3.06 Toolbox

Review of Similarity in Right Triangles

Triangle Proportionality Theorem

Converse of the Triangle Proportionality Theorem:	
If a line divides two sides of a triangle	
, then it is parallel to the	

The Triangle Proportionality Theorem Proof

Video: <u>Geo306-video2</u> (Extra Enrichment: <u>Geo306-video2b</u>)

Given: \triangle ABC, DE intersects AB and AC, and DE||BC

Prove: $\frac{AD}{AB} = \frac{AE}{AC}$

Two-column proof:

third side.

Statements	Reasons
ΔABC is intersected by line DE	
DE BC	Given
≾ABC ≅ ≾	Corresponding Angles Postulate
≾A ≅ ≾A	
ΔABC ~ ΔADE	Similarity Postulate
AD / AB = AE / AC	Definition of Similar Triangles

The Converse of the Triangle Proportionality Theorem Proof

Video: Geo306-video3

In \triangle ABC shown, BD / BA equals BE / BC:

Prove: DE||AC

Flow-chart Proof:

Blanks:

- **.**.....
- 2. _____
- 3. _____

Pythagorean Theorem

Video: Geo306-video5

What it says:

If a right triangle has sides a and b and hypotenuse c then _____.

Converse of the Pythagorean Theorem:

In a triangle with sides a, b, and c, if $a^2 + b^2 = c^2$, then the triangle is a ______ triangle.

The Pythagorean Theorem, using Similar Triangles Proof

Video: Geo306-video6

Given: \triangle ABC is a right triangle.

Prove: $a^{2} + b^{2} = c^{2}$

Flow-Chart Proof:

Blanks:

1._____

2. _____

3. _____

4. _____

5. _____

0._____

The Converse of the Pythagorean Theorem Proof

Video: Geo306-video7

Given: \triangle ABC, where $a^2 + b^2 = c^2$

Prove: ∠ACB is a right angle

Two-column proof: Statements Reasons

The length of BC is a, the length of AC is b, and the length of AB is c	
Construct right triangle SIT where legs ST and TI are congruent to legs AC and CB of triangle ABC, respectively.	By construction
TI ≅ CB ST ≅ AC	by

ST ≅ AC	by
ST has length i, TI has length s, and IS has length t	By Labeling
$t^2 = s^2 + i^2$	Theorem
$t^2 = a^2 + b^2$	Substitution Property of Equality
	Given

=_	Square Root Property of Equality
ΔABC ≅ ΔSIT	Side-Side-Side (SSS) Postulate
∠ACB is a right angle	

Substitution Property of Equality

Proving Similarity

 $t^2 = c^2$

Video: Geo306-video8		
Given: \overline{AB} intersects \overline{DC} at point E and AD CB	D	
Prove: ΔAED ~ ΔBEC	A G	
Two-column proof:		
Statements	Reasons	
\overline{AB} intersects \overline{DC} at point E	Given	
AD CB	Given	
≼AED ≅ ≼BEC	Theorem	
≼DAE ≅ ≼CBE	Angles Theorem	

Practice

 \triangle AED ~ \triangle BEC

Similarity Postulate

Part 2: If RS = 2 and RQ = 18, find the length of segment RP.