
C/C++‎

CHECKERS:
In checkers we have to store the location of the pieces, each type of piece, the number of pieces
taken, and whose turn it is for any given state. I made a class Board to store these - a Board has a
boolean for whose turn it is, two integers to store how many pieces have been taken for either
side, and an array of 32 characters to represent the squares of the board.

The checkers board has 64 squares, but we only need 32 because checkers pieces can only ever
be on one color since they all move diagonally. Here is a model of the board with indexes:

The board class has a few helper functions, but
the most important one is move(). This function
takes a move as input and returns the board that
results from that move.

To store moves, you would think that all that
needs to be stored is the index of the piece being
moved, and the index of the spot it is moving to.
However, to represent a move, I had to use the
piece index and a quaternary tree of characters to
store the move that it makes. It’s ridiculous.
Sadly, we have to do it this way because of a
quirk of checkers gameplay: double jumps.

When a piece jumps another, it can perform another jump if the pieces line up. Sometimes, this
results in a branching path of jumps that can be represented in a quaternary tree - the four
children represent jump directions for up-right, up-left, down-right, and down-left. This made
implementing checkers surprisingly hard, and forced me to write a few lines of code that can be
very hard to follow. For example:

std::unordered_map<char, std::unordered_set<QTreeNode<char>*>> movemap;

This data structure contains all of the moves that can be made on a given board. It maps the
indexes of the pieces that can move to the possible moves they can make: each movable index
has a set of moves. If an index can’t move, it is not included in the map. This is used frequently
during the engine to see all of the possible moves from a given board.

 0 1 2 3

4 5 6 7

 8 9 10 11

12 13 14 15

 16 17 18 19

20 21 22 23

 24 25 26 27

28 29 30 31

The Engine:
Surprisingly, making the checkers robot was easier than making the game itself. The checkers
engine uses the minimax algorithm to search to a given depth, and optimizes it using alpha-beta
pruning to increase the efficiency, and allow us to search to a farther depth.

What the bot does first is create a “game tree”: a tree of boards
that result from a certain root position. In the game tree, each
edge represents a move, and each node represents a game board
that results from its parent by the move adjacent to it.

Next, the engine “rates” all of the leaf nodes using a specified
rating function. This rating function is the most important
function in the entire program, as it can determine the behavior and “personality” of the bot. My
rating system rates positions that favor the red side as positive, and positions that favor the black
side as negative. I used a rating system that promotes keeping back rank pawns on their rank,
which makes the bot defensive, but some ratings that I tried made the bot much more offensive.
It was cool to experiment with different rating systems and see how they changed.

After that, the engine will use the minimax algorithm to rate nodes further up the tree. Basically,
the engine will choose whichever move is best for whoever’s turn it would be: the maximum
rating is found for red’s turn, and the minimum rating is found for black’s - hence the name
“minimax”. We let that rating represent the rating for the node above. It does this recursively up
the tree until the top, where it finally chooses the best move for the best rated board.

Depending on the game, a node in the game tree can
have a lot of children depending on how many moves
are available. In checkers, the average number of
moves available in any given position is 8, but the
number will vary. That means that searching down the
game tree by depth+1 will result in ~8 times as many
nodes being processed: an O(8n) operation! That can
get really big really fast, so we have to use alpha-beta
pruning as an optimization to cut the amount of nodes
we need to look at.

← Accurate depiction of how alpha-beta pruning
affects the game tree.

Alpha-Beta Pruning:
When the engine is looking for the maximum or minimum rating of a node, it has to look
through every child to see if one of them has a better rating than the one that its parent currently
has. However, sometimes we can stop looking halfway through if we know that a child will
never choose a move that can “beat” its parents move. Since a parent will choose the maximum
value, and a child will choose the minimum value, if any of a child’s nodes have a rating that is
lower than the parent’s current maximum, then the child’s pick will never be chosen by the
parent. This allows us to cut off huge parts of the game tree, and is the essence of alpha-beta
pruning.

My minimax function recursively traverses each node, so to calculate how many nodes are
pruned, I used a counter variable to count how many times the function is called with and
without the pruning. I sampled the first few moves from the starting position of a game and
averaged the number of calls across all of the samples along a few different depths. Here are my
results:

Depth Calls without α-β Pruning Calls with α-β Pruning % of Calls Pruned

3 493.6 83.4375 83.10%

4 3172.77 555.604 82.49%

5 15661.4 1510.19 90.36%

6 33295.7 2769.16 91.68%

7 170210 9360.71 94.50%

8 984125.2 40964.6 95.84%

9 5150912.5 117422 97.72%

Alpha-beta pruning does a lot
to help out the efficiency of
this program. It saves on
average 90% of calls to the
function, and the number of
calls pruned actually increases
as the depth does! The number
of calls still increases
exponentially, but an
improvement from traversing 5
million nodes to only
traversing 100,000 is very
impressive.

Rating Tournament:
Since the rating function changes the behavior of the engine, an engine with one rating function
must win over an engine with another. So, I created four different rating functions that rate a
board differently from each other and held a “tournament” to see which rating function was the
best. Each rating function will go down to a depth of 9. Note that, for all rating functions, I tested
pitting them against a lower depth, and the higher depth seemed to always win. Here are the
results:

Basic Rates only based on material advantage, rating kings as 5 points and pawns
as 3 points.

Defensive Rates the same as the basic engine, but gives a bonus for keeping pieces on
the back-rank

Central Rates the same as the basic engine but gives a bonus for back-rank pieces
and for keeping pieces in the center.

Weighted Rates the same as a defensive engine, but weighs situations with less pieces
higher. Ex: a 2-1 advantage would be better than a 10-9 advantage, despite
the same material advantage.

After running a round robin tournament where every engine fought every other engine with one
game playing first, and one game playing second, here are the results:

Engine W L T Comments

Basic - 9
#4

1 4 1 Didn’t perform very well, but was very clearly the fastest when
loading at depth = 9.

Defensive - 9
#2

2 1 3 Often caused ties by holding up pieces in the corner. The
opponent would capitalize on this by sacrificing a piece in a lost
position to secure a tie instead of outright losing.

Central - 9
#3

1 3 2 Performed poorly and was very slow. Was able to tie with the
defensive engine both times, though.

Weighted - 9
#1

5 0 1 Consistently won by a significant margin. This is partly because
it would trade pieces to immediately simplify to an endgame.

Generally, the engines are good, but their performance in the later parts of games was very poor.
They would run quickly, but wouldn’t be able to close out a game for a long time, even when
they were at an advantage.

REFERENCES:
https://lazyfoo.net/tutorials/SDL - Basic SDL2 guide

-​ Taught basic SDL over the summer, great tutorial. Helpful for setting up an SDL
environment. No real impact on the checkers engine.

https://www.youtube.com/watch?v=STjW3eH0Cik - MIT Minimax Search Lecture
-​ Basic overview of minimax search.

https://lazyfoo.net/tutorials/SDL
https://www.youtube.com/watch?v=STjW3eH0Cik

