
Version 5 – August 24, 2011

JSON Message Adapter
Overview

Enterprise-level integration requires one system to talk to another over networks with portable formats.
The JSON Message Adapter will produce and consume JSON formatted messages.

NexJ Express Integration

The following diagrams show the relationship and significance of channels, message formats, interfaces and
services.
When the channel receives a message, the JSON will be parsed into a canonical NexJ message, known as a
TransferObject . A service may process the canonical message, possibly transforming it to another message
definition. If so configured, the message may be sent back through the interface as a response to the same
channel and same connection.

{
​ "firstName":"Al",
​ "lastName":"Bundy",
​ "Address":
​ {
​ ​ "street":"4104 Main St",
​ ​ "city":"Gotham"
​ }
}

Version 5 – August 24, 2011

Design Philosophy

1. JSON format should be clean with the preference that no meta-information is included. (For example,

where there are no circular references, meta-information for circular references should be omitted)

2. Should support circular references for TransferObject’s. (refer to nexj.core.rpc.json)

3. Should make use of existing JSON classes

4. To achieve better performance, anything that can be pre-computed, should be pre-computed and stored

in the message part mapping

5. Should support message inheritance for basic message reuse

6. If possible, should support polymorphic messages

Technical

The following are the minimum number of classes to be created.

JSONMessageFormatter Formatter for JSON messages. Responsible for taking a TransferObject
containing the data and writing it to JSON format to the Output, as
configured by the Message

JSONMessageParser

Parser for JSON messages. Responsible for taking a JSON stream and
converting it into NexJ format (Transfer objects)

JSONMessagePartMapping Used to configure JSON-specific characteristics of the message
mapping.

For example, may allow a node defined in the .message file to have a
name such as “firstName”, but the attribute in the JSON data may be
named “fname”.

XMLJSONMessageMappingLoader Responsible for creating mappings for JSON message parts.

Version 5 – August 24, 2011

JSON Integration Encoding Rules

Message as Object (Default)

{
 "value1" : val,
 "message1" : {},
 "value2" : [val1,...],
 "message2" : {}
}

Message as Array

[
 "...",
 { } ,
 [val1,...],
 [{ },...]
]

Message as “Typed” Array

The encodings mentioned above are limited because they cannot be use to produce “Typed Arrays” i.e.
array of same Object or array of same Primitive.

To solve this we propose a “Typed Array” option, which will only be available for messages with one node
under the root.

 Root as Object

Root as Typed Array

[
 {"person": [{}]}
]

[
 {},{},..
]

[
 {"names":
["",...]}
]

[
 "","",...
]

Implementation details
●​ Does not support channels with multiple messages.
●​ For message parts of type “ANY”,

○​ timestamp has limited supported because JSON has no way of differentiating between a
number and a timestamp .

○​ binary has limited supported because JSON has no way of differentiating between a regular
string and a base 64 encodes string.

●​ Throws integration exception if required part is null.

Tentative Schedule

May 20th​ Proposal submitted to NexJ for review

Version 5 – August 24, 2011

June ​ ​ Writing Code

Late July​ First code review/code submission

	Overview
	
	Design Philosophy
	Technical
	JSON Integration Encoding Rules
	Implementation details
	Tentative Schedule

