

SSTL Circuit Design
(Derek Hines-Mohrman, Bespoke Silicon Group)

Github: https://github.com/bespoke-silicon-group/bsg_ddr3_io

Overview
This guide attempts to walk the reader through the process of designing a bidirectional
SSTL I/O suitable for DDR3 DRAM, and assumes the reader has taken a basic VLSI
course. The simulation infrastructure assumes that spice models that are available that
are compatible with NGSPICE, such as in the open source SKY130 process. This
document is a work in progress, is intended purely as a learning tool, and we make no
warranties about the suitability of this information.

The implemented DDR3 SSTL circuit serves as both the output driver, and on die
termination (ODT) for receiving data on the data line “DQ”. This design does not
implement the differential comparator or level shifter that would ordinarily be used to
resolve incoming signals to a 0 or a 1. (Our test chip uses a standard inverter as the
receiver, but this is not standard practice.) SKY130 uses a nominal voltage of 1.8V,
which is slightly above the target of 1.5V in SSTL, so we use the standard CMOS
transistors in the process at slightly below the nominal voltage. We assume that an
analog I/O (with clamps) is available for the process. The SSTL is a necessary part of a
DDR3 memory controller. It is the driver circuit for the data lines, and also serves as the
termination when the controller is receiving data. Ideally, this cell would go under the IO
pads for the data (DQ) pins for the memory interface.

Each SSTL driver contains 7 pull-up and 7 pull-down "legs". All 14 legs are in parallel.
Each leg can be considered to be a controllable resistor. When enabled, a pullup leg will
connect the DQ pin through a 240 Ω resistor to VDD. So the legs pulls up the DQ pin
with 240 Ω impedance. When disabled, a pullup leg disconnects from the DQ pin (the
leg makes a high impedance connection). Similarly, when enabled, a pulldown leg will
connect the DQ pin through a 240 Ω resistor to VSS. Disabling a pulldown leg
disconnects it from DQ.

This design process was used with the skywater 130 nm open source PDK.

https://github.com/bespoke-silicon-group/bsg_ddr3_io

SSTL block diagram

Detail diagrams of pull-down and pull-up legs

Enabling and disabling legs is how the driver is switched from transmitting to receiving
mode.

When driving DQ, the SSTL has some number of legs enabled on one side (up or
down) and none of the legs enabled on the other side. So when driving DQ high, some
number of pullup legs are enabled, and none of the pulldown legs are enabled. The
specific number of pullup legs enabled controls the output impedance of the signal.
When driving DQ low, the only pulldown legs are enabled.

The DDR3 specification requires driving impedances to be configurable to 40 Ω and
34.29 Ω. The is achieved by the SSTL by enabling either 6 or 7 legs respectively.

When receiving, some number of legs are enabled on both the pullup and pulldown
sides. This means the SSTL is actually driving DQ to the voltage VDD/2. It is expected
the driving circuit on the other end has a much lower impedance so it can effectively
control the voltage of DQ.

The DDR3 specification requires termination impedances to be configurable to 120 Ω,
60 Ω, and 40 Ω. This achieved by SSTL by enabling (1 pullup and 1 pulldown), (2 pullup
and 2 pulldown), and (3 pullup and 3 pulldown) legs respectively.

The additional feature an SSTL must have is the ability to fine tune the resistances of
every leg to keep the resistance close to the required 240 Ω. The DDR3 spec includes a
calibration procedure where the true SSTL drive strength is measured periodically. If it
falls out of range, the leg resistances are adjusted. In this particular SSTL
implementation, there are several calibration FETs in parallel with the main (polysilicon)
resistor in each leg. In the low temperature or high voltage cases (where the leg has
reduced resistance) some calibration FETs are turned off to increase the resistance
back in spec. In the high temperature or low voltage cases, more calibration FETs are
turned on.

Requirements
Requirements are derived from the DDR3 specification: JESD79-3E

Voltages
VSSQ = 0V, VDDQ = 1.5 V

To operate properly, supply voltage VDD must be between 1.475V and 1.575V.

The absolute maximum values of VDD must be between -0.4V and 1.975V (relative to VSS)
(JESD79-3E, pg 109)

Resistance
After calibration, each leg resistance must be with a certain range of the target resistance of
240Ω. The resistance is measured at 3 levels of VDQ: 0.2, 0.5, and 0.8 x VDD (typically 1.5V). The
resistance must fall in range as per the table from the spec:

Note the symmetry between the pull-up and pull-down legs. It can be seen the resistance is
allowed to grow or reduce along with the voltage across the leg. Also note the requirements are
identical for the 34Ω and 40Ω case. This makes sense if we have 7 pull-up and 7 pull-down
legs. These requirements directly translate to each leg with resistance RZQ as labeled in the
table. (JESD79-3E, pg 129, 132-133)

These are the derived resistance requirements for each leg:

Voltage
across leg (V)

Minimum
allowed
Resistance (Ω)

Maximum
allowed
Resistance (Ω)

0.3 144 264

0.75 216 264

1.2 216 336

This requirement should be met AFTER calibration.

Slew Rate
The required slew rate for VDQ is between 2.5 and 5 V/ns for the single ended case. For the
differential case, the required slew rate is between 5 and 10 V/ns. (JESD79-3E, pg 123-125)
(Which makes sense because VDQ# is defined differentially as well, so since both lines are
changing voltage towards each other, the slew will be twice as fast.)

Slew rate is measured as the time it takes to pull up or down VDQ between 0.4*VDDQ and
0.6*VDDQ.

Single ended slew rate definition

This requirement is specifically for the “RZQ/7 setting” which means ALL of the pull up and pull
down legs are being toggled to cause this voltage transition.

The slew rate should be measured with a 25Ω output resistor tied to VDDQ/2.

Slew Measurement Simulation Setup

Capacitance
The input and output capacitance of the device should always be between 1.4pF and 2.1pF to
meet the highest speed variant of DDR3 (DDR3-2133). The most lenient variant requires a
capacitance range of 1.3pF to 3.0pF (DDR3-800) (JESD79-3E, pg 154-155)

Temperature
“Normal” temperature range is 0C to 85C. There is an extended temperature range as well up to
95C. (JESD79-3E, pg 109)

When designing for sky130, we chose to support temperatures up to 125C.​

Calibration
Sources of error in resistance to be calibrated for:

●​ Temperature (-40C to 125C)
●​ Process (capacitance of FET gates, output resistance of FETs.)
●​ VDD (1.5V I/O voltage)

Note that change in VDQ cannot be calibrated for, (this is the voltage we are pulling up/down!)

Design flow
We developed an open-source flow found here to aid in the design and simulation of this circuit.

https://github.com/bespoke-silicon-group/bsg_ddr3_io

For initial design, we used the circuit schematic tool XSCHEM.

Simulations are performed with NGSPICE.

The layout of the circuit was done with MAGIC Layout. This tool was also used for the parasitic
extraction needed for the post-layout spice simulations.

Step 1: Size resistor and main control FET
In Step 1, the goal is to characterize the approximate size of the resistor and main pull up/down
FET needed.

https://github.com/bespoke-silicon-group/bsg_ddr3_io

Simplified Pull Down leg for Step 1

When designing for sky130, a polysilicon resistor for both the pull up and pull down legs.

One tradeoff we need to make is how much of the resistance of the leg should come from the
poly resistor, and how much from the FET? The lower the resistance of the FET, the larger we
need to make it. But the larger the resistance of the FET, the more the resistance will vary as
VDQ changes. This means we will have less margin for error in the resistance, and will need to
calibrate more precisely.

Example: Low res FET (red) vs high res FET (blue) resistance versus VDQ

Step 2: Size resistor for min PVT
The calibration FETs (The ones in parallel with the poly resistor) can only take away from the
resistance and never add to it. Therefore, we must find the worst case (minimum resistance)
PVT corner for the legs, and then size the resistor so it is in valid range.

For the sky130 pdk, it was not obvious which process corner resulted in the lowest resistance.
For completeness, all process corners were simulated.

Below are the example circuits for testing the resistor and FET size:

Resistor sizing circuit for pull-down leg (left) and pull-up leg(right)

Results
After simulation, we choose the pull-down resistor to be 0.33um wide (minimum width) by
1.7um long. We choose the pull-up resistor to be 0.33um wide by 1.8um long. (In part, these
values were chosen based on further simulations, but here we just present the final choice.) To
set up the simulation for this, set the device properties for the resistors and FETs in the
schematic file schem/test_pd_res.sch and schem/test_pu_res.sch .

To measure the max and min resistances at all corners, run the command make
simple-leg-sim. The result of the simulation is shown below:

The ‘low’ resistances refer to the test corner where there is 0.3 V across the leg, the ‘mid’
resistances refer to the 0.75 V case, and the ‘high’ resistances refer to the 1.2 V case. The ‘min’
and ‘max’ for each test case refer to how the resistance varies across PVT corners.

For this first simulation, we care only about whether the ‘min’ resistance requirements are being
met. And looking at the chart, we can see this is the case. The closest it comes to failing is the
pullup ‘Min mid’ case where we only meet the 264 Ω requirement by 2 Ω.

Step 3: Add single calibration FET
Now add one FET in parallel with the poly resistor.

The goal is so when the calibration FET is turned on (same gate voltage as the gate voltage of
the main FET), the leg should satisfy the requirement in the maximum resistance PVT corner.

For this simulation, we need to find the maximum resistance corner case. Again, all process
corners were tested to find the one resulting in the highest resistance.

In the following step, this fet will be split into several smaller FETs for the final leg design.

Single calibration FET sizing circuit for pull-down and pull-up legs

We did not set up a dedicated simulation for this step, instead we used the same simulation to
test this intermediate design, and the final leg design from step 4.

Step 4: Split calibration FET
Split the calibration FET into a number of smaller parallel FETs.

Start with 4 FETs. When they are all on, the leg should satisfy the requirement in the maximum
resistance PVT corner just like in step 3.

The FETs should be sized approximately exponentially (powers of 2 for example) so we have
the most calibration control with the fewest devices. (For example, each calibration FET is half
the size of the next largest one). More than 4 calibration FETs may be needed, or possibly
fewer. We would like to get away with as few as possible. While designing for sky130, I found
that the calibration FETs worked best when each FET is about a third to a quarter the size of the
previous FET.

The largest calibration FET (which should be about half the size of the calibration FET from step
3) is labeled with index 0. Larger index will mean a smaller calibration FET.

Complete pull-down and pull-up designs (4 calibration FETs)

Results
At this point we ran a new simulation testing the resistances of each leg type at all corners,
when all calibration FETs are turned. This is to make sure the resistance will be low enough at
the highest resistance PVT corner.

Also need to test that the 4 calibration FETs provide enough control to meet the resistance
ranges at all PVT corners. This in particular was not tested until the SSTL calibration simulation
was complete. But the final results are presented here:

After simulating we choose these calibration FET sizes:

Device multiple Width (nm) Length (nm)

Pull-down cal 0 32 650 150 (minimum)

Pull-down cal 1 8 650 150

Pull-down cal 2 3 650 150

Pull-down cal 3 1 500 150

Pull-up cal 0 48 1000 350 (minimum)

Pull-up cal 1 24 1000 350

Pull-up cal 2 12 1000 350

Pull-up cal 3 6 1000 350

Multiplicity is the number of transistors in parallel, which is in the schematics, considered to be
one device.

For the pulldown FETs we used the normal voltage NFET, and for the pullup FETs we used the
low voltage PFET. Even though low voltage PFET has a larger minimum length, we determined
it had the best performance for its area. To configure the simulation, set the device properties in
schem/n-leg.sch , and schem/p-leg.sch . Example below:

To measure the max and max resistances at all corners, run the command make leg-sim. The
top level schematic for the simulation can be found at schem/n-leg_tb.sch and
schem/p-leg_tb.sch . The result of the simulation is shown below:

For this first simulation, we care only about whether the ‘max’ resistance requirements are being
met. And looking at the chart, we can see this is the case. The closest it comes to failing is the
pullup ‘Min mid’ case where we only meet the 264 Ω requirement by 2 Ω.

Step 5: Combined SSTL simulations
Next, create the top level SSTL circuit. The control signals (enable/disable) for each leg are
independent. However the calibration control signals are all connected for both leg types. All DQ
signals of every leg are shorted together. The top level schematic file is schem/SSTL.sch . Here
you can edit the control signal driver circuit as well.

Complete SSTL Circuit

There are two separate simulations needed for the circuit. A DC simulation (to test the
resistance requirement) and a transient simulation (to test the slew requirement)

Resistance Simulation (DC)

Slew Simulation (Transient)

In the above schematic, the chain of inverters for the input signal is just to produce a realistic
slew rate. The output load for DQ is to follow the reference load design from the spec:

(JESD79-3E, pg 125.) The capacitor attached to DQ is supposed to estimate the parasitic
capacitances to the pad. Parasitic extraction from the circuit layout will result in a much better
capacitance estimation.

Results
After completing the SSTL schematic, our next simulation simulates the calibration process at
every PVT corner. The calibration process works like a binary search among the calibration FET
settings. At the current setting, the resistances are measured. If the resistance requirements are
met, the calibration is complete and the valid settings are found. If not, the calibration FET
settings are adjusted to increase or decrease resistance. And the simulation is repeated. Since
there are 16 calibration options, a calibration will be found in at most 4 tries.

To test calibration at all corners, run the command make sstl-res-sim. The top level
schematic for this simulation can be found at schem/sstl_res_tb.sch . The result of the
simulation is shown below.

With these settings, a valid calibration can be found at all corners. For details for each individual
simulation, see the files out/results/sstl_<SIM_SET>_resistance.json . Where
<SIM_SET> is one of pd_7, pu_7, pd_6, pu_6. This refers to the pull-up or pull-down settings of
the SSTL, and the 7-leg or 6-leg output resistance.

Step 6: Design control signal drivers
With the slew simulation, you can make slew rate measurements at different PVT corners. Slew
rate can be controlled by sizing the input buffers driving the leg enable/disable signals.

Set the buffer sizes such that the minimum slew rate is met at the slowest slew rate corner.

Results
After running the simulation, this is the final control signal drivers we decided on:

To test calibration at all corners, run the command make sstl-slew-sim. The top level
schematic for this simulation can be found at schem/sstl_slew_tb.sch . The result of the
simulation is shown below.

Since the requirement is that the slew should always be between 2.5 and 5 V/ns for the fastest
DDR3 option, we do not meet that requirement. With the large pull-up FET size, the input
capacitance is so high it is difficult to make that leg turn on/off in time.

Step 7: Layout
Layout the decided circuit in MAGIC. (See MAGIC instructions below) Complete LVS, then
extract a spice model with parasitics (PEX.)

To draw the resistors, use one of the poly-resistor layers. The contacts to other layers are the
same as regular polysilicon.

Results

N-Leg layout:

P-Leg layout:

Complete SSTL layout: (Metal layers 3-5 removed)

Step 8: Post-layout simulation
Using the same testbenches as before, replace the schematic-generated model of the circuit
with the model extracted with parasitics. Run the simulation to see which requirements are still
satisfied. If some are not, iterate back to the previous design steps, or alter layout to reduce
parasitic components.

Results
To repeat the SSTL calibration simulation with the post-layout extracted SPICE model, run the
command make post-layout-sstl-res-sim . The top level schematic for this simulation can
be found at schem/post_layout_sstl_res_tb.sch .The results for our design are shown
below:

With this design, most corners do not have a valid calibration. For details for each individual
simulation, and which corners passed or failed, see the files
out/results/sstl_<SIM_SET>_resistance.json . Where <SIM_SET> is one of pd_7, pu_7,
pd_6, pu_6. This refers to the pull-up or pull-down settings of the SSTL, and the 7-leg or 6-leg
output resistance.

To repeat the SSTL slew simulation with the post-layout extracted SPICE model, run the
command make post-layout-sstl-slew-sim . The top level schematic for this simulation
can be found at schem/post_layout_sstl_slew_tb.sch . The results for our design are
shown below:

As can be seen from these results the minimum slew requirement (2.5 V/ns) could not always
be met. On the slower process corners, the slew is too slow.

One final simulation is the post-layout output capacitance measurement simulation. Run the
command make post-layout-sstl-cap-sim . The top level schematic for this simulation can
be found at schem/post_layout_sstl_cap_tb.sch . The results are shown below:

Of the various DDR3 categories, the least strict is DDR3-800, which has a valid capacitance
range of 1.4-3.0 pF. Even this requirement is not met, as at the slow corners, the capacitance is
too high.

Step 9: Testing
Additionally, we designed a test chip for this circuit, and it was submitted to the Efabless MPW-5
shuttle. (See live Shuttle Status for estimated delivery date.)

We have developed a separate test plan for this chip specified in this doc.

Conclusions
The current PEX extraction model and following SPICE simulations suggest that this circuit is
not compliant with DDR3 at some PVT corners.

Particularly the pull-up FETs have high resistance at some corners and this must be
compensated for by placing many in parallel. This takes up a lot of area. And since the input
capacitance to the main control FET is so high, the drivers for the FET also must have high
area. Likely even input buffers will be needed to improve the slew rate. The large area also
leads to large input capacitance.

One challenge is the low voltage required for DDR3. The operating voltage for this circuit must
be 1.5V to be compliant, but the nominal turn-on voltage for the sky130 FETs is 1.8 V. No lower
voltage FETs are available in this PDK.

Additionally, the poly-resistors are likely too small to support the current they are supposed to.
According to this obscure page, all poly-resistors only have accurate spice models up to 500
μA/μm. In the low resistance and high voltage case, each resistor will take up to (1.575 V)2 / (0.9
* 240 Ω) = 11.5 mA. With a width of 330 nm, that is a current density of 34,000 μA/μm. However
this should be the worst case, and only would occur momentarily at each transition. I have no
idea if this will have a significant impact on the performance or longevity of the circuit.

References:
[1]​ Micron Technical Note 41-02, “DDR3 ZQ Calibration”, 2008.

[2]​ F. Plessas, E. Davrazos, A. Alexandropoulos, M. Birbas and J. Kikidis, “A 1 GHz,
DDR2/3 SSTL driver with On-Die Termination, strength calibration, and slew rate
control”, 2011.

https://github.com/derekcom17/caravel_user_project_ddr3_sstl
https://platform.efabless.com/projects/722
https://platform.efabless.com/projects/722
https://efabless.com/shuttle-status
https://docs.google.com/document/d/10iLDM0b94K7rww_zCMV8WxE8dIj6Qx67KeUhLqMiLy0/edit?usp=sharing
https://skywater-pdk.readthedocs.io/en/main/rules/device-details.html#p-poly-precision-resistors
https://www.micron.com/-/media/client/global/Documents/Products/Technical%20Note/DRAM/TN4102.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0045790611002163
https://www.sciencedirect.com/science/article/abs/pii/S0045790611002163
https://www.sciencedirect.com/science/article/abs/pii/S0045790611002163

[3]​ JEDEC Solid State Technology Association, "DDR3 SDRAM Specification, Release 3E",
JESD79-3E, July 2010.

Appendix: Getting Started with MAGIC
MAGIC is one the layout tools compatible with the sky130 pdk.

MAGIC documentation main website:​
Magic VLSI

Complete MAGIC command list from manual:​
Magic-7.4 Command Reference

Helpful video tutorial (although somewhat old):​
 Magic VLSI Layout Tutorial - part 1

Helpful Shortcuts and Instructions
Shortcut “u” : Short for “undo”.

Shortcut “z”: Zoom in. ”shift-z” to zoom out.

Shortcut “v”: Resets zoom to show the entire loaded cell.

Shortcut “x”: Short for “expand”. Loads the contents of all cells under the rectangle. Subcells are
un-expanded by default. “Shift-x” to un-expand cells under the rectangle.

Shortcut “s”: Short for “select”. Highlights a rectangle of one of the layers under the cursor. If it
didn’t select the layer you wanted, move the cursor and hit “s” repeatedly until you get the one
you want.

Also, if you press “s” repeatedly (without moving the cursor) everything electrically connected to
the selected layer will be highlighted. This is very useful to make sure you made all of the
connections you intended.

Shortcut “a”: Short for “area”. Selects all visible layers under the rectangle. (Also selects
un-expanded sub-cells for some reason.)

Shortcut “i”: Short for “instance” (I think). Selects a subcell instance under the cursor. If it didn’t
select the subcell you want, press “i” repeatedly until you get the one you do.

Shortcut “,” (comma): Unselect whatever is currently selected.

Shortcut “m” : Short for “move”. Move whatever is currently selected to the cursor position. Note,
the selection is moved relative to the lower left corner of the current rectangle.

Shortcut “c” : Short for “copy”. Copy whatever is currently selected to the cursor position. Note,
the selection is copied relative to the lower left corner of the current rectangle.

Shortcut “d” : Short for “delete”. Removes what is currently selected.

https://www.youtube.com/watch?v=D32woicgdRk
http://opencircuitdesign.com/magic/
http://opencircuitdesign.com/magic/commandref/commands.html

Shortcut “>” : Descents (or “pushes”) into the selected sub-cell. So you are now editing the
selected cell.

Shortcut “<” : Ascends (or “pops”) up into the parent cell. So you are now editing the parent of
the previously loaded cell.

Instruction “select area <layer>”: Identical to the “a” shortcut, except only selects rectangles of
the requested layer.

Instruction “select area <less/more> <metal-layer>”: Same as previous instruction, but subtracts
or adds to the current selection. This is helpful to select multiple metal layers under the current
rectangle.

Instruction “label <label-name>”: Create a label of the given name at the current rectangle.
Make sure the label went to the layer you wanted. This can be checked and set with the
“setlabel command”

Instruction “setlabel <option> <value>: Edits the properties of the selected label(s). This
command with no arguments prints a list of the options. This command with no <value> field
prints the current value of the option of the selected label(s).

	SSTL Circuit Design
	Overview
	Requirements
	Voltages
	Resistance
	Slew Rate
	Capacitance
	Temperature

	Calibration
	Design flow
	Step 1: Size resistor and main control FET
	Step 2: Size resistor for min PVT
	Results

	Step 3: Add single calibration FET
	Step 4: Split calibration FET
	Results

	Step 5: Combined SSTL simulations
	Resistance Simulation (DC)
	Slew Simulation (Transient)
	Results

	Step 6: Design control signal drivers
	Results

	Step 7: Layout
	Results

	Step 8: Post-layout simulation
	Results

	Step 9: Testing
	Conclusions
	References:
	Appendix: Getting Started with MAGIC
	Helpful Shortcuts and Instructions

