except the first agd the last, contains pointers to both its successor and its predecessor.

——» JtemO . » Jtem ot . . . ——p itemn-1|rull

FIGURE 1 4 brrqu Imked I|CT oh elament° items arranged in a certain

linear order. The bas1c operatlons performed on this data structure are searching for,

» —p —b»
—null| ltem0 < ftem 1 < T < | o |ltem n=1|nulll+——

FIGURE 1.5 Doubly linked list of n elements.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

inserting, and deleting an element. Two special types of lists, stacks and queues, are
particularly important.

A stack is a list in which insertions and deletions can be done only at the end. This end is
called the top because a stack is usually visualized not horizontally but vertically—akin to a
stack of plates whose “operations” it mimics very closely.

i

A queue, on the other hand, is a list from \yﬂich ¢lements are deleted from one end of the
structure, called the front (this operation 1:)] called dequgue), and new elements are added to
the other end, called the rear (this operation is c‘@lled enqueue). Consequently, a queue
operates in a “first-in—first-out” (FIFO) fashion—akin to a queue of customers served by a
single teller in a bank. Queues “also have nrany important applica&ons, including several
algorithms for graph problen“s‘.‘-‘

Many important applic?%%eﬂsircquire ¢ ec;oi!ﬂof an item of the highest priority among a
dynamically changin§ set of candfates. A data structure that seeks to satisfy the needs of
such applications f called a pridrity queue. A priority queue is a collection of data items
from a totall$ ordered unwerse (most often, integer or real numbers). The principal
operations4on a priority gueue are finding its largest element, deleting its largest element, and
adding-e=new clement.p

¥
5.2. 1 Graphs

A graph is_informally thought of as a collection of points in the plane called “vertices” or
Eodes,” ome of them connected by line segments called “edges” or “arcs.” A graph G is
called, undirected if every gdge in it is undirected. A graph whose every edge is directed is
Eglled directed. Directed graphs are also called digraphs.

The graph depicted én Figurel(a) has six vertices and seven undirected edges:
V={a,b,c,d,e, f}, E={(a c),(a d),(b,c),(b,f)(ce),(de),(,)}
The digraph depict4d in Figule 1.6b has six vertices and eight directed edges:
»= {1,4;6, d, et} k- {(a, ¢), (b, ¢), (b,), (c, ©), (d, a), (d, e), (e, ¢), (e, [)}.

E——® D——®
!
J : : . are usually represented in one of
@—E—0 (@ —(D
() (b) n boolean matrix with one row

| he element in the i row and the j*
(a) Undirected graph. (b) Digraph.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

column is equal to ¢ if there.is an edge from the i vertex to the j™ vertex, and equal to 0 if

there is no such edge.

. a c d e f
The adjac _ - h vertex
acjac a0 01 100 al> ¢ = d o
that contai blo o1 0 0 1 bl ¢ — f d to it by
an edge)’ c|1 1001 0 Cl—> a - b — e
a1 0 0 0 1 0 d|—= a — e
< elo 011 0 1 e|l> ¢ - d — f
flo 1001 0] fl> b — e
R
(a) (b)

FIGURE 1.7 (a) Adjacency matrix and (b) adjacency lists of the graph 'I(H_F'@Ufe
)

{‘ £ v?
~© N
Weighted Graphs: A weighted graph {m’rs weighted digraph) is a graph (or digraph) with

numbers assigned to its edges. These numbers are called weights or costs.

)

{ -
. a b e d
@—D g[e 5 1 oo 3| s b5l
1| 27 a b |8 s i @ b| —=35-=3¢c7 »d4
i 1 =117 e 2 c| =2a1->h75a?
(cF——u) oir F @& o 1| =sb4->c?
(a) (b) (c)

FIGURE 1.8 (a) Weighted grapk. (k) Its weight matrix. (z) |is ad azency lists.

A graph is said to be connected if for every pair of its vertices u and v there is a path from u
to v. Graphs with several connected components do happen in real-world applications. It is
important to know for many applications whether or not a graph under consideration has
cycles. A cycle is a path of a positive length that starts and ends at the same vertex and does
not traverse the same edge more than once.

5.3. Trees

A tree (more accurately, a free tree) is a connected acyclic graph. A graph that has no cycles
but is not necessarily connected is called a forest: each of its connected components is a tree.
Trees have several important properties other graphs do not have. In particular, the number of
edges in a tree is always one less than the number of its vertices: |E| = |V] - 1

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

™ s T Y L,
@—®) @ ® ") - ,
l S t]}d fact that for every two vertices
P - A A PR ﬂj one of th%vertices to the other.
'\f’«"\\) “ b) texinaf Be tree and consider it as
\\) ‘ ally depicted by placing its root on
(F—9) () (9) % (f 1t b€low it (level 1), the vertices two
4
) P
\\f) 1\1:'/1 Pt
o e e— ;;t{ Cd_) :‘\e\'
e . (&) (g) = 'ﬁ}_q)
] e @ XD
ONENE) O, @ @
(a) (b)

1.11 (a! Free tr-;%e. (b) Its ransformation into a rootsac tree.
A
The depth of g vertex v 15 the length of the simple path from the root to v. The height of a
tree is the length Dfﬁ'&longest simple path from the root to a leaf.

Ordered Trees- An*:exdered tree is a rooted tree in which all the children of each vertex are
ordered. It is co‘flw*nient to dbsume that in a tree’s diagram, all the children are ordered left to
right. Ah’binagy'l'ree can be Qeﬁned as an ordered tree in which every vertex has no more than
two children and each chitfd is designated as either a left child or a right child of its parent; a
biflary tree may also b9 empty.

£ P

A)\9/\, than all the numbers in its left subtree
2) 2. Such trees are called binary search

-

S
OINC >
S o

| I

—y

x_,\c)) /\I\}D

(a) (b)

s

2 (a) Binary tre=. (b) Binary search tree.

Lecture Hotes | ISCS54E - Dewign & Anafysis of Algorithms | AModule B:
Introduction

5.4. Sets and Dictionaries

A set can be described as an unordered collection (possibly empty) of distinct items called
elements of the set. A specific set is defined either by an explicit listing of its elements (e.g.,
S = {2, 3, 5, 7}) or by specifying a property that all the set’s elements and only they must
satisfy (e.g., S = {n: n is a prime number smaller than 10}).

The most important set operations are: checking membership of a given item in a given set;
finding the union of two sets, which comprises all the elements in either or both of them; and
finding the intersection of two sets, which comprises all the common elements in the sets.

N

Sets can be implemented in computer appliqat‘ieons in two ways. The first considers only sets
that are subsets of some large set U, called the universal get. If set U #as n elements, then any
subset S of U can be represented by a bit string of \Lze n, called a bit vector, in which the i"
element is 1 if and only if the i" elemént of U is in¢luded in set S.

o

The second and more common.axay to ”epxesent"a set for computing purposes is to use the list
structure to indicate the set’ s lemmts Thissjs feasible only for finite sets. The requirement

for uniqueness is so es urcum\ ‘g}ly the introduction of a multiset, or bag, an
unordered collection f) 1tem< that=are not necessarily distinct. Note that if a set is represented
by a list, dependi g on the app#cation at hand, it might be worth maintaining the list in a

sorted order. & @

Dictionar){' In computirg, the operations we need to perform for a set or a multiset most
often gic searching f’f,n) a given item, adding a new item, and deleting an item from the
bolledtion. A data structure that implements these three operations is called the dictionary.
An efficient implementation®' of a dictionary has to strike a compromise between the
gfficieng of searclgng and the efficiencies of the other two operations. They range from an
unsoph;irlcated use of array§ (sorted or not) to much more sophisticated techniques such as

pashﬁ’lg and balanced.search trees.

A number of apph{:ations inl computing require a dynamic partition of some n-element set
into a e@llec‘fgof disjoint ’subsets. After being initialized as a collection of n one-element
subsets, the collection, ';-;bjected to a sequence of intermixed union and search operations.
Th‘i’s problem is cal]lgd”he set union problem.

sokoskokok

9

	Contents
	●​Choosing between Exact and Approximate Problem Solving -
	●​Designing an Algorithm
	1.2.​Algorithm Specification
	Recursive algorithms
	1.3.​Analysis Framework
	Measuring an Input’s Size
	Units for Measuring Running lime
	Orders of Growth
	Worst-Case, Best-Case, and Average-Case Efficiencies
	Summary of analysis framework

	2.​Performance Analysis
	2.1​Space complexity
	2.2​Time complexity
	Example-2: matrix addition
	Trade-off

	3.​Asymptotic Notations
	3.1.​Big-Oh notation
	Example: To prove n2 + n = O(n3)
	3.2.​Omega notation
	3.3.​Theta notation
	Strategies for Ω and Θ
	3.6.​Mathematical Analysis of Non-recursive & Recursive Algorithms
	Example-1: To find maximum element in the given array
	Example-2: To check whether all the elements in the given array are distinct
	Example-4: To count the bits in the binary representation
	Analysis of Recursive Algorithms

	 ​Algorithm
	Example-3

	4.​Important Problem Types
	4.1.​Sorting
	4.2.​Searching
	4.3.​String Processing
	4.4.​Graph Problems
	4.5.​Combinatorial Problems

	5.​Fundamental Data Structures
	5.1.​Linear Data Structures
	5.2.​Graphs
	5.3.​Trees
	5.4.​Sets and Dictionaries

