

The Complete Guide to Rails Performance course teaches you how to diagnose and
optimize production Ruby on Rails applications. The course covers performance across
the entire stack - frontend, backend, databases, environment, deployment and more.
The Complete Guide to Rails Performance course is available online. Included in the
course is 70+ lessons and 100+ action items, access to live Q&A, over 70
screencasts, Ebook versions of all material, and an audiobook recording for learning
on the go.

Performance is hard.

Why are some (even most) production Rails applications extremely slow?

They didn't start that way. Your app started as a lean, mean web machine.

When did pages start taking 5 seconds to load? Searches bog down, your caches are bursting
at the seams, and your server is constantly out of memory.

Where did it all go wrong?

Hacker News will tell you it's because Ruby is fatally flawed.
It's a slow language, doomed to failure in a land of Go,
Javascript, Erlang and others. That’s BS.

Look at Shopify, Github and Basecamp - all Rails
applications in the top 1000 in the world, according to Alexa.
How do these Rails applications achieve sub-100 millisecond
response times at massive (dare I say, Web™) Scale?

Is it black magic? Is DHH sacrificing chickens in his
backyard?

The secret is that Rails apps aren't slow by default - they die a slow death by a thousand
papercuts. This course is about each one of those thousand papercuts.

But you don't have a team of 30 or more experienced programmers, like Shopify, Github and
Basecamp do. And let's be real - you're not DHH. Maybe you're a startup CTO with a business
to run - you can't spend hundreds of hours tracking down performance bugs.

Maybe you've got a side project that's suffering under new growth and server load.

Maybe you *are* a bigger dev shop but you're looking for ways to train up your team on the
latest performance techniques.

You just want someone to tell you what the problem areas are and how to fix them.

Almost every Rails application suffers from the same performance problems. This guide
is about identifying and solving those problems.

What it looks like when you solve a problem.

Introducing The Complete Guide to Rails Performance

My name is Nate Berkopec. I'm a Rails developer.

Over the past 4 years, I've seen dozens of different Rails codebases. Many were for well-funded
startups, from Ivy-League incubators like YCombinator or 500Startups. Others were the passion
projects of developers looking to start a side business.

But I've never met a Rails application that couldn't be faster.

Performance isn't easy. Delivering an HTML response to the browser actually involves hundreds
of technologies and levels of the stack.

Any of these levels or stacks can go wrong, causing a slowdown in your application:

●​ The browser: HTML, CSS and
JavaScript, rendering quirks and browser
preloaders.

●​ The network: SSL/TLS, HTTP, HTTP/2,
TCP, WebSockets.

●​ The Ruby stack: Rails, the numerous
gems you use in your application, your
runtime, your memory allocator.

●​ The database: Redis, Memcache, SQL
and NoSQL.

●​ The server: Virtualized environments
have their own concerns. Will Docker
solve all of your problems?

This makes performance optimization something like looking for a needle in a haystack - any
one of a thousand things could be the bottleneck for your application. Where do you even start?

Worse, no full-stack developer that has to write code for a living can keep on top of all of these
developments at once. No one has ever written a guide for optimizing Rails applications that
covers the entire stack.

Wouldn't it be amazing if you could look over the shoulder of an experienced, full-stack Rails
developer and watch as they diagnose and solve the performance problems of one of the most
popular Rails applications in the world?

That's exactly what I've done.

Watch me optimize RubyGems.org, and apply the lessons
back to your own site.

I've created what is basically an enormous checklist for speeding up Rails applications:

●​ Implemented 26 strategies that have been tested by more than 1 million unique users.
●​ Identified the 4 strategies that account for the most performance impact. These

strategies have solved 80% of performance problems in most applications.
●​ Used more than 20 different SaaS providers, performance-oriented Rubygems, backend

service providers and more and found the perfect technical stack to make the entire
performance optimization process simple (even if you're a new developer or someone
with a deep technical background).

These strategies have been tested and proven. But not just on my clients' sites.

While preparing this course, I’ve implemented each of my performance strategies on
Rubygems.org, a top-20,000 website whose API you use every time you install a Ruby
gem.

You'll get to watch, through screencasts and video lessons, exactly how (and more importantly,
why) I did it.

Rubygems.org, one of the most popular Rails applications in the world, serves as your example
and guide to each and every one of the strategies in this guide.

Think of it as an opportunity to pair program with an experienced Rails developer and work on a
high-scale application.

You'll see the before and after, comparing the impact of each strategy through actual production
metrics. It's broken down into simple, step-by-step processes that cover every layer of a Rails
application's stack.

At the end of each lesson is a simple checklist so you can implement what you've learned.
There's no guesswork. Just follow the plan.

What Topics Does This Course Cover?

This course covers:

●​ Profiling and Benchmarking - how to identify what areas are causing bottlenecks.
Don't waste your time by "spraying and praying", optimizing every thing on your site.
Learn how to identify what areas account for 80% of the slowdown.

●​ Frontend - I cover all the performance problems you can encounter in Javascript, HTML
and CSS. In addition, we'll deep dive on HTTP and how the browser works, so that you
can reduce your frontend load times by more than 80%.

●​ Backend - We'll discuss everything in the Ruby and Rails world that can make your
application faster - what gems to use, which to avoid, and how to write Ruby that's zippy
quick. You'll learn about how Rails works while avoiding the common pitfalls that make
Rails apps slow.

●​ Environment - This is truly a full-stack book - we'll discuss asset delivery, DNS, server
hardware and more.

10 More Things You'll Learn in this Course:

1. Will JRuby (or Rubinius or Opal) make your application faster?
2. Which application server (Unicorn, Puma, Passenger, etc.) is best for my application?
3. How can I make sure I'm not over-scaled and running too many servers?
4. How can I debug a slow ActiveRecord query?
5. What special areas do I need to look at as my application scales?
6. Which cache backend should I choose?
7. How can I track down and fix a memory leak?
8. How can I use Turbolinks without breaking Google Analytics or any of my other Javascript?
9. How do I make my Rails application as fast as a Sinatra app?
10. What's the optimal order of elements in the `<head>` tag?

Class Details: Here Is What You Will Get

Here is what your course will include:

●​ The entire Complete Guide to Rails Performance system (4 modules with over 70
lessons and 100+ action items)

●​ Meticulous step-by-step instruction for every strategy you learn
●​ 6 live Q&A Sessions
●​ Access to a private Slack channel with me and your fellow participants.
●​ Over 70 screencasts
●​ An interview series with accomplished Rubyists
●​ Kindle/Epub/Mobi versions for reading on the go
●​ Audiobook versions of all written content

How will you read it? Immediately after purchasing, you’ll be sent a private link where you can
jump in and start the course immediately. You could literally be watching the first workshop 5
minutes from now.

How Much Does it Cost?

The entire Complete Guide to Rails Performance -- all strategies, checklists and screencasts --
are broken into four modules to ensure that you don’t get overwhelmed and can easily and
methodically chip away at your Rails application's performance.

Starter Package
One flat payment of $299

●​ The complete and unabridged Complete Guide to Rails Performance.
●​ Access to the private community of your fellow course participants.
●​ Dozens of hours of video and audio content.

Web-Scale™ Package
One flat payment of $399

●​ The complete and unabridged Complete Guide to Rails Performance.
●​ Access to the private community of your fellow course participants.
●​ Dozens of hours of video and audio content.

Corporate Package
Ask about pricing.

●​ A corporate license for the complete and unabridged Complete Guide to Rails

Performance, providing access for your entire team. No per-seat rigmarole.
●​ Dozens of hours of video and audio content.
●​ Access to the private community of your fellow course participants.
●​ Private Q&A session with me and your team.
●​ 1-Day Performance Workshop where I pair with your team on your application.

If you have any questions about the course, you can email me directly at XXX or call my
personal phone at XXX-XXX-XXXX.

Note: The Complete Guide to Rails Performance is currently being pre-sold for a reduced
priced and will be released in January 2016.

Guarantee

30-day 100% Satisfaction Guarantee. If you do what I show you, and don't get results, I will give
you 100% of your money back. If you're not completely satisfied, I don't want your money.

Frequently Asked Questions

Is there anyone I can reach out during the course if I have questions about my site in
particular?

Yes. All course participants receive access to a private Slack channel where you can discuss
problems and solutions. I'll be sitting in that channel all day. I do not have a day job - making
your site faster is my job.

Will this course continue to be updated? And will I get free access to future versions?

Yes. The software world changes quickly. Any changes to the course are free to you forever -
you will never be asked to upgrade or buy "version two" or buy again when Rails 8 comes out.

How much more is in the course vs. what you already put out on your blog?

About 25% of the material in the course is broadly covered by my blog. However, even for
material that I've covered on the blog already, this course goes much further in depth and
expands on those posts.

Think of my blog as the introduction. This course is the college class.

All videos and screencasts are all-new material.

Do I need to be an advanced Rails programmer to understand this course?

No. This course assumes about 3 months of Rails experience, no more. I hate technical writing
that assumes the reader is some kind of genius and doesn't explain (or even just link to an
explanation) everything that's going on.

In addition, even if you're not *completely* sure you've understood a topic, you can ask me and
your fellow participants on our private Slack channel.

Finally, if you buy the course and decide its over your head, I'll refund your money. No questions
asked.

Can I afford this right now?

Think about it this way - can your business (or the business you work for) afford to be slow? Can
you afford users quitting when they get frustrated with your site's speed?

In 5 years, will you wish your site was slower? No. You'll wish it was faster.

Does this course apply to my small site? I only get 10 requests per minute.

If you (or your customers) are not satisfied with the speed of your Rails application, this course
will work for you. Not 100% will apply, of course, but 90% of it will.

What stack will be covered? What about frontend JS frameworks?

I'm going to focus the course on the typical Rails stack. IMO, that includes a SQL relational
database. NoSQL is too far outside of my comfort area to speak meaningfully about it. If a lot of
people ask me for it, maybe I can bring in an outside expert for that or something. I may include
a specific section on Postgres, because it has several unique features and it's so widely used.
Docker - yes. JS frameworks - not specifically (I won't tell you how to optimize React, for
example), but I will cover the specific needs of an API-only application.

Is this course appropriate for legacy applications?

I've worked on a lot of what I consider "legacy" applications (2+ year codebases). Those are the
ones that tend to be slow, not the greenfield ones, so I'd say this course *focuses* on legacy
applications. My only caveat is I'm not going to talk about optimizing previous major versions of
anything - Rails 3, Ruby 1.9, etc.

	Performance is hard.
	Introducing The Complete Guide to Rails Performance
	Watch me optimize RubyGems.org, and apply the lessons back to your own site.
	What Topics Does This Course Cover?
	10 More Things You'll Learn in this Course:
	Class Details: Here Is What You Will Get
	How Much Does it Cost?
	Starter Package
	Web-Scale™ Package
	Corporate Package
	Guarantee

