
Aim
Upload packages to an OCI registry (ghcr.io) alongside anaconda.org

Updates

 Aug 4, 2023
●​ Jaime, Hind and Vini met with Matt today and discussed possible ways to implement

staging and publication in the OCI mirror. We had met the week earlier with Wolf too for
the same purpose (see this comment).

●​ It looks like we can use a two-organization setup to control staging:
○​ Channel-mirrors: production channel. The one conda clients use.
○​ Channel-mirrors-staging: only for validation and quality control. Not meant for

public consumption.
○​ Feedstocks will have a token that allows the upload packages to staging. A

successful upload will also call conda-forge-webservices to request validation of
that package.

■​ If successful, webservices will add the package artifact to a “promotion
queue”. This queue can be a file in admin-requests. We need to check
that this does not suffer from concurrency issues (even with the turnstyle
step?).

■​ If failed, the artifact will be removed from the staging channel.
○​ We need to ensure that the OCI API can return the hash of the conda artifact in

an easy way.
●​ Assuming repodata.json is accurate (either because it was mirrored from anaconda.org

or because we regenerated it), the conda client plugin will be responsible for processing
the co-located package URLs into valid OCI API calls to obtain the artifact.

Some documentation
-​ https://conda-forge.org/docs/_downloads/f55f7fa98f0dc3f3d3684e98163614e0/czi-eoss-

5-loi-infra.pdf
-​ https://conda-forge.org/docs/_downloads/5277103c6f3c8a986da5eccbc5aaf585/czi-eoss

-5-full-infra.pdf
(cf. last page diagram in particular)

https://github.com/conda-forge/conda-forge-ci-setup-feedstock/pull/208#issuecomment-1651398761
https://conda-forge.org/docs/_downloads/f55f7fa98f0dc3f3d3684e98163614e0/czi-eoss-5-loi-infra.pdf
https://conda-forge.org/docs/_downloads/f55f7fa98f0dc3f3d3684e98163614e0/czi-eoss-5-loi-infra.pdf
https://conda-forge.org/docs/_downloads/5277103c6f3c8a986da5eccbc5aaf585/czi-eoss-5-full-infra.pdf
https://conda-forge.org/docs/_downloads/5277103c6f3c8a986da5eccbc5aaf585/czi-eoss-5-full-infra.pdf

Status
-​ The upload would be performed a priori using conda-oci-mirror implemented by Wolf

(https://github.com/channel-mirrors/conda-oci-mirror), which provides additional layers
(index.json and info.tar.gz) compared to Oras (https://oras.land/) (only
package.tar.bz2 / .conda)

-​ The conda-oci-mirror package is working properly so far (with some items that need to
be done cf. https://github.com/channel-mirrors/conda-oci-mirror/blob/main/TODO.md)

-​ First ‘upload’ implementation attempt:
-​ Install conda-oci-mirror (using pip directly from the github repository) within

conda-smithy (https://github.com/conda-forge/conda-smithy/pull/1683 - PR
outdated after the last changes on conda-oci-mirror) and do the upload within
conda-forge-ci-setup-feedstock
(https://github.com/conda-forge/conda-forge-ci-setup-feedstock/pull/208)

Matthew R. Becker from conda-forge suggests to do this either on the heroku server or
using a dispatch to github actions (cf. comments in
https://github.com/conda-forge/conda-forge-ci-setup-feedstock/pull/208)
We would need a staging area and a secured copy to the actual OCI registry after
verification (if we proceed similarly to what has been done with anaconda I guess that
would be ghcr.io/cf-staging and ghcr.io/conda-forge) (cf. last page diagram of
document)

TODO
-​ Open a PR for conda-oci-mirror recipe
-​ Discuss with Wolf and Matthew (and maybe others?) how and where the upload would

be done
-​ Jaime: The main concern right now is how to do staging in a safe way.

-​ I read the OCI spec and apparently it supports the notion of “mounting
blobs” from other registries. This means it could mimic the cf-staging to
conda-forge setup in Anaconda.org. The Github Packages API doesn’t
seem to support mounting though. There are also some issues online
about it, and still open.

-​ Permission-wise, GH distinguishes between read, write and delete, which
means that a properly scoped token used by feedstocks could maybe just
write too many things, but in no way delete existing blobs. Note these
tokens are NOT fine-grained:​

-​ There’s also a 30-day restore window if necessary. Deleted packages are

available in the Settings UI.

https://github.com/channel-mirrors/conda_oci_mirror
https://oras.land/
https://github.com/channel-mirrors/conda-oci-mirror/blob/main/TODO.md
https://github.com/conda-forge/conda-smithy/pull/1683
https://github.com/conda-forge/conda-forge-ci-setup-feedstock/pull/208
https://github.com/conda-forge/conda-forge-ci-setup-feedstock/pull/208
https://github.com/opencontainers/distribution-spec/blob/main/spec.md#mounting-a-blob-from-another-repository
https://github.com/opencontainers/distribution-spec/blob/main/spec.md#mounting-a-blob-from-another-repository
https://docs.github.com/en/rest/packages?apiVersion=2022-11-28
https://github.com/orgs/community/discussions/8577
https://docs.github.com/en/rest/packages?apiVersion=2022-11-28#about-github-packages
https://docs.github.com/en/rest/packages?apiVersion=2022-11-28#restore-a-package-for-an-organization
https://github.com/organizations/channel-mirrors/settings/packages

-​ We also need to consider the index / repodata.json generation as a way
of publishing a package or not, but this offers a few challenges:

-​ Conda-index assumes the artifacts are locally available
-​ In the OCI mirror, the artifacts are remote, but the metadata is

individually queriable. With some CI caching it could be done
-​ See how homebrew does this with 15-min scheduled jobs; even

the API is pre-generated JSON deployed to GH Pages in an
environment. Their biggest payload is 20MB pure JSON though.
These point to sha256 headers in GHCR.io

-​ Even if “publishing to repodata” is the staging operation, we still
need a way to signal if a package is publishable or not. Can a
custom label (annotations? tags?) be attached to an artifact to
mark it as valid or not, AFTER uploading? If that’s possible, only
marked artifacts are part of the repodata.json, and unmarked
artifacts (because they didn’t pass validation) will be deleted after
X hours. Accidental deletions are still restorable within 30 days.

-​ Handle/generate appropriate tokens according to the picked solution/implementation

https://github.com/Homebrew/formulae.brew.sh
https://github.com/opencontainers/image-spec/blob/main/annotations.md#pre-defined-annotation-keys

	Aim
	Updates
	Aug 4, 2023

	Some documentation
	Status
	TODO

