

UNIVERSITY OF LAMPUNG

FACULTY OF TEACHER TRAINING AND EDUCATION

Department of Physics Education

Jl. Prof. Dr. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145

MODULE HANDBOOK

Bachelor in Physics education

General Chemistry
Undergraduate
KIE620106
General Chemistry
The study of (a) realizing that the importance of Chemistry in our
Environment (b) explaining the concept of Stoichiometry (c)
completing various ways of making Laruta (d) explaining the
properties of solutions by calculating the concentration of
substances in solution
Odd
Dr. Chansyanah Diawati, M.Si.
Dr. Marina Setyarini, M.Si.
+62 878-9921-5810
Indonesian
Undergraduate degree program, Mandatory, 1rd semester
Assignment, discussion and ask answer
Contact hours: 14 weeks x 150 minutes
Structured learning: 14 weeks x 180 minutes
Independent study: 14 weeks x 180 minutes
3 (3-0) CP or 4.8 (ECTS)
((14 weeks x 150 minutes) + (14 weeks x 180 minutes) + (14
weeks x 180 minutes) : 60 minutes/hour = 119 hours : 25 hours
of study/ECTS = 4.8 (ECTS)

Requirements according to the Examination regulations	A student must have attended at least 80% of the lectures to sit in the exams.
Learning outcomes (course outcomes) and their corresponding PLOs	 After completing this module, a student is expected to: KNO-1: Demonstrate knowledge of classical physics (mechanics, electrodynamics, thermodynamics, oscillations, waves and optics) and are familiar with the fundamentals of quantum, atomic and molecular, nuclear, elementary particle and solid state physics. KNO-3: Applying Technology, Pedagogy, and Content Knowledge (TPACK) in planning, teaching, and evaluating physics learning. KNO-4: Using research methodology knowledge to solve physics education and learning problems.
Competencies/ Course Learning Outcomes	 Students are able to recall several examples of chemical reaction processes in the surrounding environment Students are able to master the basic H.of chemistry and the concept of stoichiometry Students are able to explain various ways of making solutions Students are able to explain chemical equilibrium Students are able to explain the colligative properties of electrolyte and nonelectrolyte solutions, Students are able to solve redox equations Students are able to explain the concentration of the solution Students are able to explain the process of making solutions, the concept of acid-base Students are able to explain the pH of strong acid-alkaline solutions Students are able to explain the pH of weak acid-weak-alkaline solutions Explains the ph of a solution of strong acid- weak base and vice versa
Contents	 The process of chemical reactions in the surrounding environment H. chemical basis and concepts and stoichiometry Different ways of making solutions Chemical equilibrium

	5. Colligative properties of electrolyte solutions and
	non-electrolyte ethics in society
	6. Solution concentration
	7. The process of making the solution, the concept of acid-base
	8. pH of strong acid-strong alkaline solution
	9. pH of strong acid solution- weak base and vice versa
Study and	Participants are evaluated based on ;
examination	1. Quizzes (10%)
requirements and	2. Assignment (10%)
forms of	3. Final Semester Exam (15%)
examination	4. Midterm exams (15%)
	5. Participation Activities (15%)
	6. Products (35%)
Media employed	LCD, whiteboard, and online resources
Assessments and	Written tests, quizzes, essays and performance appraisals
Evaluation	
Reading list	1. Atkins, P.W., Physical Chemistry, Volume 1, Erlangga.
	2. Chang Raymond, Basic Chemistry, Volume 1, Erlangga,
	2003.
	3. Petrucci, S., Basic Chemistry, Volume 2. Erlangga, 1987.
	4. Syukri S., Basic Chemistry, Volume 2, ITB, 1999.