

OCW

of
Soft

Computing
Paper Code:

CS 702A

Paper Name: Soft Computing
Code: CS 702A
Contacts: 3L
Credits: 3
Allotted hours: 38L
Prerequisite:

1.​ A solid background in mathematical and programming Knowledge

Course Objective(s)

●​ To learn the basics of Soft Computing usage.
●​ To learn the basics of many optimization algorithm
●​ To learn to solve and optimize the real world problem using soft computing methodology.

Course Outcomes

●​ CS702A.1 To acquire the knowledge of soft computing and hard computing
●​ CS702A.2 To develop skill in soft computing methodology
●​ CS702A.3 To understand the concept and techniques of designing and implementing of soft

computing methods in real world problem
●​ CS702A.4 To acquire the knowledge of the fuzzy Neural network and Genetic Language
●​ CS702A.5 To analyze and optimized the problem of real-life applications

Soft Computing: Module-I​ ​ ​ ​ ​ ​ ​ ​ [7L]

1. An Overview of Artificial Intelligence
2.Soft Computing: Introduction of soft computing, soft computing vs. hard computing, various types of soft
computing techniques, applications of soft computing.
3. Artificial Intelligence : Introduction, Various types of production systems, characteristics of production
systems, breadth first search, depth first search techniques, other Search Techniques like hill Climbing, Best
first Search, A* algorithm, AO* Algorithms and various types of control
Soft Computing: Module-II​ ​ ​ ​ ​ ​ ​ [10L]
1. Introduction to derivative free optimization, GA; biological background, search space of genetic
algorithm, genetic algorithm Vs. Traditional algorithm; Simple genetic algorithm, Genetic algorithm
Operators: Encoding, selection criteria, Crossover, Mutation, advantages and disadvantages of genetic
algorithm, Convergence of GA, Applications & advances in GA, Differences & similarities between GA &
other traditional method.
Soft Computing: Module-III​ ​ ​ ​ ​ ​ ​ [12L]
1. Neural Network : Biological neuron, artificial neuron, definition of ANN, Taxonomy of neural net,
Difference between ANN and human brain, Structure and Function of a single neuron, characteristics and
applications of ANN, single layer network, Perceptron training algorithm, Linear separability, Widrow &
Hebb;s learning rule/Delta rule, ADALINE, MADALINE, AI v/s ANN.
2. Introduction of MLP, different activation functions, Error back propagation algorithm, derivation of
EBPA, momentum, heuristic, limitation, characteristics and application of EBPA.
3.Adaptive Resonance Theory: Architecture, classifications, Implementation and training, Associative
Memory.
Soft Computing: Module-IV​ ​ ​ ​ ​ ​ ​ [11L]
1. Fuzzy Logic: Fuzzy set theory, Fuzzy set versus crisp set, Crisp relation & fuzzy relations, Fuzzy
systems: crisp logic, fuzzy logic, introduction & features of membership functions,
2. Fuzzy rule base system: fuzzy propositions, formation, decomposition & aggregation of fuzzy rules,
fuzzy reasoning, fuzzy inference systems, fuzzy decision making & Applications of fuzzy logic.
Text Books:
1. Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons.

2.Neural Networks: A Comprehensive Foundation (2nd Edition), Simon Haykin, Prentice Hall.
Reference Books:
1. K.H.Lee. First Course on Fuzzy Theory and Applications, Springer-Verlag.
2. J. Yen and R. Langari.. Fuzzy Logic, Intelligence, Control and Information, Pearson Education.

CO-PO Mapping

CO PO1

P
O
2

P
O
P
3

P
O
4

P
O
5

P
O
6

CS702A.1 2

CS702A.2 2

CS702A.3 1 3

CS702A.4 2

CS702A.5 1 3

Soft
Computing:

Module-I

An Overview of Artificial Intelligence

Since the invention of computers or machines, their capability to perform various tasks went on growing
exponentially. Humans have developed the power of computer systems in terms of their diverse working
domains, their increasing speed, and reducing size with respect to time.
A branch of Computer Science named Artificial Intelligence pursues creating the computers or machines
as intelligent as human beings.

What is Artificial Intelligence?

According to the father of Artificial Intelligence, John McCarthy, it is “The science and engineering of
making intelligent machines, especially intelligent computer programs”.
Artificial Intelligence is a way of making a computer, a computer-controlled robot, or a software think
intelligently, in the similar manner the intelligent humans think.
AI is accomplished by studying how human brain thinks, and how humans learn, decide, and work while
trying to solve a problem, and then using the outcomes of this study as a basis of developing intelligent
software and systems.
Philosophy of AI
While exploiting the power of the computer systems, the curiosity of human, lead him to wonder, “Can a
machine think and behave like humans do?”

Thus, the development of AI started with the intention of creating similar intelligence in machines that we
find and regard high in humans.
Goals of AI

●​ To Create Expert Systems − The systems which exhibit intelligent behavior, learn, demonstrate,
explain, and advice its users.

●​ To Implement Human Intelligence in Machines − Creating systems that understand, think,
learn, and behave like humans.

What Contributes to AI?
Artificial intelligence is a science and technology based on disciplines such as Computer Science, Biology,
Psychology, Linguistics, Mathematics, and Engineering. A major thrust of AI is in the development of
computer functions associated with human intelligence, such as reasoning, learning, and problem solving.
Out of the following areas, one or multiple areas can contribute to build an intelligent system.

Programming Without and With AI

The programming without and with AI is different in following ways −

Programming Without AI Programming With AI

A computer program without AI can
answer the specific questions it is
meant to solve.

A computer program with AI can answer the generic questions it is
meant to solve.

Modification in the program leads to
change in its structure.

AI programs can absorb new modifications by putting highly
independent pieces of information together. Hence you can modify
even a minute piece of information of program without affecting its
structure.

Modification is not quick and easy. It
may lead to affecting the program
adversely.

Quick and Easy program modification.

What is AI Technique?

In the real world, the knowledge has some unwelcomed properties −

●​ Its volume is huge, next to unimaginable.
●​ It is not well-organized or well-formatted.
●​ It keeps changing constantly.

AI Technique is a manner to organize and use the knowledge efficiently in such a way that −
●​ It should be perceivable by the people who provide it.
●​ It should be easily modifiable to correct errors.
●​ It should be useful in many situations though it is incomplete or inaccurate.

AI techniques elevate the speed of execution of the complex program it is equipped with.

Applications of AI

AI has been dominant in various fields such as −
●​ Gaming − AI plays crucial role in strategic games such as chess, poker, tic-tac-toe, etc., where

machine can think of large number of possible positions based on heuristic knowledge.
●​ Natural Language Processing − It is possible to interact with the computer that understands

natural language spoken by humans.
●​ Expert Systems − There are some applications which integrate machine, software, and special

information to impart reasoning and advising. They provide explanation and advice to the users.
●​ Vision Systems − These systems understand, interpret, and comprehend visual input on the

computer. For example,
o​ A spying aeroplane takes photographs, which are used to figure out spatial information

or map of the areas.
o​ Doctors use clinical expert system to diagnose the patient.
o​ Police use computer software that can recognize the face of criminal with the stored

portrait made by forensic artist.
●​ Speech Recognition − Some intelligent systems are capable of hearing and comprehending the

language in terms of sentences and their meanings while a human talks to it. It can handle
different accents, slang words, noise in the background, change in human’s noise due to cold, etc.

●​ Handwriting Recognition − The handwriting recognition software reads the text written on
paper by a pen or on screen by a stylus. It can recognize the shapes of the letters and convert it
into editable text.

●​ Intelligent Robots − Robots are able to perform the tasks given by a human. They have sensors
to detect physical data from the real world such as light, heat, temperature, movement, sound,
bump, and pressure. They have efficient processors, multiple sensors and huge memory, to
exhibit intelligence. In addition, they are capable of learning from their mistakes and they can
adapt to the new environment.

History of AI
Here is the history of AI during 20th century −

Year Milestone / Innovation

1923 Karel Čapek play named “Rossum's Universal Robots” (RUR) opens in London, first use of the
word "robot" in English.

1943 Foundations for neural networks laid.

1945 Isaac Asimov, a Columbia University alumni, coined the term Robotics.

1950
Alan Turing introduced Turing Test for evaluation of intelligence and published Computing
Machinery and Intelligence. Claude Shannon published Detailed Analysis of Chess Playing as a
search.

1956 John McCarthy coined the term Artificial Intelligence. Demonstration of the first running AI
program at Carnegie Mellon University.

1958 John McCarthy invents LISP programming language for AI.

1964 Danny Bobrow's dissertation at MIT showed that computers can understand natural language well
enough to solve algebra word problems correctly.

1965 Joseph Weizenbaum at MIT built ELIZA, an interactive problem that carries on a dialogue in
English.

1969 Scientists at Stanford Research Institute Developed Shakey, a robot, equipped with locomotion,
perception, and problem solving.

1973 The Assembly Robotics group at Edinburgh University built Freddy, the Famous Scottish Robot,
capable of using vision to locate and assemble models.

1979 The first computer-controlled autonomous vehicle, Stanford Cart, was built.

1985 Harold Cohen created and demonstrated the drawing program, Aaron.

1990

Major advances in all areas of AI −
●​ Significant demonstrations in machine learning
●​ Case-based reasoning
●​ Multi-agent planning
●​ Scheduling
●​ Data mining, Web Crawler
●​ natural language understanding and translation
●​ Vision, Virtual Reality
●​ Games

1997 The Deep Blue Chess Program beats the then world chess champion, Garry Kasparov.

2000 Interactive robot pets become commercially available. MIT displays Kismet, a robot with a face that
expresses emotions. The robot Nomad explores remote regions of Antarctica and locates meteorite

.Soft Computing: Introduction of soft computing,

In computer science, soft computing (sometimes referred to as computational intelligence, though CI does
not have an agreed definition) is the use of inexact solutions to computationally hard tasks such as the
solution of NP-complete problems, for which there is no known algorithm that can compute an exact
solution in polynomial time. Soft computing differs from conventional (hard) computing in that, unlike
hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect the role
model for soft computing is the human mind.

The principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Evolutionary Computation (EC),
Machine Learning (ML) and Probabilistic Reasoning (PR), with the latter subsuming belief networks and
parts of learning theory. Soft Computing became a formal area of study in Computer Science in the early
1990s.Earlier computational approaches could model and precisely analyze only relatively simple systems.
More complex systems arising in biology, medicine, the humanities, management sciences, and similar
fields often remained intractable to conventional mathematical and analytical methods. However, it should
be pointed out that complexity of systems is relative and that many conventional mathematical models have
been very productive in spite of their complexity.

Soft computing deals with imprecision, uncertainty, partial truth, and approximation to achieve
computability, robustness and low solution cost. As such it forms the basis of a considerable amount of
machine learning techniques. Recent trends tend to involve evolutionary and swarm intelligence based
algorithms and bio-inspired computation.

Unlike hard computing schemes, which strive for exactness and full truth, soft computing techniques
exploit the given tolerance of imprecision, partial truth, and uncertainty for a particular problem. Another
common contrast comes from the observation that inductive reasoning plays a larger role in soft computing
than in hard computing.

Soft computing vs. hard computing,

Definition of Hard computing
Hard computing is the traditional approach used in computing which needs an accurately stated analytical
model. It was also proposed by Dr Lotfi Zadeh before soft computing. Hard computing approach produces
a guaranteed, deterministic, accurate result and defines definite control actions using a mathematical model
or algorithm. It deals with binary and crisp logic which require the exact input data sequentially. However,
hard computing is not capable of solving the real world problems whose behaviour is extremely imprecise
and where the information changes consistently.

Let’s take an example if we need to find whether it will rain today or not? The answer could be yes or no,
which means in two possible deterministic way we can answer the question or in other words, the answer
contains a crisp or binary solution.

Key Differences Between Soft computing and Hard computing
The soft computing model is imprecision tolerant, partial truth, approximation. On the other hand, hard
computing does not work on the above-given principles; it is very accurate and certain.
Soft computing employs fuzzy logic and probabilistic reasoning while hard computing is based on binary
or crisp systems.
Hard computing has features such as precision and categoricity. As against, approximation and
dispositionality are the characteristics of soft computing.
Soft computing approach is probabilistic in nature whereas hard computing is deterministic.
Soft computing can be easily operated on the noisy and ambiguous data. In contrast, hard computing can
work only on exact input data.
Parallel computations can be performed in soft computing. On the contrary, in hard computing sequential
computation is performed on the data.
Soft computing can produce approximate results while hard computing generates precise results.

BASIS FOR
COMPARISON SOFT COMPUTING HARD COMPUTING

Basic Tolerant to imprecision, uncertainty, partial truth
and approximation.

Uses precisely stated
analytical model.

Based on Fuzzy logic and probabilistic reasoning Binary logic and crisp system

Features Approximation and dispositionality Precision and categoricity

Nature Stochastic Deterministic

Works on Ambiguous and noisy data Exact input data

Computation Can perform parallel computations Sequential

Result Approximate Produces precise outcome.

Various types of soft computing techniques

Components
Components of soft computing include:

Machine learning, including:
Neural networks (NN)
Perceptron
Support Vector Machines (SVM)
Fuzzy logic (FL)
Evolutionary computation (EC), including:
Evolutionary algorithms
Genetic algorithms
Differential evolution
Metaheuristic and Swarm Intelligence
Ant colony optimization
Particle swarm optimization
Ideas about probability including:
Bayesian network
Generally speaking, soft computing techniques resemble biological processes more closely than traditional
techniques, which are largely based on formal logical systems, such as sentential logic and predicate logic,
or rely heavily on computer-aided numerical analysis (as in finite element analysis). Soft computing
techniques are intended to complement each other.

Applications of soft computing

.

Computational techniques in computer science and some engineering disciplines, which attempt to study,
model, and analyze very complex phenomena: those for which more conventional methods have not
yielded low cost, analytic, and complete solutions. Earlier computational approaches could model and
precisely analyze only relatively simple systems. More complex systems arising in biology, medicine, the
humanities, management sciences, artificial intelligence, machine learning, and similar fields often
remained intractable to conventional mathematical and analytical methods. Soft computing techniques
include: fuzzy systems (FS), neural networks (NN), evolutionary computation (EC), probabilistic reasoning
(PR), and other ideas (chaos theory, etc.). Soft computing techniques often complement each other. Learn
more in: Introduction and Trends to Fuzzy Logic and Fuzzy Databases
2.
Soft Computing refers to a partnership of computational techniques in computer science, artificial
intelligence, machine learning and some engineering disciplines, which attempt to study, model, and
analyze complex phenomena. The principle partners at this juncture are fuzzy logic, neuron-computing,
probabilistic reasoning, and genetic algorithms. Thus the principle of soft computing is to exploit the
tolerance for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low cost solution,
and better rapport with reality. Learn more in: Adaptive Neuro-Fuzzy Systems
3.
This is a term applied for defining approaches when the problem is not clear and its solution is
unpredictable. Learn more in: Watermarking Using Intelligent Methods: Survey
4.
Collection of computational techniques in computer science, especially in artificial intelligence, such as
fuzzy logic, neural networks, chaos theory, and evolutionary algorithms Learn more in: Harmony Search
for Multiple Dam Scheduling
5.
In contrast to hard computing, soft computing is a collection of methods (fuzzy sets, rough sets, neutral
nets, etc.) for dealing with ambiguous situations like imprecision and uncertainty, for example, human
expressions like “high profit at reasonable risks”. The objective of applying soft computing is to obtain
robust solutions at reasonable costs. Learn more in: Uncertainty and Vagueness Concepts in Decision
Making
6.

In contrast to “hard computing” soft computing is collection of methods (fuzzy sets, rough sets neutral nets
etc.) for dealing with ambiguous situations like imprecision, uncertainty, e.g. human expressions like “high
profit at reasonable risks”. The objective of applying soft computing is to obtain robust solutions at
reasonable costs. Learn more in: Granular Computing
7.
An older term for Computational Intelligence (see above). Learn more in: Intelligent Information Systems
8.
Collection of new computational techniques in computer science, artificial intelligence, machine learning,
and many applied and engineering areas whose role model is the human mind and his guiding principle is
exploit the tolerance for imprecision, uncertainty, partial truth, and approximation to achieve tractability,
robustness, and low solution cost (Li, 1998; Verdegay, 2005; Zadeh, 1994)Learn more in: A Fuzzy
Multi-Agent System for Combinatorial Optimization
9.
Soft computing encompasses a set of computational techniques and algorithms that are used to deal with
complex systems. Soft computing exploits the given tolerance for imprecision, partial truth, and uncertainty
for a particular problem. Learn more in: Soft Methods for Automatic Drug Infusion in Medical Care
Environment
10.
Soft computing encompasses a set of computational techniques and algorithms that are used to deal with
complex systems. Soft computing exploits the given tolerance for imprecision, partial truth, and uncertainty
for a particular problem. Learn more in: Soft Methods for Automatic Drug Infusion in Medical Care
Environment
11.
Is a field of computer science which is characterized by the use of inexact solutions to computationally hard
tasks such as the NP-complete problems. Learn more in: Distributed Learning Algorithm Applications to
the Scheduling of Wireless Sensor Networks
12.
Problem solving strategies that tolerate imprecision/uncertainty/approximation in the data, and also can
handle partial information/non-exact solutions for optimization problems. Learn more in: Using
Metaheuristics as Soft Computing Techniques for Efficient Optimization
13.
A set of artificial intelligence techniques provides efficient and feasible solutions in comparison with
conventional computing. These techniques are also known as computational intelligence. They are basically
integrated techniques to find solutions for the problems which are highly complex, ill- defined and difficult
to model. Real world problems deal with imprecision and uncertainty can be easily handled using such
techniques. Soft computing provides set of techniques which are hybridized and finally useful for designing
intelligent systems. Learn more in: An Intelligent Process Development Using Fusion of Genetic Algorithm
with Fuzzy Logic

14.
It is a term applied to a field within computer science which is characterized by the use of inexact solutions
to computationally hard tasks such as the solution of NP-complete problems, for which there is no known
algorithm that can compute an exact solution in polynomial time. Learn more in: Application of Soft
Computing Techniques for Renewable Energy Network Design and Optimization
15.
It is the hybrid combination of algorithms that were designed to model and enable solutions to real world
problems without using complex mathematical solutions. Learn more in: Churn Management of E-Banking
Customers by Fuzzy AHP
16.
A partnership of techniques which in combination are tolerant of imprecision, uncertainty, partial truth, and
approximation, and whose role model is the human mind. Its principal constituents are Fuzzy Logic (FL),
Neural Computing (NC), Evolutionary Computation (EC) Machine Learning (ML) and Probabilistic
Reasoning (PR) Learn more in: A Hybrid System for Automatic Infant Cry Recognition II
17.

A term applied to a field within computer science which is characterized by the use of inexact solutions to
computationally-hard tasks. Learn more in: The Use of Soft Computing in Management

3. Artificial Intelligence : Introduction
What is Artificial Intelligence?
According to the father of Artificial Intelligence, John McCarthy, it is “The science and engineering of
making intelligent machines, especially intelligent computer programs”.
Artificial Intelligence is a way of making a computer, a computer-controlled robot, or a software
think intelligently, in the similar manner the intelligent humans think.
AI is accomplished by studying how human brain thinks, and how humans learn, decide, and work while
trying to solve a problem, and then using the outcomes of this study as a basis of developing intelligent
software and systems.

Various types of production systems

Production System. Types of Production Systems.

A Knowledge representation formalism consists of collections of condition-action rules(Production Rules
or Operators), a database which is modified in accordance with the rules, and a Production System
Interpreter which controls the operation of the rules i.e The 'control mechanism' of a Production System,
determining the order in which Production Rules are fired.​
A system that uses this form of knowledge representation is called a production system.​
A production system consists of rules and factors. Knowledge is encoded in a declarative from which
comprises of a set of rules of the formSituation ------------ ActionSITUATION that implies ACTION.

Example:-
​
IF the initial state is a goal state THEN quit.
The major components of an AI production system are
​
i. A global database
​
ii. A set of production rules and
​
iii. A control system

The goal database is the central data structure used by an AI production system. The production system.
The production rules operate on the global database. Each rule has a precondition that is either satisfied or
not by the database. If the precondition is satisfied, the rule can be applied. Application of the rule changes
the database. The control system chooses which applicable rule should be applied and ceases computation
when a termination condition on the database is satisfied. If several rules are to fire at the same time, the
control system resolves the conflicts.

Four classes of production systems:-

1. A monotonic production system
​
2. A non monotonic production system
​
3. A partially commutative production system​

​
4. A commutative production system.

Advantages of production systems:-

1. Production systems provide an excellent tool for structuring AI programs.

2. Production Systems are highly modular because the individual rules can be added, removed or modified
independently.

3. The production rules are expressed in a natural form, so the statements contained in the knowledge base
should the a recording of an expert thinking out loud.

Disadvantages of Production Systems:-
​
One important disadvantage is the fact that it may be very difficult analyse the flow of control within a
production system because the individual rules don’t call each other.
​
Production systems describe the operations that can be performed in a search for a solution to the problem.
They can be classified as follows.

Monotonic production system :- A system in which the application of a rule never prevents the later
application of another rule, that could have also been applied at the time the first rule was selected.

Partially commutative production system:-

A production system in which the application of a particular sequence of rules transforms state X into state
Y, then any permutation of those rules that is allowable also transforms state x into state Y.

Theorem proving falls under monotonic partially communicative system. Blocks world and 8 puzzle
problems like chemical analysis and synthesis come under monotonic, not partially commutative systems.
Playing the game of bridge comes under non monotonic , not partially commutative system.

For any problem, several production systems exist. Some will be efficient than others. Though it may seem
that there is no relationship between kinds of problems and kinds of production systems, in practice there is
a definite relationship.

Partially commutative , monotonic production systems are useful for solving ignorable problems. These
systems are important for man implementation standpoint because they can be implemented without the
ability to backtrack to previous states, when it is discovered that an incorrect path was followed. Such
systems increase the efficiency since it is not necessary to keep track of the changes made in the search
process.

Monotonic partially commutative systems are useful for problems in which changes occur but can be
reversed and in which the order of operation is not critical (ex: 8 puzzle problem).

Production systems that are not partially commutative are useful for many problems in which irreversible
changes occur, such as chemical analysis. When dealing with such systems, the order in which operations
are performed is very important and hence correct decisions have to be made at the first time itself.

Characteristics of production systems,

PRODUCTION SYSTEM AND ITS CHARACTERISTICS
 The production system is a model of computation that can be applied to implement search algorithms and
model human problem solving. Such problem solving knowledge can be packed up in the form of little
quanta called productions. A production is a rule consisting of a situation recognition part and an action
part. A production is a situation-action pair in which the left side is a list of things to watch for and the right
side is a list of things to do so. When productions are used in deductive systems, the situation that trigger
productions are specified combination of facts. The actions are restricted to being assertion of new facts
deduced directly from the triggering combination. Production systems may be called premise conclusion
pairs rather than situation action pair.

A production system consists of following components.

(a) A set of production rules, which are of the form AB. Each rule consists of left hand side constituent
that represent the current problem state and a right hand side that represent an output state. A rule is
applicable if its left hand side matches with the current problem state.

(b) A database, which contains all the appropriate information for the particular task. Some part of the
database may be permanent while some part of this may pertain only to the solution of the current
problem.

(c) A control strategy that specifies order in which the rules will be compared to the database of rules

and a way of resolving the conflicts that arise when several rules match simultaneously.

(d) A rule applier, which checks the capability of rule by matching the content state with the left hand

side of the rule and finds the appropriate rule from database of rules.

The important roles played by production systems include a powerful knowledge representation scheme. A
production system not only represents knowledge but also action. It acts as a bridge between AI and expert
systems. Production system provides a language in which the representation of expert knowledge is very
natural. We can represent knowledge in a production system as a set of rules of the form

If (condition) THEN (condition)

along with a control system and a database. The control system serves as a rule interpreter and sequencer.
The database acts as a context buffer, which records the conditions evaluated by the rules and information
on which the rules act. The production rules are also known as condition – action, antecedent – consequent,
pattern – action, situation – response, feedback – result pairs.
For example,
 If (you have an exam tomorrow)
 THEN (study the whole night)

The production system can be classified as monotonic, non-monotonic, partially commutative and
commutative.

 Figure Architecture of Production System

Features of Production System

Some of the main features of production system are:
Expressiveness and intuitiveness: In real world, many times situation comes like “i f this happen-you

will do that”, “if this is so-then this should happ en” and many more. The production rules essentially tell

us what to do in a given situation.

1. Simplicity: The structure of each sentence in a production system is unique and uniform as they

use “IF-THEN” structure. This structure provides simpli city in knowledge representation. This feature
of production system improves the readability of production rules.

2. Modularity: This means production rule code the knowledge available in discrete pieces. Information

can be treated as a collection of independent facts which may be added or deleted from the system with
essentially no deletetious side effects.

3. Modifiability: This means the facility of modifying rules. It allows the development of

production rules in a skeletal form first and then it is accurate to suit a specific application.
4. Knowledge intensive: The knowledge base of production system stores pure knowledge. This

part does not contain any type of control or programming information. Each production rule is
normally written as an English sentence; the problem of semantics is solved by the very structure of the
representation.

Disadvantages of production system

1. Opacity: This problem is generated by the combination ofproduction rules. The opacity is

generatedbecause of less prioritization of rules. More priority to a rule has the less opacity.
2. Inefficiency: During execution of a program several rules may active. A well devised control

strategyreduces this problem. As the rules of the production system are large in number and they are
hardly written in hierarchical manner, it requires some forms of complex search through all the
production rules for each cycle of control program.

3. Absence of learning: Rule based production systems do not store the result of the problem for

future use. Hence, it does not exhibit any type of learning capabilities. So for each time for a particular
problem, some new solutions may come.

4. Conflict resolution: The rules in a production system should not have any type of conflict operations.

When a new rule is added to a database, it should ensure that it does not have any conflicts with the
existing rules.

Breadth first search and Depth First Search

Searching is the universal technique of problem solving in AI. There are some single-player games such as
tile games, Sudoku, crossword, etc. The search algorithms help you to search for a particular position in
such games.
Single Agent Pathfinding Problems
The games such as 3X3 eight-tile, 4X4 fifteen-tile, and 5X5 twenty four tile puzzles are
single-agent-path-finding challenges. They consist of a matrix of tiles with a blank tile. The player is
required to arrange the tiles by sliding a tile either vertically or horizontally into a blank space with the
aim of accomplishing some objective.
The other examples of single agent pathfinding problems are Travelling Salesman Problem, Rubik’s Cube,
and Theorem Proving.
Search Terminology

●​ Problem Space − It is the environment in which the search takes place. (A set of states and set of
operators to change those states)

●​ Problem Instance − It is Initial state + Goal state.
●​ Problem Space Graph − It represents problem state. States are shown by nodes and operators

are shown by edges.
●​ Depth of a problem − Length of a shortest path or shortest sequence of operators from Initial

State to goal state.

●​ Space Complexity − The maximum number of nodes that are stored in memory.
●​ Time Complexity − The maximum number of nodes that are created.
●​ Admissibility − A property of an algorithm to always find an optimal solution.
●​ Branching Factor − The average number of child nodes in the problem space graph.
●​ Depth − Length of the shortest path from initial state to goal state.

Brute-Force Search Strategies
They are most simple, as they do not need any domain-specific knowledge. They work fine with small
number of possible states.
Requirements −

●​ State description
●​ A set of valid operators
●​ Initial state
●​ Goal state description
●​

Breadth-First Search

It starts from the root node, explores the neighboring nodes first and moves towards the next level
neighbors. It generates one tree at a time until the solution is found. It can be implemented using FIFO
queue data structure. This method provides shortest path to the solution.
If branching factor (average number of child nodes for a given node) = b and depth = d, then number of
nodes at level d = bd.
The total no of nodes created in worst case is b + b2 + b3 + … + bd.
Disadvantage − Since each level of nodes is saved for creating next one, it consumes a lot of memory
space. Space requirement to store nodes is exponential.
Its complexity depends on the number of nodes. It can check duplicate nodes.

Depth-First Search
It is implemented in recursion with LIFO stack data structure. It creates the same set of nodes as
Breadth-First method, only in the different order.
As the nodes on the single path are stored in each iteration from root to leaf node, the space requirement to
store nodes is linear. With branching factor band depth as m, the storage space is bm.
Disadvantage − This algorithm may not terminate and go on infinitely on one path. The solution to this
issue is to choose a cut-off depth. If the ideal cut-off is d, and if chosen cut-off is lesser than d, then this
algorithm may fail. If chosen cut-off is more than d, then execution time increases.
Its complexity depends on the number of paths. It cannot check duplicate nodes.

Bidirectional Search
It searches forward from initial state and backward from goal state till both meet to identify a common
state.
The path from initial state is concatenated with the inverse path from the goal state. Each search is done
only up to half of the total path.
Uniform Cost Search
Sorting is done in increasing cost of the path to a node. It always expands the least cost node. It is identical
to Breadth First search if each transition has the same cost.
It explores paths in the increasing order of cost.
Disadvantage − There can be multiple long paths with the cost ≤ C*. Uniform Cost search must explore
them all.
Iterative Deepening Depth-First Search
It performs depth-first search to level 1, starts over, executes a complete depth-first search to level 2, and
continues in such way till the solution is found.
It never creates a node until all lower nodes are generated. It only saves a stack of nodes. The algorithm
ends when it finds a solution at depth d. The number of nodes created at depth d is bd and at depth d-1 is
bd-1.

Comparison of Various Algorithms Complexities
Let us see the performance of algorithms based on various criteria −

Criterion Breadth
First

Depth
First Bidirectional Uniform

Cost
Interactive
Deepening

Time bd bm bd/2 bd bd

Space bd bm bd/2 bd bd

Optimality Yes No Yes Yes Yes

Completeness Yes No Yes Yes Yes

, Best first Search, A* algorithm, AO* Algorithms and various types of control

Hill-Climbing Search
It is an iterative algorithm that starts with an arbitrary solution to a problem and attempts to find a better
solution by changing a single element of the solution incrementally. If the change produces a better
solution, an incremental change is taken as a new solution. This process is repeated until there are no
further improvements.
function Hill-Climbing (problem), returns a state that is a local maximum.
inputs: problem, a problem
local variables: current, a node
 neighbor, a node
current <-Make_Node(Initial-State[problem])
loop
 do neighbor <- a highest_valued successor of current
 if Value[neighbor] ≤ Value[current] then
 return State[current]
 current <- neighbor​ ​ ​ ​
​
end
Disadvantage − This algorithm is neither complete, nor optimal

Informed (Heuristic) Search Strategies
To solve large problems with large number of possible states, problem-specific knowledge needs to be
added to increase the efficiency of search algorithms.
Heuristic Evaluation Functions
They calculate the cost of optimal path between two states. A heuristic function for sliding-tiles games is
computed by counting number of moves that each tile makes from its goal state and adding these number
of moves for all tiles.
Pure Heuristic Search
It expands nodes in the order of their heuristic values. It creates two lists, a closed list for the already
expanded nodes and an open list for the created but unexpanded nodes.
In each iteration, a node with a minimum heuristic value is expanded, all its child nodes are created and
placed in the closed list. Then, the heuristic function is applied to the child nodes and they are placed in
the open list according to their heuristic value. The shorter paths are saved and the longer ones are
disposed.

A * Search

It is best-known form of Best First search. It avoids expanding paths that are already expensive, but
expands most promising paths first.
f(n) = g(n) + h(n), where

●​ g(n) the cost (so far) to reach the node
●​ h(n) estimated cost to get from the node to the goal
●​ f(n) estimated total cost of path through n to goal. It is implemented using priority queue by

increasing f(n).
Greedy Best First Search
It expands the node that is estimated to be closest to goal. It expands nodes based on f(n) = h(n). It is
implemented using priority queue.
Disadvantage − It can get stuck in loops. It is not optimal.
Local Search Algorithms

They start from a prospective solution and then move to a neighboring solution. They can return a valid
solution even if it is interrupted at any time before they end.
.

Local Beam Search
In this algorithm, it holds k number of states at any given time. At the start, these states are generated
randomly. The successors of these k states are computed with the help of objective function. If any of
these successors is the maximum value of the objective function, then the algorithm stops.
Otherwise the (initial k states and k number of successors of the states = 2k) states are placed in a pool.
The pool is then sorted numerically. The highest k states are selected as new initial states. This process
continues until a maximum value is reached.
function BeamSearch(problem, k), returns a solution state.
start with k randomly generated states
loop
 generate all successors of all k states
 if any of the states = solution, then return the state
 else select the k best successors
end

Simulated Annealing
Annealing is the process of heating and cooling a metal to change its internal structure for modifying its
physical properties. When the metal cools, its new structure is seized, and the metal retains its newly
obtained properties. In simulated annealing process, the temperature is kept variable.
We initially set the temperature high and then allow it to ‘cool' slowly as the algorithm proceeds. When
the temperature is high, the algorithm is allowed to accept worse solutions with high frequency.
Start

●​ Initialize k = 0; L = integer number of variables;
●​ From i → j, search the performance difference Δ.
●​ If Δ <= 0 then accept else if exp(-Δ/T(k)) > random(0,1) then accept;
●​ Repeat steps 1 and 2 for L(k) steps.
●​ k = k + 1;

Repeat steps 1 through 4 till the criteria is met.
End

Travelling Salesman Problem
In this algorithm, the objective is to find a low-cost tour that starts from a city, visits all cities en-route
exactly once and ends at the same starting city.
Start
 Find out all (n -1)! Possible solutions, where n is the total number of cities.
 Determine the minimum cost by finding out the cost of each of these (n -1)! solutions.
 Finally, keep the one with the minimum cost.
end

Soft
Computing:
Module-II​​ ​ ​
​ ​ ​

Introduction to derivative free optimization,

Derivative-free optimization is a discipline in mathematical optimization that does not use derivative
information in the classical sense to find optimal solutions: Sometimes information about the derivative of
the objective function f is unavailable, unreliable or impractical to obtain. For example, f might be
non-smooth, or time-consuming to evaluate, or in some way noisy, so that methods that rely on derivatives
or approximate them via finite differences are of little use. The problem to find optimal points in such
situations is referred to as derivative-free optimization, algorithms that do not use derivatives or finite
differences are called derivative-free algorithms (note that this classification is not precise).[1]
Derivative-free optimization is closely related to black-box optimization.[2]

Contents
1​ Introduction
2​ Algorithms
3​ Software
4​ See also
5​ References
Introduction
The problem to be solved is to numerically optimize an objective function {\displaystyle f\colon A\to
\mathbb {R} } {\displaystyle f\colon A\to \mathbb {R} } for some set {\displaystyle A} A (usually
{\displaystyle A\subset \mathbb {R} ^{n}} {\displaystyle A\subset \mathbb {R} ^{n}}), i.e. find
{\displaystyle x_{0}\in A} {\displaystyle x_{0}\in A} such that without loss of generality {\displaystyle
f(x_{0})\leq f(x)} {\displaystyle f(x_{0})\leq f(x)} for all {\displaystyle x\in A} x\in A.

When applicable, a common approach is to iteratively improve a parameter guess by local hill-climbing in
the objective function landscape. Derivative-based algorithms use derivative information of {\displaystyle
f} f to find a good search direction, since for example the gradient gives the direction of steepest ascent.
Derivative-based optimization is efficient at finding local optima for continuous-domain smooth
single-modal problems. However, they can have problems when e.g. {\displaystyle A} A is disconnected,
or (mixed-)integer, or when {\displaystyle f} f is expensive to evaluate, or is non-smooth, or noisy, so that
(numeric approximations of) derivatives do not provide useful information. A slightly different problem is
when {\displaystyle f} f is multi-modal, in which case local derivative-based methods only give local
optima, but might miss the global one.

In derivative-free optimization, various methods are employed to address these challenges using only
function values of {\displaystyle f} f, but no derivatives. Some of these methods can be proved to discover
optima, but some are rather metaheuristic since the problems are in general more difficult to solve
compared to convex optimization. For these, the ambition is rather to efficiently find "good" parameter
values which can be near-optimal given enough resources, but optimality guarantees can typically not be
given. One should keep in mind that the challenges are diverse, so that one can usually not use one
algorithm for all kinds of problems.

Algorithms
A non-exhaustive collection of derivative-free optimization algorithms follows:

Bayesian optimization
Coordinate descent and adaptive coordinate descent
Cuckoo search
Evolution strategies, Natural evolution strategies (CMA-ES, xNES, SNES)
Cross-entropy methods (CEM)
Genetic algorithms
LIPO algorithm
MCS algorithm
Nelder-Mead method
Particle swarm optimization
Pattern search
Powell's COBYLA, UOBYQA, NEWUOA, BOBYQA and LINCOA algorithms
Random search (including Luus-Jaakola)
Shuffled complex evolution algorithm
Simulated annealing
Subgradient method

GA; biological background, search space of genetic algorithm,

Genetic Algorithm (GA) is a search-based optimization technique based on the principles of Genetics and
Natural Selection. It is frequently used to find optimal or near-optimal solutions to difficult problems
which otherwise would take a lifetime to solve. It is frequently used to solve optimization problems, in
research, and in machine learning.
Introduction to Optimization
Optimization is the process of making something better. In any process, we have a set of inputs and a set
of outputs as shown in the following figure.

Optimization refers to finding the values of inputs in such a way that we get the “best” output values. The
definition of “best” varies from problem to problem, but in mathematical terms, it refers to maximizing or
minimizing one or more objective functions, by varying the input parameters.
The set of all possible solutions or values which the inputs can take make up the search space. In this
search space, lies a point or a set of points which gives the optimal solution. The aim of optimization is to
find that point or set of points in the search space.
What are Genetic Algorithms?
Nature has always been a great source of inspiration to all mankind. Genetic Algorithms (GAs) are search
based algorithms based on the concepts of natural selection and genetics. GAs are a subset of a much
larger branch of computation known as Evolutionary Computation.
GAs were developed by John Holland and his students and colleagues at the University of Michigan, most
notably David E. Goldberg and has since been tried on various optimization problems with a high degree
of success.
In GAs, we have a pool or a population of possible solutions to the given problem. These solutions then
undergo recombination and mutation (like in natural genetics), producing new children, and the process is
repeated over various generations. Each individual (or candidate solution) is assigned a fitness value

(based on its objective function value) and the fitter individuals are given a higher chance to mate and
yield more “fitter” individuals. This is in line with the Darwinian Theory of “Survival of the Fittest”.
In this way we keep “evolving” better individuals or solutions over generations, till we reach a stopping
criterion.
Genetic Algorithms are sufficiently randomized in nature, but they perform much better than random local
search (in which we just try various random solutions, keeping track of the best so far), as they exploit
historical information as well.
Advantages of GAs
GAs have various advantages which have made them immensely popular. These include −

●​ Does not require any derivative information (which may not be available for many real-world
problems).

●​ Is faster and more efficient as compared to the traditional methods.
●​ Has very good parallel capabilities.
●​ Optimizes both continuous and discrete functions and also multi-objective problems.
●​ Provides a list of “good” solutions and not just a single solution.
●​ Always gets an answer to the problem, which gets better over the time.
●​ Useful when the search space is very large and there are a large number of parameters involved.

Limitations of GAs
Like any technique, GAs also suffer from a few limitations. These include −

●​ GAs are not suited for all problems, especially problems which are simple and for which
derivative information is available.

●​ Fitness value is calculated repeatedly which might be computationally expensive for some
problems.

●​ Being stochastic, there are no guarantees on the optimality or the quality of the solution.
●​ If not implemented properly, the GA may not converge to the optimal solution.

Genetic Algorithms are primarily used in optimization problems of various kinds, but they are frequently
used in other application areas as well.
In this section, we list some of the areas in which Genetic Algorithms are frequently used. These are −

●​ Optimization − Genetic Algorithms are most commonly used in optimization problems wherein
we have to maximize or minimize a given objective function value under a given set of
constraints. The approach to solve Optimization problems has been highlighted throughout the
tutorial.

●​ Economics − GAs are also used to characterize various economic models like the cobweb model,
game theory equilibrium resolution, asset pricing, etc.

●​ Neural Networks − GAs are also used to train neural networks, particularly recurrent neural
networks.

●​ Parallelization − GAs also have very good parallel capabilities, and prove to be very effective
means in solving certain problems, and also provide a good area for research.

●​ Image Processing − GAs are used for various digital image processing (DIP) tasks as well like
dense pixel matching.

●​ Vehicle routing problems − With multiple soft time windows, multiple depots and a
heterogeneous fleet.

●​ Scheduling applications − GAs are used to solve various scheduling problems as well,
particularly the time tabling problem.

●​ Machine Learning − as already discussed, genetics based machine learning (GBML) is a niche
area in machine learning.

●​ Robot Trajectory Generation − GAs have been used to plan the path which a robot arm takes
by moving from one point to another.

●​ Parametric Design of Aircraft − GAs have been used to design aircrafts by varying the
parameters and evolving better solutions.

●​ DNA Analysis − GAs have been used to determine the structure of DNA using spectrometric
data about the sample.

●​ Multimodal Optimization − GAs are obviously very good approaches for multimodal
optimization in which we have to find multiple optimum solutions.

●​ Traveling salesman problem and its applications − GAs have been used to solve the TSP,
which is a well-known combinatorial problem using novel crossover and packing strategies.

Genetic algorithm Vs. Traditional algorithm;

Difference Between Genetic Algorithm and Traditional Algorithm
Definition
Genetic algorithm is an algorithm for solving both constrained and unconstrained optimization problems
that are based on Genetics and Natural Selection while traditional algorithm is an unambiguous
specification that defines how to solve a problem. Thus, this is the main difference between genetic
algorithm and traditional algorithm.

Usage
The specific use of each algorithm is an important difference between genetic algorithm and traditional
algorithm. That is; the genetic algorithm helps to find the optimal solutions for difficult problems while
traditional algorithm provides a step by step methodical procedure to solve a problem.

Complexity
Another difference between genetic algorithm and traditional algorithm is that a genetic algorithm is more
advanced than a traditional algorithm.

Applications
Genetic Algorithm is used in fields such as research, Machine Learning and, Artificial Intelligence.
Traditional algorithm is used in fields such as Programming, Mathematics, etc. Hence, this is also an
important difference between genetic algorithm and traditional algorithm.

Simple genetic algorithm and Genetic algorithm Operators:

Basic Structure
The basic structure of a GA is as follows −
We start with an initial population (which may be generated at random or seeded by other heuristics),
select parents from this population for mating. Apply crossover and mutation operators on the parents to
generate new off-springs. And finally these off-springs replace the existing individuals in the population
and the process repeats. In this way genetic algorithms actually try to mimic the human evolution to some
extent.
Each of the following steps are covered as a separate chapter later in this tutorial.

A generalized pseudo-code for a GA is explained in the following program −
GA()
 initialize population
 find fitness of population

 while (termination criteria is reached) do
 parent selection
 crossover with probability pc
 mutation with probability pm
 decode and fitness calculation
 survivor selection
 find best
 return best

Encoding, selection criteria, Crossover, Mutation

One of the most important decisions to make while implementing a genetic algorithm is deciding the
representation that we will use to represent our solutions. It has been observed that improper
representation can lead to poor performance of the GA.
Therefore, choosing a proper representation, having a proper definition of the mappings between the
phenotype and genotype spaces is essential for the success of a GA.
In this section, we present some of the most commonly used representations for genetic algorithms.
However, representation is highly problem specific and the reader might find that another representation
or a mix of the representations mentioned here might suit his/her problem better.
Binary Representation
This is one of the simplest and most widely used representation in GAs. In this type of representation the
genotype consists of bit strings.
For some problems when the solution space consists of Boolean decision variables – yes or no, the binary
representation is natural. Take for example the 0/1 Knapsack Problem. If there are n items, we can
represent a solution by a binary string of n elements, where the xth element tells whether the item x is
picked (1) or not (0).

For other problems, specifically those dealing with numbers, we can represent the numbers with their
binary representation. The problem with this kind of encoding is that different bits have different
significance and therefore mutation and crossover operators can have undesired consequences. This can be
resolved to some extent by using Gray Coding, as a change in one bit does not have a massive effect on
the solution.
Real Valued Representation
For problems where we want to define the genes using continuous rather than discrete variables, the real
valued representation is the most natural. The precision of these real valued or floating point numbers is
however limited to the computer.

Integer Representation
For discrete valued genes, we cannot always limit the solution space to binary ‘yes’ or ‘no’. For example,
if we want to encode the four distances – North, South, East and West, we can encode them as {0,1,2,3}.
In such cases, integer representation is desirable.

Permutation Representation
In many problems, the solution is represented by an order of elements. In such cases permutation
representation is the most suited.
A classic example of this representation is the travelling salesman problem (TSP). In this the salesman has
to take a tour of all the cities, visiting each city exactly once and come back to the starting city. The total
distance of the tour has to be minimized. The solution to this TSP is naturally an ordering or permutation
of all the cities and therefore using a permutation representation makes sense for this problem.

Genetic Algorithms - Population

Population is a subset of solutions in the current generation. It can also be defined as a set of
chromosomes. There are several things to be kept in mind when dealing with GA population −

●​ The diversity of the population should be maintained otherwise it might lead to premature
convergence.

●​ The population size should not be kept very large as it can cause a GA to slow down, while a
smaller population might not be enough for a good mating pool. Therefore, an optimal population
size needs to be decided by trial and error.

The population is usually defined as a two dimensional array of – size population, size x, chromosome
size.
Population Initialization
There are two primary methods to initialize a population in a GA. They are −

●​ Random Initialization − Populate the initial population with completely random solutions.
●​ Heuristic initialization − Populate the initial population using a known heuristic for the

problem.
It has been observed that the entire population should not be initialized using a heuristic, as it can result in
the population having similar solutions and very little diversity. It has been experimentally observed that
the random solutions are the ones to drive the population to optimality. Therefore, with heuristic
initialization, we just seed the population with a couple of good solutions, filling up the rest with random
solutions rather than filling the entire population with heuristic based solutions.
It has also been observed that heuristic initialization in some cases, only effects the initial fitness of the
population, but in the end, it is the diversity of the solutions which lead to optimality.
Population Models
There are two population models widely in use −
Steady State
In steady state GA, we generate one or two off-springs in each iteration and they replace one or two
individuals from the population. A steady state GA is also known as Incremental GA.
Generational
In a generational model, we generate ‘n’ off-springs, where n is the population size, and the entire
population is replaced by the new one at the end of the iteration.

Genetic Algorithms - Fitness Function
The fitness function simply defined is a function which takes a candidate solution to the problem as
input and produces as output how “fit” our how “good” the solution is with respect to the problem in
consideration.
Calculation of fitness value is done repeatedly in a GA and therefore it should be sufficiently fast. A slow
computation of the fitness value can adversely affect a GA and make it exceptionally slow.
In most cases the fitness function and the objective function are the same as the objective is to either
maximize or minimize the given objective function. However, for more complex problems with multiple
objectives and constraints, an Algorithm Designer might choose to have a different fitness function.
A fitness function should possess the following characteristics −

●​ The fitness function should be sufficiently fast to compute.
●​ It must quantitatively measure how fit a given solution is or how fit individuals can be produced

from the given solution.
In some cases, calculating the fitness function directly might not be possible due to the inherent
complexities of the problem at hand. In such cases, we do fitness approximation to suit our needs.
The following image shows the fitness calculation for a solution of the 0/1 Knapsack. It is a simple fitness
function which just sums the profit values of the items being picked (which have a 1), scanning the
elements from left to right till the knapsack is full.

Genetic Algorithms - Parent Selection

Parent Selection is the process of selecting parents which mate and recombine to create off-springs for the
next generation. Parent selection is very crucial to the convergence rate of the GA as good parents drive
individuals to a better and fitter solutions.
However, care should be taken to prevent one extremely fit solution from taking over the entire population
in a few generations, as this leads to the solutions being close to one another in the solution space thereby
leading to a loss of diversity. Maintaining good diversity in the population is extremely crucial for the
success of a GA. This taking up of the entire population by one extremely fit solution is known
as premature convergence and is an undesirable condition in a GA.
Fitness Proportionate Selection
Fitness Proportionate Selection is one of the most popular ways of parent selection. In this every
individual can become a parent with a probability which is proportional to its fitness. Therefore, fitter
individuals have a higher chance of mating and propagating their features to the next generation.
Therefore, such a selection strategy applies a selection pressure to the more fit individuals in the
population, evolving better individuals over time.
Consider a circular wheel. The wheel is divided into n pies, where n is the number of individuals in the
population. Each individual gets a portion of the circle which is proportional to its fitness value.
Two implementations of fitness proportionate selection are possible −
Roulette Wheel Selection
In a roulette wheel selection, the circular wheel is divided as described before. A fixed point is chosen on
the wheel circumference as shown and the wheel is rotated. The region of the wheel which comes in front
of the fixed point is chosen as the parent. For the second parent, the same process is repeated.

It is clear that a fitter individual has a greater pie on the wheel and therefore a greater chance of landing in
front of the fixed point when the wheel is rotated. Therefore, the probability of choosing an individual
depends directly on its fitness.
Implementation wise, we use the following steps −

●​ Calculate S = the sum of a finesses.
●​ Generate a random number between 0 and S.
●​ Starting from the top of the population, keep adding the finesses to the partial sum P, till P<S.
●​ The individual for which P exceeds S is the chosen individual.

Stochastic Universal Sampling (SUS)
Stochastic Universal Sampling is quite similar to Roulette wheel selection, however instead of having just
one fixed point, we have multiple fixed points as shown in the following image. Therefore, all the parents
are chosen in just one spin of the wheel. Also, such a setup encourages the highly fit individuals to be
chosen at least once.

It is to be noted that fitness proportionate selection methods don’t work for cases where the fitness can
take a negative value.
Tournament Selection
In K-Way tournament selection, we select K individuals from the population at random and select the best
out of these to become a parent. The same process is repeated for selecting the next parent. Tournament
Selection is also extremely popular in literature as it can even work with negative fitness values.

Rank Selection
Rank Selection also works with negative fitness values and is mostly used when the individuals in the
population have very close fitness values (this happens usually at the end of the run). This leads to each
individual having an almost equal share of the pie (like in case of fitness proportionate selection) as shown
in the following image and hence each individual no matter how fit relative to each other has an
approximately same probability of getting selected as a parent. This in turn leads to a loss in the selection
pressure towards fitter individuals, making the GA to make poor parent selections in such situations.

In this, we remove the concept of a fitness value while selecting a parent. However, every individual in the
population is ranked according to their fitness. The selection of the parents depends on the rank of each
individual and not the fitness. The higher ranked individuals are preferred more than the lower ranked
ones.

Chromosome Fitness Value Rank

A 8.1 1

B 8.0 4

C 8.05 2

D 7.95 6

E 8.02 3

F 7.99 5

Random Selection
In this strategy we randomly select parents from the existing population. There is no selection pressure
towards fitter individuals and therefore this strategy is usually avoided.

Genetic Algorithms - Crossover
In this chapter, we will discuss about what a Crossover Operator is along with its other modules, their uses
and benefits.
Introduction to Crossover
The crossover operator is analogous to reproduction and biological crossover. In this more than one parent
is selected and one or more off-springs are produced using the genetic material of the parents. Crossover is
usually applied in a GA with a high probability – pc .
Crossover Operators
In this section we will discuss some of the most popularly used crossover operators. It is to be noted that
these crossover operators are very generic and the GA Designer might choose to implement a
problem-specific crossover operator as well.
One Point Crossover
In this one-point crossover, a random crossover point is selected and the tails of its two parents are
swapped to get new off-springs.

Multi Point Crossover
Multi point crossover is a generalization of the one-point crossover wherein alternating segments are
swapped to get new off-springs.

Uniform Crossover
In a uniform crossover, we don’t divide the chromosome into segments, rather we treat each gene
separately. In this, we essentially flip a coin for each chromosome to decide whether or not it’ll be
included in the off-spring. We can also bias the coin to one parent, to have more genetic material in the
child from that parent.

Whole Arithmetic Recombination
This is commonly used for integer representations and works by taking the weighted average of the two
parents by using the following formulae −

●​ Child1 = α.x + (1-α).y
●​ Child2 = α.x + (1-α).y

Obviously, if α = 0.5, then both the children will be identical as shown in the following image.

Davis’ Order Crossover (OX1)
OX1 is used for permutation based crossovers with the intention of transmitting information about relative
ordering to the off-springs. It works as follows −

●​ Create two random crossover points in the parent and copy the segment between them from the
first parent to the first offspring.

●​ Now, starting from the second crossover point in the second parent, copy the remaining unused
numbers from the second parent to the first child, wrapping around the list.

●​ Repeat for the second child with the parent’s role reversed.

There exist a lot of other crossovers like Partially Mapped Crossover (PMX), Order based crossover
(OX2), Shuffle Crossover, Ring Crossover, etc.

Genetic Algorithms - Mutation
Introduction to Mutation
In simple terms, mutation may be defined as a small random tweak in the chromosome, to get a new
solution. It is used to maintain and introduce diversity in the genetic population and is usually applied with
a low probability – pm. If the probability is very high, the GA gets reduced to a random search.
Mutation is the part of the GA which is related to the “exploration” of the search space. It has been
observed that mutation is essential to the convergence of the GA while crossover is not.
Mutation Operators
In this section, we describe some of the most commonly used mutation operators. Like the crossover
operators, this is not an exhaustive list and the GA designer might find a combination of these approaches
or a problem-specific mutation operator more useful.

Bit Flip Mutation
In this bit flip mutation, we select one or more random bits and flip them. This is used for binary encoded
GAs.

Random Resetting
Random Resetting is an extension of the bit flip for the integer representation. In this, a random value
from the set of permissible values is assigned to a randomly chosen gene.
Swap Mutation
In swap mutation, we select two positions on the chromosome at random, and interchange the values. This
is common in permutation based encodings.

Scramble Mutation
Scramble mutation is also popular with permutation representations. In this, from the entire chromosome,
a subset of genes is chosen and their values are scrambled or shuffled randomly.

Inversion Mutation
In inversion mutation, we select a subset of genes like in scramble mutation, but instead of shuffling the
subset, we merely invert the entire string in the subset.

Genetic Algorithms - Survivor Selection

The Survivor Selection Policy determines which individuals are to be kicked out and which are to be kept
in the next generation. It is crucial as it should ensure that the fitter individuals are not kicked out of the
population, while at the same time diversity should be maintained in the population.
Some GAs employ Elitism. In simple terms, it means the current fittest member of the population is
always propagated to the next generation. Therefore, under no circumstance can the fittest member of the
current population be replaced.
The easiest policy is to kick random members out of the population, but such an approach frequently has
convergence issues, therefore the following strategies are widely used.
Age Based Selection
In Age-Based Selection, we don’t have a notion of a fitness. It is based on the premise that each individual
is allowed in the population for a finite generation where it is allowed to reproduce, after that, it is kicked
out of the population no matter how good its fitness is.
For instance, in the following example, the age is the number of generations for which the individual has
been in the population. The oldest members of the population i.e. P4 and P7 are kicked out of the
population and the ages of the rest of the members are incremented by one.

Fitness Based Selection
In this fitness based selection, the children tend to replace the least fit individuals in the population. The
selection of the least fit individuals may be done using a variation of any of the selection policies
described before – tournament selection, fitness proportionate selection, etc.
For example, in the following image, the children replace the least fit individuals P1 and P10 of the
population. It is to be noted that since P1 and P9 have the same fitness value, the decision to remove
which individual from the population is arbitrary.

Genetic Algorithms - Termination Condition

The termination condition of a Genetic Algorithm is important in determining when a GA run will end. It
has been observed that initially, the GA progresses very fast with better solutions coming in every few
iterations, but this tends to saturate in the later stages where the improvements are very small. We usually
want a termination condition such that our solution is close to the optimal, at the end of the run.
Usually, we keep one of the following termination conditions −

●​ When there has been no improvement in the population for X iterations.
●​ When we reach an absolute number of generations.
●​ When the objective function value has reached a certain pre-defined value.

For example, in a genetic algorithm we keep a counter which keeps track of the generations for which
there has been no improvement in the population. Initially, we set this counter to zero. Each time we don’t
generate off-springs which are better than the individuals in the population, we increment the counter.
However, if the fitness any of the off-springs is better, then we reset the counter to zero. The algorithm
terminates when the counter reaches a predetermined value.
Like other parameters of a GA, the termination condition is also highly problem specific and the GA
designer should try out various options to see what suits his particular problem the best.

Genetic Algorithms - Application Areas
Genetic Algorithms are primarily used in optimization problems of various kinds, but they are frequently
used in other application areas as well.
In this section, we list some of the areas in which Genetic Algorithms are frequently used. These are −

●​ Optimization − Genetic Algorithms are most commonly used in optimization problems wherein
we have to maximize or minimize a given objective function value under a given set of
constraints. The approach to solve Optimization problems has been highlighted throughout the
tutorial.

●​ Economics − GAs are also used to characterize various economic models like the cobweb model,
game theory equilibrium resolution, asset pricing, etc.

●​ Neural Networks − GAs are also used to train neural networks, particularly recurrent neural
networks.

●​ Parallelization − GAs also have very good parallel capabilities, and prove to be very effective
means in solving certain problems, and also provide a good area for research.

●​ Image Processing − GAs are used for various digital image processing (DIP) tasks as well like
dense pixel matching.

●​ Vehicle routing problems − With multiple soft time windows, multiple depots and a
heterogeneous fleet.

●​ Scheduling applications − GAs are used to solve various scheduling problems as well,
particularly the time tabling problem.

●​ Machine Learning − as already discussed, genetics based machine learning (GBML) is a niche
area in machine learning.

●​ Robot Trajectory Generation − GAs have been used to plan the path which a robot arm takes
by moving from one point to another.

●​ Parametric Design of Aircraft − GAs have been used to design aircrafts by varying the
parameters and evolving better solutions.

●​ DNA Analysis − GAs have been used to determine the structure of DNA using spectrometric
data about the sample.

●​ Multimodal Optimization − GAs are obviously very good approaches for multimodal
optimization in which we have to find multiple optimum solutions.

●​ Traveling salesman problem and its applications − GAs have been used to solve the TSP,
which is a well-known combinatorial problem using novel crossover and packing strategies.

Genetic algorithms are substantially different to the more traditional search

Genetic algorithms are substantially different to the more traditional search andoptimization techniques.
The five main differences are:
1. Genetic algorithms search a population of points in parallel, not from a single point.
2. Genetic algorithms do not require derivative information or other auxiliaryknowledge; only the objective
function and corresponding fitness levels influencethe direction of the search
.3. Genetic algorithms use probabilistic transition rules, not deterministic rules.
4. Genetic algorithms work on an encoding of a parameter set not the parameter setitself (except where
real-valued individuals are used).
5. Genetic algorithms may provide a number of potential solutions to a given problem and the choice of the
final is left up to the use

Soft
Computing:
Module-III

Neural Network : Biological neuron, artificial neuron, definition of ANN, Taxonomy

of neural net,

Yet another research area in AI, neural networks, is inspired from the natural neural network of human
nervous system.
What are Artificial Neural Networks (ANNs)?
The inventor of the first neurocomputer, Dr. Robert Hecht-Nielsen, defines a neural network as −
"...a computing system made up of a number of simple, highly interconnected processing elements, which
process information by their dynamic state response to external inputs.”
Basic Structure of ANNs
The idea of ANNs is based on the belief that working of human brain by making the right connections, can
be imitated using silicon and wires as living neurons and dendrites.
The human brain is composed of 86 billion nerve cells called neurons. They are connected to other
thousand cells by Axons. Stimuli from external environment or inputs from sensory organs are accepted
by dendrites. These inputs create electric impulses, which quickly travel through the neural network. A
neuron can then send the message to other neuron to handle the issue or does not send it forward.

ANNs are composed of multiple nodes, which imitate biological neurons of human brain. The neurons
are connected by links and they interact with each other. The nodes can take input data and perform simple
operations on the data. The result of these operations is passed to other neurons. The output at each node is
called its activation or node value.
Each link is associated with weight. ANNs are capable of learning, which takes place by altering weight
values. The following illustration shows a simple ANN −

Types of Artificial Neural Networks

There are two Artificial Neural Network topologies − FeedForward and Feedback.
FeedForward ANN
In this ANN, the information flow is unidirectional. A unit sends information to other unit from which it
does not receive any information. There are no feedback loops. They are used in pattern
generation/recognition/classification. They have fixed inputs and outputs.

FeedBack ANN
Here, feedback loops are allowed. They are used in content addressable memories.

Working of ANNs

In the topology diagrams shown, each arrow represents a connection between two neurons and indicates
the pathway for the flow of information. Each connection has a weight, an integer number that controls the
signal between the two neurons.
If the network generates a “good or desired” output, there is no need to adjust the weights. However, if the
network generates a “poor or undesired” output or an error, then the system alters the weights in order to
improve subsequent results.

Machine Learning in ANNs
ANNs are capable of learning and they need to be trained. There are several learning strategies −

●​ Supervised Learning − It involves a teacher that is scholar than the ANN itself. For example,
the teacher feeds some example data about which the teacher already knows the answers.
For example, pattern recognizing. The ANN comes up with guesses while recognizing. Then the
teacher provides the ANN with the answers. The network then compares it guesses with the
teacher’s “correct” answers and makes adjustments according to errors.

●​ Unsupervised Learning − It is required when there is no example data set with known answers.
For example, searching for a hidden pattern. In this case, clustering i.e. dividing a set of elements
into groups according to some unknown pattern is carried out based on the existing data sets
present.

●​ Reinforcement Learning − This strategy built on observation. The ANN makes a decision by
observing its environment. If the observation is negative, the network adjusts its weights to be
able to make a different required decision the next time.

Back Propagation Algorithm
It is the training or learning algorithm. It learns by example. If you submit to the algorithm the example of
what you want the network to do, it changes the network’s weights so that it can produce desired output
for a particular input on finishing the training.
Back Propagation networks are ideal for simple Pattern Recognition and Mapping Tasks.
Bayesian Networks (BN)
These are the graphical structures used to represent the probabilistic relationship among a set of random
variables. Bayesian networks are also called Belief Networks or Bayes Nets. BNs reason about uncertain
domain.

In these networks, each node represents a random variable with specific propositions. For example, in a
medical diagnosis domain, the node Cancer represents the proposition that a patient has cancer.
The edges connecting the nodes represent probabilistic dependencies among those random variables. If out
of two nodes, one is affecting the other then they must be directly connected in the directions of the effect.
The strength of the relationship between variables is quantified by the probability associated with each
node.
There is an only constraint on the arcs in a BN that you cannot return to a node simply by following
directed arcs. Hence the BNs are called Directed Acyclic Graphs (DAGs).
BNs are capable of handling multivalued variables simultaneously. The BN variables are composed of two
dimensions −

●​ Range of prepositions
●​ Probability assigned to each of the prepositions.

Consider a finite set X = {X1, X2, …,Xn} of discrete random variables, where each variable Xi may take
values from a finite set, denoted by Val(Xi). If there is a directed link from variable Xi to variable, Xj, then
variable Xi will be a parent of variable Xj showing direct dependencies between the variables.
The structure of BN is ideal for combining prior knowledge and observed data. BN can be used to learn
the causal relationships and understand various problem domains and to predict future events, even in case
of missing data.
Building a Bayesian Network
A knowledge engineer can build a Bayesian network. There are a number of steps the knowledge engineer
needs to take while building it.
Example problem − Lung cancer. A patient has been suffering from breathlessness. He visits the doctor,
suspecting he has lung cancer. The doctor knows that barring lung cancer, there are various other possible
diseases the patient might have such as tuberculosis and bronchitis.
Gather Relevant Information of Problem

●​ Is the patient a smoker? If yes, then high chances of cancer and bronchitis.
●​ Is the patient exposed to air pollution? If yes, what sort of air pollution?
●​ Take an X-Ray positive X-ray would indicate either TB or lung cancer.

Identify Interesting Variables
The knowledge engineer tries to answer the questions −

●​ Which nodes to represent?
●​ What values can they take? In which state can they be?

For now let us consider nodes, with only discrete values. The variable must take on exactly one of these
values at a time.
Common types of discrete nodes are −

●​ Boolean nodes − They represent propositions, taking binary values TRUE (T) and FALSE (F).
●​ Ordered values − A node Pollution might represent and take values from {low, medium, high}

describing degree of a patient’s exposure to pollution.
●​ Integral values − A node called Age might represent patient’s age with possible values from 1 to

120. Even at this early stage, modeling choices are being made.
Possible nodes and values for the lung cancer example −

Node Name Type Value Nodes Creation

Polution Binary {LOW, HIGH,
MEDIUM}

Smoker Boolean {TRUE, FASLE}

Lung-Cance
r

Boolean {TRUE, FASLE}

X-Ray Binary {Positive,
Negative}

Create Arcs between Nodes

Topology of the network should capture qualitative relationships between variables.
For example, what causes a patient to have lung cancer? - Pollution and smoking. Then add arcs from
node Pollution and node Smoker to node Lung-Cancer.
Similarly if patient has lung cancer, then X-ray result will be positive. Then add arcs from
node Lung-Cancer to node X-Ray.

Specify Topology
Conventionally, BNs are laid out so that the arcs point from top to bottom. The set of parent nodes of a
node X is given by Parents(X).
The Lung-Cancer node has two parents (reasons or causes): Pollution and Smoker, while node Smoker is
an ancestor of node X-Ray. Similarly, X-Ray is a child (consequence or effects) of
node Lung-Cancer and successor of nodes Smoker and Pollution.
Conditional Probabilities
Now quantify the relationships between connected nodes: this is done by specifying a conditional
probability distribution for each node. As only discrete variables are considered here, this takes the form
of a Conditional Probability Table (CPT).
First, for each node we need to look at all the possible combinations of values of those parent nodes. Each
such combination is called an instantiation of the parent set. For each distinct instantiation of parent node
values, we need to specify the probability that the child will take.
For example, the Lung-Cancer node’s parents are Pollution and Smoking. They take the possible values =
{ (H,T), (H,F), (L,T), (L,F)}. The CPT specifies the probability of cancer for each of these cases as <0.05,
0.02, 0.03, 0.001> respectively.
Each node will have conditional probability associated as follows −

Applications of Neural Networks

They can perform tasks that are easy for a human but difficult for a machine −
●​ Aerospace − Autopilot aircrafts, aircraft fault detection.
●​ Automotive − Automobile guidance systems.
●​ Military − Weapon orientation and steering, target tracking, object discrimination, facial

recognition, signal/image identification.
●​ Electronics − Code sequence prediction, IC chip layout, chip failure analysis, machine vision,

voice synthesis.
●​ Financial − Real estate appraisal, loan advisor, mortgage screening, corporate bond rating,

portfolio trading program, corporate financial analysis, currency value prediction, document
readers, credit application evaluators.

●​ Industrial − Manufacturing process control, product design and analysis, quality inspection
systems, welding quality analysis, paper quality prediction, chemical product design analysis,
dynamic modeling of chemical process systems, machine maintenance analysis, project bidding,
planning, and management.

●​ Medical − Cancer cell analysis, EEG and ECG analysis, prosthetic design, transplant time
optimizer.

●​ Speech − Speech recognition, speech classification, text to speech conversion.
●​ Telecommunications − Image and data compression, automated information services, real-time

spoken language translation.
●​ Transportation − Truck Brake system diagnosis, vehicle scheduling, routing systems.
●​ Software − Pattern Recognition in facial recognition, optical character recognition, etc.
●​ Time Series Prediction − ANNs are used to make predictions on stocks and natural calamities.
●​ Signal Processing − Neural networks can be trained to process an audio signal and filter it

appropriately in the hearing aids.
●​ Control − ANNs are often used to make steering decisions of physical vehicles.
●​ Anomaly Detection − As ANNs are expert at recognizing patterns, they can also be trained to

generate an output when something unusual occurs that misfits the pattern.
●​

Difference between ANN and human brain,

The main differences
1.​ Size: our brain contains about 86 billion neurons and more than a 100 trillion (or according to some

estimates 1000 trillion) synapses (connections). The number of “neurons” in artificial networks is
much less than that (usually in the ballpark of 10–1000) but comparing their numbers this way is
misleading. Perceptrons just take inputs on their “dendrites” and generate output on their “axon
branches”. A single layer perceptron network consists of several perceptrons that are not
interconnected: they all just perform this very same task at once. Deep Neural Networks usually
consist of input neurons (as many as the number of features in the data), output neurons (as many as
the number of classes if they are built to solve a classification problem) and neurons in the hidden
layers, in-between. All the layers are usually (but not necessarily) fully connected to the next layer,
meaning that artificial neurons usually have as many connections as there are artificial neurons in the
preceding and following layers combined. Convolutional Neural Networks also use different
techniques to extract features from the data that are more sophisticated than what a few
interconnected neurons can do alone. Manual feature extraction (altering data in a way that it can be
fed to machine learning algorithms) requires human brain power which is also not taken into account
when summing up the number of “neurons” required for Deep Learning tasks. The limitation in size
isn’t just computational: simply increasing the number of layers and artificial neurons does not always
yield better results in machine learning tasks.

2.​ Topology: all artificial layers compute one by one, instead of being part of a network that has nodes
computing asynchronously. Feedforward networks compute the state of one layer of artificial neurons
and their weights, then use the results to compute the following layer the same way. During
backpropagation, the algorithm computes some change in the weights the opposing way, to reduce the
difference of the feedforward computational results in the output layer from the expected values of the
output layer. Layers aren’t connected to non-neighboring layers, but it’s possible to somewhat mimic
loops with recurrent and LSTM networks. In biological networks, neurons can fire asynchronously in
parallel, have small-world nature with a small portion of highly connected neurons (hubs) and a large
amount of lesser connected ones (the degree distribution at least partly follows the power-law). Since
artificial neuron layers are usually fully connected, this small-world nature of biological neurons can
only be simulated by introducing weights that are 0 to mimic the lack of connections between two
neurons.

3.​ Speed: certain biological neurons can fire around 200 times a second on average. Signals travel at
different speeds depending on the type of the nerve impulse, ranging from 0.61 m/s up to 119
m/s. Signal travel speeds also vary from person to person depending on their sex, age, height,
temperature, medical condition, lack of sleep etc. Action potential frequency carries information for
biological neuron networks: information is carried by the firing frequency or the firing mode (tonic or
burst-firing) of the output neuron and by the amplitude of the incoming signal in the input neuron in
biological systems. Information in artificial neurons is instead carried over by the continuous, floating
point number values of synaptic weights. How quickly feedforward or backpropagation algorithms
are calculated carries no information, other than making the execution and training of the model
faster. There are no refractory periods for artificial neural networks (periods while it is impossible to
send another action potential, due to the sodium channels being lock shut) and artificial neurons do
not experience “fatigue”: they are functions that can be calculated as many times and as fast as the
computer architecture would allow. Since artificial neural network models can be understood as just a
bunch of matrix operations and finding derivatives, running such calculations can be highly optimized
for vector processors (doing the very same calculations on large amounts of data points over and over
again) and sped up by magnitudes using GPUs or dedicated hardware (like on AI chips in recent
SmartPhones).

4.​ Fault-tolerance: biological neuron networks due to their topology are also fault-tolerant. Information
is stored redundantly so minor failures will not result in memory loss. They don’t have one “central”
part. The brain can also recover and heal to an extent. Artificial neural networks are not modeled for
fault tolerance or self regeneration (similarly to fatigue, these ideas are not applicable to matrix
operations), though recovery is possible by saving the current state (weight values) of the model and
continuing the training from that save state. Dropouts can turn on and off random neurons in a layer
during training, mimicking unavailable paths for signals and forcing some redundancy (dropouts are
actually used to reduce the chance of overfitting). Trained models can be exported and used on
different devices that support the framework, meaning that the same artificial neural network model

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
https://en.wikipedia.org/wiki/Scale-free_network
https://hypertextbook.com/facts/2002/DavidParizh.shtml
https://hypertextbook.com/facts/2002/DavidParizh.shtml
https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/neuron-action-potentials-the-creation-of-a-brain-signal
https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/neuron-action-potentials-the-creation-of-a-brain-signal
https://www.engadget.com/2017/12/15/ai-processor-cpu-explainer-bionic-neural-npu/
https://www.engadget.com/2017/12/15/ai-processor-cpu-explainer-bionic-neural-npu/

will yield the same outputs for the same input data on every device it runs on. Training artificial
neural networks for longer periods of time will not affect the efficiency of the artificial neurons.
However, the hardware used for training can wear out really fast if used regularly, and will need to be
replaced. Another difference is, that all processes (states and values) can be closely monitored inside
an artificial neural network.

5.​ Power consumption: the brain consumes about 20% of all the human body’s energy — despite it’s
large cut, an adult brain operates on about 20 watts (barely enough to dimly light a bulb) being
extremely efficient. Taking into account how humans can still operate for a while, when only given
some c-vitamin rich lemon juice and beef tallow, this is quite remarkable. For benchmark: a single
Nvidia GeForce Titan X GPU runs on 250 watts alone, and requires a power supply instead of beef
tallow. Our machines are way less efficient than biological systems. Computers also generate a lot of
heat when used, with consumer GPUs operating safely between 50–80 degrees Celsius instead of
36.5–37.5 °C.

6.​ Signals: an action potential is either triggered or not — biological synapses either carry a signal or they
don’t. Perceptrons work somewhat similarly, by accepting binary inputs, applying weights to them
and generating binary outputs depending on whether the sum of these weighted inputs have reached a
certain threshold (also called a step function). Artificial neurons accept continuous values as inputs
and apply a simple non-linear, easily differentiable function (an activation function) on the sum of its
weighted inputs to restrict the outputs’ range of values. The activation functions are nonlinear so
multiple layers in theory could approximate any function. Formerly sigmoid and hyperbolic tangent
functions were used as activation functions, but these networks suffered from the vanishing gradient
problem, meaning that the more the layers in a network, the less the changes in the first layers will
affect the output, due to these functions squashing their inputs into a very small output range. These
problems were overcome by the introduction of different activation functions such as ReLU. The final
outputs of these networks are usually also squashed between 0 — 1 (representing probabilities for
classification tasks) instead of outputting binary signals. As mentioned earlier, neither the
frequency/speed of the signals nor the firing rates carry any information for artificial neural networks
(this information is carried over by the input weights instead). The timing of the signals is
synchronous, where artificial neurons in the same layer receive their input signals and then send their
output signals all at once. Loops and time deltas can only be partly simulated with Recurrent (RNN)
layers (that suffer greatly from the aforementioned vanishing gradient problem) or with Long
short-term memory (LSTM) layers that act more like state machines or latch circuits than neurons.
These are all considerable differences between biological and artificial neurons.

7.​ Learning: we still do not understand how brains learn, or how redundant connections store and recall
information. Brain fibers grow and reach out to connect to other neurons, neuroplasticity allows new
connections to be created or areas to move and change function, and synapses may strengthen or
weaken based on their importance. Neurons that fire together, wire together (although this is a very
simplified theory and should not taken too literally). By learning, we are building on information that
is already stored in the brain. Our knowledge deepens by repetition and during sleep, and tasks that
once required a focus can be executed automatically once mastered. Artificial neural networks in the
other hand, have a predefined model, where no further neurons or connections can be added or
removed. Only the weights of the connections (and biases representing thresholds) can change during
training. The networks start with random weight values and will slowly try to reach a point where
further changes in the weights would no longer improve performance. Just like there are many
solutions for the same problems in real life, there is no guarantee that the weights of the network will
be the best possible arrangement of weights to a problem — they will only represent one of the infinite
approximations to infinite solutions. Learning can be understood as the process of finding optimal
weights to minimize the differences between the network’s expected and generated output: changing
weights one way would increase this error, changing them the other way would decrees it. Imagine a
foggy mountain top, where all we could tell is that stepping towards a certain direction would take us
downhill. By repeating this process, we would eventually reach a valley where taking any step further
would only take us higher. Once this valley is found we can say that we have reached a local minima.
Note that it’s possible that there are other, better valleys that are even lower from the mountain top
(global minima) that we have missed, since we could not see them. Doing this in usually more than 3
dimensions is called gradient descent. To speed up this “learning process”, instead of going through
each and every example every time, random samples (batches) are taken from the data set and used

https://www.nature.com/articles/pr197666
https://www.nature.com/articles/pr197666
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://www.quora.com/What-is-the-vanishing-gradient-problem
https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29
https://en.wikipedia.org/wiki/Hebbian_theory
https://www.youtube.com/watch?v=oSdPmxRCWws
https://www.youtube.com/watch?v=oSdPmxRCWws

for training iterations. This will only give an approximation of how to adjust the weights to reach a
local minima (finding which direction to take downhill without carefully looking at all directions all
the time), but it’s still a pretty good approximation. We can also take larger steps when ascending the
top and take smaller ones as we are reaching a valley where even small nudges could take us the
wrong way. Walking like this downhill, going faster than carefully planning each and every step is
called stochastic gradient descent. So the rate of how artificial neural networks learn can change over
time (it decreases to ensure better performance), but there aren’t any periods similar to human sleep
phases when the networks would learn better. There is no neural fatigue either, although GPUs
overheating during training can reduce performance. Once trained, an artificial neural network’s
weights can be exported and used to solve problem similar to the ones found in the training set.
Training (backpropagation using an optimization method like stochastic gradient descent, over many
layers and examples) is extremely expensive, but using a trained network (simply doing feedforward
calculation) is ridiculously cheap. Unlike the brain, artificial neural networks don’t learn by recalling
information — they only learn during training, but will always “recall” the same, learned answers
afterwards, without making a mistake. The great thing about this is that “recalling” can be done on
much weaker hardware as many times as we want to. It is also possible to use previously pretrained
models (to save time and resources by not having to start from a totally random set of weights) and
improve them by training with additional examples that have the same input features. This is
somewhat similar to how it’s easier for the brain to learn certain things (like faces), by having
dedicated areas for processing certain kinds of information.

So artificial and biological neurons do differ in more ways than the materials of their environment—
biological neurons have only provided an inspiration to their artificial counterparts, but they are in no way
direct copies with similar potential. If someone calls another human being smart or intelligent, we
automatically assume that they are also capable of handling a large variety of problems, and are probably
polite, kind and diligent as well. Calling a software intelligent only means that it is able to find an optimal
solution to a set of problems.

Structure and Function of a single neuron, , single layer network,

Single-Layer Network
By connecting multiple neurons, the true computing power of the neural networks comes, though even a
single neuron can perform substantial level of computation [Ler91]. The most common structure of
connecting neurons into a network is by layers. The simplest form of layered network is shown in
figure 2.7. The shaded nodes on the left are in the so-called input layer. The input layer neurons are to only
pass and distribute the inputs and perform no computation. Thus, the only true layer of neurons is the one

on the right. Each of the inputs is connected to every artificial neuron in the output

layer through the connection weight. Since every value of outputs is calculated from
the same set of input values, each output is varied based on the connection weights. Although the presented
network is fully connected, the true biological neural network may not have all possible connections - the
weight value of zero can be represented as ``no connection".

https://stackoverflow.com/questions/37953585/what-is-the-diffirence-between-sgd-and-back-propogation
http://wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node63.html#l:lerma:91
http://wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node15.html#figSingleLayer

: Single Layer Neural Network

Perceptron training algorithm, Linear separability, Widrow & Hebb;s

learning rule/Delta rule, ADALINE, MADALINE,

As the name suggests, supervised learning takes place under the supervision of a teacher. This learning
process is dependent. During the training of ANN under supervised learning, the input vector is presented
to the network, which will produce an output vector. This output vector is compared with the
desired/target output vector. An error signal is generated if there is a difference between the actual output
and the desired/target output vector. On the basis of this error signal, the weights would be adjusted until
the actual output is matched with the desired output.
Perceptron
Developed by Frank Rosenblatt by using McCulloch and Pitts model, perceptron is the basic operational
unit of artificial neural networks. It employs supervised learning rule and is able to classify the data into
two classes.
Operational characteristics of the perceptron: It consists of a single neuron with an arbitrary number of
inputs along with adjustable weights, but the output of the neuron is 1 or 0 depending upon the threshold.
It also consists of a bias whose weight is always 1. Following figure gives a schematic representation of
the perceptron.

Perceptron thus has the following three basic elements −

●​ Links − It would have a set of connection links, which carries a weight including a bias always
having weight 1.

●​ Adder − It adds the input after they are multiplied with their respective weights.
●​ Activation function − It limits the output of neuron. The most basic activation function is a

Heaviside step function that has two possible outputs. This function returns 1, if the input is
positive, and 0 for any negative input.

Training Algorithm
Perceptron network can be trained for single output unit as well as multiple output units.
Training Algorithm for Single Output Unit
Step 1 − Initialize the following to start the training −

●​ Weights
●​ Bias
●​ Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be
set equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every training vector x.
Step 4 − Activate each input unit as follows −

xi=si(i=1ton)xi=si(i=1ton)
Step 5 − Now obtain the net input with the following relation −

yin=b+∑inxi.wiyin=b+∑inxi.wi
Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output.

f(yin)=⎧⎩⎨10−1ifyin>θif−θ⩽yin⩽θifyin<−θf(yin)={1ifyin>θ0if−θ⩽yin⩽θ−1ifyin<−θ
Step 7 − Adjust the weight and bias as follows −
Case 1 − if y ≠ t then,

wi(new)=wi(old)+αtxiwi(new)=wi(old)+αtxi
b(new)=b(old)+αtb(new)=b(old)+αt

Case 2 − if y = t then,
wi(new)=wi(old)wi(new)=wi(old)

b(new)=b(old)b(new)=b(old)
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
Step 8 − Test for the stopping condition, which would happen when there is no change in weight.
Training Algorithm for Multiple Output Units
The following diagram is the architecture of perceptron for multiple output classes.

Step 1 − Initialize the following to start the training −

●​ Weights
●​ Bias
●​ Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be
set equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every training vector x.
Step 4 − Activate each input unit as follows −

xi=si(i=1ton)xi=si(i=1ton)
Step 5 − Obtain the net input with the following relation −

yin=b+∑inxiwijyin=b+∑inxiwij
Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output for each output unit j = 1 to
m −

f(yin)=⎧⎩⎨⎪⎪10−1ifyinj>θif−θ⩽yinj⩽θifyinj<−θf(yin)={1ifyinj>θ0if−θ⩽yinj⩽θ−1ifyinj<−θ
Step 7 − Adjust the weight and bias for x = 1 to n and j = 1 to m as follows −
Case 1 − if yj ≠ tj then,

wij(new)=wij(old)+αtjxiwij(new)=wij(old)+αtjxi
bj(new)=bj(old)+αtjbj(new)=bj(old)+αtj

Case 2 − if yj = tj then,
wij(new)=wij(old)wij(new)=wij(old)

bj(new)=bj(old)bj(new)=bj(old)
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
Step 8 − Test for the stopping condition, which will happen when there is no change in weight.
Adaptive Linear Neuron (Adaline)
Adaline which stands for Adaptive Linear Neuron, is a network having a single linear unit. It was
developed by Widrow and Hoff in 1960. Some important points about Adaline are as follows −

●​ It uses bipolar activation function.
●​ It uses delta rule for training to minimize the Mean-Squared Error (MSE) between the actual

output and the desired/target output.
●​ The weights and the bias are adjustable.

Architecture
The basic structure of Adaline is similar to perceptron having an extra feedback loop with the help of
which the actual output is compared with the desired/target output. After comparison on the basis of
training algorithm, the weights and bias will be updated.

Training Algorithm
Step 1 − Initialize the following to start the training −

●​ Weights
●​ Bias
●​ Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be
set equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every bipolar training pair s:t.
Step 4 − Activate each input unit as follows −

xi=si(i=1ton)xi=si(i=1ton)
Step 5 − Obtain the net input with the following relation −

yin=b+∑inxiwiyin=b+∑inxiwi
Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output −

f(yin)={1−1ifyin⩾0ifyin<0f(yin)={1ifyin⩾0−1ifyin<0
Step 7 − Adjust the weight and bias as follows −
Case 1 − if y ≠ t then,

wi(new)=wi(old)+α(t−yin)xiwi(new)=wi(old)+α(t−yin)xi
b(new)=b(old)+α(t−yin)b(new)=b(old)+α(t−yin)

Case 2 − if y = t then,
wi(new)=wi(old)wi(new)=wi(old)

b(new)=b(old)b(new)=b(old)
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
(t−yin)(t−yin) is the computed error.
Step 8 − Test for the stopping condition, which will happen when there is no change in weight or the
highest weight change occurred during training is smaller than the specified tolerance.
Multiple Adaptive Linear Neuron (Madaline)
Madaline which stands for Multiple Adaptive Linear Neuron, is a network which consists of many
Adalines in parallel. It will have a single output unit. Some important points about Madaline are as follows
−

●​ It is just like a multilayer perceptron, where Adaline will act as a hidden unit between the input
and the Madaline layer.

●​ The weights and the bias between the input and Adaline layers, as in we see in the Adaline
architecture, are adjustable.

●​ The Adaline and Madaline layers have fixed weights and bias of 1.
●​ Training can be done with the help of Delta rule.

Architecture
The architecture of Madaline consists of “n” neurons of the input layer, “m”neurons of the Adaline layer,
and 1 neuron of the Madaline layer. The Adaline layer can be considered as the hidden layer as it is
between the input layer and the output layer, i.e. the Madaline layer.

Training Algorithm
By now we know that only the weights and bias between the input and the Adaline layer are to be
adjusted, and the weights and bias between the Adaline and the Madaline layer are fixed.
Step 1 − Initialize the following to start the training −

●​ Weights
●​ Bias
●​ Learning rate αα

For easy calculation and simplicity, weights and bias must be set equal to 0 and the learning rate must be
set equal to 1.
Step 2 − Continue step 3-8 when the stopping condition is not true.
Step 3 − Continue step 4-6 for every bipolar training pair s:t.
Step 4 − Activate each input unit as follows −

xi=si(i=1ton)xi=si(i=1ton)
Step 5 − Obtain the net input at each hidden layer, i.e. the Adaline layer with the following relation −

Qinj=bj+∑inxiwijj=1tomQinj=bj+∑inxiwijj=1tom
Here ‘b’ is bias and ‘n’ is the total number of input neurons.
Step 6 − Apply the following activation function to obtain the final output at the Adaline and the
Madaline layer −

f(x)={1−1ifx⩾0ifx<0f(x)={1ifx⩾0−1ifx<0
Output at the hidden (Adaline) unit

Qj=f(Qinj)Qj=f(Qinj)
Final output of the network

y=f(yin)y=f(yin)
i.e. yinj=b0+∑mj=1Qjvjyinj=b0+∑j=1mQjvj
Step 7 − Calculate the error and adjust the weights as follows −
Case 1 − if y ≠ t and t = 1 then,

wij(new)=wij(old)+α(1−Qinj)xiwij(new)=wij(old)+α(1−Qinj)xi
bj(new)=bj(old)+α(1−Qinj)bj(new)=bj(old)+α(1−Qinj)

In this case, the weights would be updated on Qj where the net input is close to 0 because t = 1.
Case 2 − if y ≠ t and t = -1 then,

wik(new)=wik(old)+α(−1−Qink)xiwik(new)=wik(old)+α(−1−Qink)xi
bk(new)=bk(old)+α(−1−Qink)bk(new)=bk(old)+α(−1−Qink)

In this case, the weights would be updated on Qk where the net input is positive because t = -1.
Here ‘y’ is the actual output and ‘t’ is the desired/target output.
Case 3 − if y = t then
There would be no change in weights.

Step 8 − Test for the stopping condition, which will happen when there is no change in weight or the
highest weight change occurred during training is smaller than the specified tolerance.
Back Propagation Neural Networks
Back Propagation Neural (BPN) is a multilayer neural network consisting of the input layer, at least one
hidden layer and output layer. As its name suggests, back propagating will take place in this network. The
error which is calculated at the output layer, by comparing the target output and the actual output, will be
propagated back towards the input layer.
Architecture
As shown in the diagram, the architecture of BPN has three interconnected layers having weights on them.
The hidden layer as well as the output layer also has bias, whose weight is always 1, on them. As is clear
from the diagram, the working of BPN is in two phases. One phase sends the signal from the input layer to
the output layer, and the other phase back propagates the error from the output layer to the input layer.

Training Algorithm
For training, BPN will use binary sigmoid activation function. The training of BPN will have the
following three phases.

●​ Phase 1 − Feed Forward Phase
●​ Phase 2 − Back Propagation of error
●​ Phase 3 − Updating of weights

All these steps will be concluded in the algorithm as follows
Step 1 − Initialize the following to start the training −

●​ Weights
●​ Learning rate αα

For easy calculation and simplicity, take some small random values.
Step 2 − Continue step 3-11 when the stopping condition is not true.
Step 3 − Continue step 4-10 for every training pair.
Phase 1
Step 4 − Each input unit receives input signal xi and sends it to the hidden unit for all i = 1 to n
Step 5 − Calculate the net input at the hidden unit using the following relation −

Qinj=b0j+∑i=1nxivijj=1topQinj=b0j+∑i=1nxivijj=1top
Here b0j is the bias on hidden unit, vij is the weight on j unit of the hidden layer coming from i unit of the
input layer.
Now calculate the net output by applying the following activation function

Qj=f(Qinj)Qj=f(Qinj)
Send these output signals of the hidden layer units to the output layer units.
Step 6 − Calculate the net input at the output layer unit using the following relation −

yink=b0k+∑j=1pQjwjkk=1tomyink=b0k+∑j=1pQjwjkk=1tom

Here b0k ⁡is the bias on output unit, wjk is the weight on k unit of the output layer coming from j unit of the
hidden layer.
Calculate the net output by applying the following activation function

yk=f(yink)yk=f(yink)
Phase 2
Step 7 − Compute the error correcting term, in correspondence with the target pattern received at each
output unit, as follows −

δk=(tk−yk)f′(yink)δk=(tk−yk)f′(yink)
On this basis, update the weight and bias as follows −

Δvjk=αδkQijΔvjk=αδkQij
Δb0k=αδkΔb0k=αδk

Then, send δkδk back to the hidden layer.
Step 8 − Now each hidden unit will be the sum of its delta inputs from the output units.

δinj=∑k=1mδkwjkδinj=∑k=1mδkwjk
Error term can be calculated as follows −

δj=δinjf′(Qinj)δj=δinjf′(Qinj)
On this basis, update the weight and bias as follows −

Δwij=αδjxiΔwij=αδjxi
Δb0j=αδjΔb0j=αδj

Phase 3
Step 9 − Each output unit (ykk = 1 to m) updates the weight and bias as follows −

vjk(new)=vjk(old)+Δvjkvjk(new)=vjk(old)+Δvjk
b0k(new)=b0k(old)+Δb0kb0k(new)=b0k(old)+Δb0k

Step 10 − Each output unit (zjj = 1 to p) updates the weight and bias as follows −
wij(new)=wij(old)+Δwijwij(new)=wij(old)+Δwij
b0j(new)=b0j(old)+Δb0jb0j(new)=b0j(old)+Δb0j

Step 11 − Check for the stopping condition, which may be either the number of epochs reached or the
target output matches the actual output.
Generalized Delta Learning Rule
Delta rule works only for the output layer. On the other hand, generalized delta rule, also called
as back-propagation rule, is a way of creating the desired values of the hidden layer.
Mathematical Formulation
For the activation function yk=f(yink)yk=f(yink) the derivation of net input on Hidden layer as well as on
output layer can be given by

yink=∑iziwjkyink=∑iziwjk
And yinj=∑ixivijyinj=∑ixivij
Now the error which has to be minimized is

E=12∑k[tk−yk]2E=12∑k[tk−yk]2
By using the chain rule, we have

∂E∂wjk=∂∂wjk(12∑k[tk−yk]2)∂E∂wjk=∂∂wjk(12∑k[tk−yk]2)
=∂∂wjk⟮12[tk−t(yink)]2⟯=∂∂wjk⟮12[tk−t(yink)]2⟯

=−[tk−yk]∂∂wjkf(yink)=−[tk−yk]∂∂wjkf(yink)
=−[tk−yk]f(yink)∂∂wjk(yink)=−[tk−yk]f(yink)∂∂wjk(yink)

=−[tk−yk]f′(yink)zj=−[tk−yk]f′(yink)zj
Now let us say δk=−[tk−yk]f′(yink)δk=−[tk−yk]f′(yink)
The weights on connections to the hidden unit zj can be given by −

∂E∂vij=−∑kδk∂∂vij(yink)∂E∂vij=−∑kδk∂∂vij(yink)
Putting the value of yinkyink we will get the following

δj=−∑kδkwjkf′(zinj)δj=−∑kδkwjkf′(zinj)
Weight updating can be done as follows −
For the output unit −

Δwjk=−α∂E∂wjkΔwjk=−α∂E∂wjk
=αδkzj=αδkzj

For the hidden unit −
Δvij=−α∂E∂vijΔvij=−α∂E∂vij

=αδjxi

AI v/s ANN.

Artificial intelligence (AI) and artificial neural networks (ANN) are two exciting and intertwined fields in
computer science. There are, however, several differences between the two that are worth knowing about.
The key difference is that neural networks are a stepping stone in the search for artificial intelligence.

Artificial intelligence is a vast field that has the goal of creating intelligent machines, something that has
been achieved many times depending on how you define intelligence. Despite the fact that we have
computers that can win at “Jeopardy” and beat chess champions, the goal of AI is generally seen as a quest
for general intelligence, or intelligence that can be applied to diverse and unrelated situational problems. A
grossly simplified example is the pain from getting burned. When this happens for the first time, a
connection is made in your brain that identifies the sensory information known as fire (flames, smell of
smoke, heat) and relates it with pain. This is how you learn, at a very young age, how to avoid getting
burned. Through this same neural network, we can do a lot of general learning like “ice cream tastes good”
and even make deductive leaps like “there are always clouds before rain” or “stocks always rally in
December.” These leaps are not always correct (there is bad ice cream and there are stocks that drop in
December), but they can be corrected through experience, thus allowing adaptive learning.
Artificial neural networks try to recreate this learning system on computers by constructing a simple
framework program to respond to a problem and receive feedback on how it does. A computer can optimize
its response by doing the same problem thousands of times and adjusting its response according to the
feedback it receives. The computer can then be given a different problem, which it can approach in the
same way as it learned from the previous one. By varying the problems and the number of approaches to
solving them that the computer has learned, computer scientists can teach a computer to be a generalist.
Although this conjures up images of computers taking over the world and harvesting humans as seen in
Hollywood movies like “The Martrix,” we are still a long way from neural networking our way to artificial
intelligence. The problems being tested on neural networks are all expressed mathematically. You can’t
hold a flower up to a computer and tell it to guess the color by the smell, because the smell would have to
be expressed in numbers and then the computer would have to catalog those numbers in memory, along
with images of flowers emitting that smell.
That said, artificial neural networks that can be given more inputs of things like smell – and the capacity to
learn from all those inputs – may be on track to produce the first artificial intelligence that meets the
standards of even the most hardcore AI enthusiast.
In essence, artificial neural networks are models of human neural networks that are designed to help
computers learn. Artificial intelligence is the Holy Grail some computer scientists are trying to achieve
using techniques like mimicking neural networks.
Example: Here’s the basic structure:

In order to have some numbers to work with, here are the initial weights, the biases, and training
inputs/outputs:

The goal of backpropagation is to optimize the weights so that the neural network can learn how to
correctly map arbitrary inputs to outputs.
For the rest of this tutorial we’re going to work with a single training set: given inputs 0.05 and 0.10, we
want the neural network to output 0.01 and 0.99.
The Forward Pass
To begin, lets see what the neural network currently predicts given the weights and biases above and inputs
of 0.05 and 0.10. To do this we’ll feed those inputs forward though the network.

We figure out the total net input to each hidden layer neuron, squash the total net input using an activation
function (here we use the logistic function), then repeat the process with the output layer neurons.
Total net input is also referred to as just net input by some sources.
Here’s how we calculate the total net input for :

We then squash it using the logistic function to get the output of :

Carrying out the same process for we get:

We repeat this process for the output layer neurons, using the output from the hidden layer neurons as
inputs.
Here’s the output for :

And carrying out the same process for we get:

Calculating the Total Error
We can now calculate the error for each output neuron using the squared error function and sum them to get
the total error:

Some sources refer to the target as the ideal and the output as the actual.

The is included so that exponent is cancelled when we differentiate later on. The result is eventually
multiplied by a learning rate anyway so it doesn’t matter that we introduce a constant here [1].
For example, the target output for is 0.01 but the neural network output 0.75136507, therefore its error
is:

Repeating this process for (remembering that the target is 0.99) we get:

The total error for the neural network is the sum of these errors:

The Backwards Pass
Our goal with backpropagation is to update each of the weights in the network so that they cause the actual
output to be closer the target output, thereby minimizing the error for each output neuron and the network
as a whole.
Output Layer

Consider . We want to know how much a change in affects the total error, aka .

 is read as “the partial derivative of with respect to “. You can also say “the gradient
with respect to “.
By applying the chain rule we know that:

Visually, here’s what we’re doing:

http://web.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf
http://en.wikipedia.org/wiki/Backpropagation#Derivation
http://www.amazon.com/Introduction-Math-Neural-Networks-Heaton-ebook/dp/B00845UQL6/ref=sr_1_1?ie=UTF8&qid=1426296804&sr=8-1&keywords=neural+network
http://en.wikipedia.org/wiki/Backpropagation#Derivation
http://en.wikipedia.org/wiki/Chain_rule

We need to figure out each piece in this equation.
First, how much does the total error change with respect to the output?

 is sometimes expressed as
When we take the partial derivative of the total error with respect to , the quantity

 becomes zero because does not affect it which means we’re taking the
derivative of a constant which is zero.
Next, how much does the output of change with respect to its total net input?
The partial derivative of the logistic function is the output multiplied by 1 minus the output:

Finally, how much does the total net input of change with respect to ?

Putting it all together:

You’ll often see this calculation combined in the form of the delta rule:

Alternatively, we have and which can be written as , aka (the Greek letter
delta) aka the node delta. We can use this to rewrite the calculation above:

Therefore:

Some sources extract the negative sign from so it would be written as:

http://en.wikipedia.org/wiki/Logistic_function#Derivative
http://en.wikipedia.org/wiki/Delta_rule

To decrease the error, we then subtract this value from the current weight (optionally multiplied by some
learning rate, eta, which we’ll set to 0.5):

Some sources use (alpha) to represent the learning rate, others use (eta), and others even use
 (epsilon).
We can repeat this process to get the new weights , , and :

We perform the actual updates in the neural network after we have the new weights leading into the hidden
layer neurons (ie, we use the original weights, not the updated weights, when we continue the
backpropagation algorithm below).
Hidden Layer
Next, we’ll continue the backwards pass by calculating new values for , , , and .
Big picture, here’s what we need to figure out:

Visually:

We’re going to use a similar process as we did for the output layer, but slightly different to account for the
fact that the output of each hidden layer neuron contributes to the output (and therefore error) of multiple

output neurons. We know that affects both and therefore the needs to take
into consideration its effect on the both output neurons:

http://en.wikipedia.org/wiki/Delta_rule
http://aima.cs.berkeley.edu/
https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf
http://web.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf
https://matthewmazur.files.wordpress.com/2015/03/nn-calculation.png

Starting with :

We can calculate using values we calculated earlier:

And is equal to :

Plugging them in:

Following the same process for , we get:

Therefore:

Now that we have , we need to figure out and then for each weight:

We calculate the partial derivative of the total net input to with respect to the same as we did for the
output neuron:

Putting it all together:

You might also see this written as:

We can now update :

Repeating this for , , and

Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the error
on the network was 0.298371109. After this first round of backpropagation, the total error is now down to
0.291027924. It might not seem like much, but after repeating this process 10,000 times, for example, the
error plummets to 0.0000351085. At this point, when we feed forward 0.05 and 0.1, the two outputs
neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

limitation, characteristics back propagation

Gradient descent with backpropagation is not guaranteed to find the global minimum of the error function,
but only a local minimum; also, it has trouble crossing plateaus in the error function landscape. This issue,
caused by the non-convexity of error functions in neural networks, was long thought to be a major
drawback, but Yann LeCun et al. argue that in many practical problems, it is not.[7]
Backpropagation learning does not require normalization of input vectors; however, normalization could
improve performance

Application of EBPA.

As an elective for my Bachelor's degree, I took a graduate-level class in Neural Networks and found it to be
extremely exciting. In one of the final assignments, we were individually asked to apply and
evaluate back-propagation in solving several types of problems that include classification, function
estimation, and time-series prediction.
MATLAB's ability to efficiently calculate vectors made it the tool of choice in building the "Back Prop"
framework. I then built a series of tests to evaluate the effectiveness of "Back Prop" configurations for each
specific problem. Although the goal was to ultimately solve each problem, setting-up and refactoring the
problem to work under the constraints of neural networks was also a rewarding task in itself.
Application #1: Classification
In this classification problem, the goal is to identify whether a certain "data point" belongs to Class 1, 2, or
3 (see above). Random points are assigned to a certain class, and the neural network is trained to find the
pattern. When training is complete, it will use what it has learned to accurately classify new points.

Here, the network was able to distinguish group 1
(red) from group 2 (blue).

Here, the system was trained to identify three
groups.

Application #2: Function Approximation
In this problem, the network tries to approximate the value of a certain function. It is fed with noisy data,
and the goal is to find the true pattern. After training, the network successfully estimates the value of the
gaussian function (below).

http://en.wikipedia.org/wiki/Backpropagation

Estimating the Gaussian function

Application #3: Time-series Prediction
In this problem, the goal is to design a neural network to predict a value based on a given time-series data
(i.e. stock market prediction based on given trends). To approach this problem, the inputs to the neural
network have to be refactored in chunks, and the resulting output will be the next data item directly
following that chunk (see below)

The input space and output space for the time-series prediction problem.

In this specific problem, goal was to predict time-series data based on a sine wave. After training the
network, lo' and behold system was able to accurately predict 1000 data points for the sine wave. The
results are seen below.

1000 sine wave predictions for the trained network.

Besides acquiring a fascination with Neural Networks, learning and interacting with the brilliant graduate
students in the class also made it a worthwhile experience.

.

Adaptive Resonance Theory: Architecture, classifications,
Implementation and training, Associative Memory.

his network was developed by Stephen Grossberg and Gail Carpenter in 1987. It is based on competition
and uses unsupervised learning model. Adaptive Resonance Theory (ART) networks, as the name
suggests, is always open to new learning (adaptive) without losing the old patterns (resonance). Basically,
ART network is a vector classifier which accepts an input vector and classifies it into one of the categories
depending upon which of the stored pattern it resembles the most.
Operating Principal
The main operation of ART classification can be divided into the following phases −

●​ Recognition phase − The input vector is compared with the classification presented at every
node in the output layer. The output of the neuron becomes “1” if it best matches with the
classification applied, otherwise it becomes “0”.

●​ Comparison phase − In this phase, a comparison of the input vector to the comparison layer
vector is done. The condition for reset is that the degree of similarity would be less than vigilance
parameter.

●​ Search phase − In this phase, the network will search for reset as well as the match done in the
above phases. Hence, if there would be no reset and the match is quite good, then the
classification is over. Otherwise, the process would be repeated and the other stored pattern must
be sent to find the correct match.

ART1

It is a type of ART, which is designed to cluster binary vectors. We can understand about this with the
architecture of it.
Architecture of ART1
It consists of the following two units −
Computational Unit − It is made up of the following −

●​ Input unit (F1 layer) − It further has the following two portions −
o​ F1(a) layer (Input portion) − In ART1, there would be no processing in this portion

rather than having the input vectors only. It is connected to F1(b) layer (interface
portion).

o​ F1(b) layer (Interface portion) − This portion combines the signal from the input
portion with that of F2 layer. F1(b) layer is connected to F2 layer through bottom up
weights bij and F2layer is connected to F1(b) layer through top down weights tji.

●​ Cluster Unit (F2 layer) − This is a competitive layer. The unit having the largest net input is
selected to learn the input pattern. The activation of all other cluster unit are set to 0.

●​ Reset Mechanism − The work of this mechanism is based upon the similarity between the
top-down weight and the input vector. Now, if the degree of this similarity is less than the
vigilance parameter, then the cluster is not allowed to learn the pattern and a rest would happen.

Supplement Unit − Actually the issue with Reset mechanism is that the layer F2 must have to be inhibited
under certain conditions and must also be available when some learning happens. That is why two
supplemental units namely, G1 and G2 is added along with reset unit, R. They are called gain control
units. These units receive and send signals to the other units present in the network. ‘+’ indicates an
excitatory signal, while ‘−’ indicates an inhibitory signal.

Parameters Used
Following parameters are used −

●​ n − Number of components in the input vector
●​ m − Maximum number of clusters that can be formed
●​ bij − Weight from F1(b) to F2 layer, i.e. bottom-up weights

●​ tji − Weight from F2 to F1(b) layer, i.e. top-down weights
●​ ρ − Vigilance parameter
●​ ||x|| − Norm of vector x

Algorithm
Step 1 − Initialize the learning rate, the vigilance parameter, and the weights as follows −

α>1and0<ρ≤1α>1and0<ρ≤1
0<bij(0)<αα−1+nandtij(0)=10<bij(0)<αα−1+nandtij(0)=1

Step 2 − Continue step 3-9, when the stopping condition is not true.
Step 3 − Continue step 4-6 for every training input.
Step 4 − Set activations of all F1(a) and F1 units as follows
F2 = 0 and F1(a) = input vectors
Step 5 − Input signal from F1(a) to F1(b) layer must be sent like

si=xisi=xi
Step 6 − For every inhibited F2 node
yj=∑ibijxiyj=∑ibijxi the condition is yj ≠ -1
Step 7 − Perform step 8-10, when the reset is true.
Step 8 − Find J for yJ ≥ yj for all nodes j
Step 9 − Again calculate the activation on F1(b) as follows

xi=sitJixi=sitJi
Step 10 − Now, after calculating the norm of vector x and vector s, we need to check the reset condition as
follows −
If ||x||/ ||s|| < vigilance parameter ρ,⁡then⁡inhibit ⁡node J and go to step 7
Else If ||x||/ ||s|| ≥ vigilance parameter ρ, then proceed further.
Step 11 − Weight updating for node J can be done as follows −

bij(new)=αxiα−1+||x||bij(new)=αxiα−1+||x||
tij(new)=xitij(new)=xi

Step 12 − The stopping condition for algorithm must be checked and it may be as follows −
●​ Do not have any change in weight.
●​ Reset is not performed for units.
●​ Maximum number of epochs reached.

Soft
Computing:
Module-IV

Fuzzy Logic: Fuzzy set theory

Fuzzy Logic | Introduction
The term fuzzy refers to things which are not clear or are vague. In the real world many times we encounter
a situation when we can’t determine whether the state is true or false, their fuzzy logic provides a very
valuable flexibility for reasoning. In this way, we can consider the inaccuracies and uncertainties of any
situation.

In boolean system truth value, 1.0 represents absolute truth value and 0.0 represents absolute false value.
But in the fuzzy system, there is no logic for absolute truth and absolute false value. But in fuzzy logic,
there is intermediate value too present which is partially true and partially false.

Architecture

Its Architecture contains four parts :

RULE BASE: It contains the aet of rules and the IF-THEN conditions provided by the experts to govern the
decision making system, on the basis of linguistic information. Recent developments in fuzzy theory offer
several effective methods for the design and tuning of fuzzy controllers. Most of these developments reduce
the number of fuzzy rules.
FUZZIFICATION: It is used to convert inputs i.e. crisp numbers into fuzzy sets. Crisp inputs are basically
the exact inputs measured by sensors and passed into the control system for processing, such as
temperature, pressure, rpm’s, etc.
INFERENCE ENGINE: It determines the matching degree of the current fuzzy input with respect to each
rule and decides which rules are to be fired according to the input field. Next, the fired rules are combined
to form the control actions.
DEFUZZIFICATION: It is used to convert the fuzzy sets obtained by inference engine into a crisp value.
There are several defuzzification methods available and the best suited one is used with a specific expert
system to reduce the error.

Membership function

Definition: A graph that defines how each point in the input space is mapped to membership value between
0 and 1. Input space is often referred as the universe of discourse or universal set (u), which contain all the
possible elements of concern in each particular application.

There are largely three types of fuzzifiers:
singleton fuzzifier,
Gaussian fuzzifier, and
trapezoidal or triangular fuzzifier
What is Fuzzy Control?

It is a technique to embody human-like thinkings into a control system.
It may not be designed to give accurate reasoning but it is designed to give acceptable reasoning.
It can emulate human deductive thinking, that is, the process people use to infer conclusions from what
they know.
Any uncertainties can be easily dealt with the help of fuzzy logic.
Advantages of Fuzzy Logic System

This system can work with any type of inputs whether it is imprecise, distorted or noisy input information.
The construction of Fuzzy Logic Systems is easy and understandable.
Fuzzy logic comes with mathematical concepts of set theory and the reasoning of that is quite simple.
It provides a very efficient solution to complex problems in all fields of life as it resembles human
reasoning and decision making.
The algorithms can be described with little data, so little memory is required.
Disadvantages of Fuzzy Logic Systems

Many researchers proposed different ways to solve a given problem through fuzzy logic which lead to
ambiguity.There is no systematic approach to solve a given problem through fuzzy logic.
Proof of its characteristics is difficult or impossible in most cases because every time we do not get
mathematical description of our approach.
As fuzzy logic works on precise as well as imprecise data so most of the time accuracy
iscompromised.

Application of FL

It is used in the aerospace field for altitude control of spacecraft and satellite.
It has used in the automotive system for speed control, traffic control.
It is used for decision making support systems and personal evaluation in the large company business.
It has application in chemical industry for controlling the pH, drying, chemical distillation process.
Fuzzy logic are used in Natural language processing and various intensive applications in Artificial
Intelligence.
Fuzzy logic are extensively used in modern control systems such as expert systems.
Fuzzy Logic is used with Neural Networks as it mimics how a person would make decisions, only much
faster. It is done by Aggregation of data and changing into more meaningful data by forming partial truths
as Fuzzy sets.

Fuzzy set versus crisp set

Fuzzy logic is a form of many-valued logic in which the truth values of variables may be any real number
between 0 and 1 inclusive. It is employed to handle the concept of partial truth, where the truth value may
range between completely true and completely false. By contrast, in Boolean logic, the truth values of
variables may only be the integer values 0 or 1.
The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by Lotfi Zadeh. Fuzzy logic
had however been studied since the 1920s, as infinite-valued logic—notably by Łukasiewicz and Tarski.
It is based on the observation that people make decisions based on imprecise and non-numerical
information, fuzzy models or sets are mathematical means of representing vagueness and imprecise
information, hence the term fuzzy. These models have the capability of recognising, representing,
manipulating, interpreting, and utilising data and information that are vague and lack certainty.
Fuzzy logic has been applied to many fields, from control theory to artificial intelligence.
A set is an unordered collection of different elements. It can be written explicitly by listing its elements
using the set bracket. If the order of the elements is changed or any element of a set is repeated, it does not
make any changes in the set.
Example

●​ A set of all positive integers.
●​ A set of all the planets in the solar system.
●​ A set of all the states in India.

https://en.wikipedia.org/wiki/Many-valued_logic
https://en.wikipedia.org/wiki/Truth_value
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Fuzzy_set_theory
https://en.wikipedia.org/wiki/Lotfi_A._Zadeh
https://en.wikipedia.org/wiki/%C5%81ukasiewicz_logic
https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
https://en.wikipedia.org/wiki/Alfred_Tarski
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Artificial_intelligence

●​ A set of all the lowercase letters of the alphabet.
Mathematical Representation of a Set
Sets can be represented in two ways −
Roster or Tabular Form
In this form, a set is represented by listing all the elements comprising it. The elements are enclosed within
braces and separated by commas.
Following are the examples of set in Roster or Tabular Form −

●​ Set of vowels in English alphabet, A = {a,e,i,o,u}
●​ Set of odd numbers less than 10, B = {1,3,5,7,9}

Set Builder Notation
In this form, the set is defined by specifying a property that elements of the set have in common. The set is
described as A = {x:p(x)}
Example 1 − The set {a,e,i,o,u} is written as

A = {x:x is a vowel in English alphabet}
Example 2 − The set {1,3,5,7,9} is written as
B = {x:1 ≤ x < 10 and (x%2) ≠ 0}
If an element x is a member of any set S, it is denoted by x∈S and if an element y is not a member of set
S, it is denoted by y∉S.
Example − If S = {1,1.2,1.7,2},1 ∈ S but 1.5 ∉ S
Cardinality of a Set
Cardinality of a set S, denoted by |S||S|, is the number of elements of the set. The number is also referred
as the cardinal number. If a set has an infinite number of elements, its cardinality is ∞∞.
Example − |{1,4,3,5}| = 4,|{1,2,3,4,5,…}| = ∞
If there are two sets X and Y, |X| = |Y| denotes two sets X and Y having same cardinality. It occurs when
the number of elements in X is exactly equal to the number of elements in Y. In this case, there exists a
bijective function ‘f’ from X to Y.
|X| ≤ |Y| denotes that set X’s cardinality is less than or equal to set Y’s cardinality. It occurs when the
number of elements in X is less than or equal to that of Y. Here, there exists an injective function ‘f’ from
X to Y.
|X| < |Y| denotes that set X’s cardinality is less than set Y’s cardinality. It occurs when the number of
elements in X is less than that of Y. Here, the function ‘f’ from X to Y is injective function but not
bijective.
If |X| ≤ |Y| and |X| ≤ |Y| then |X| = |Y|. The sets X and Y are commonly referred as equivalent sets.
Types of Sets
Sets can be classified into many types; some of which are finite, infinite, subset, universal, proper,
singleton set, etc.
Finite Set
A set which contains a definite number of elements is called a finite set.
Example − S = {x|x ∈ N and 70 > x > 50}
Infinite Set
A set which contains infinite number of elements is called an infinite set.
Example − S = {x|x ∈ N and x > 10}
Subset
A set X is a subset of set Y (Written as X ⊆ Y) if every element of X is an element of set Y.
Example 1 − Let, X = {1,2,3,4,5,6} and Y = {1,2}. Here set Y is a subset of set X as all the elements of
set Y is in set X. Hence, we can write Y⊆X.
Example 2 − Let, X = {1,2,3} and Y = {1,2,3}. Here set Y is a subset (not a proper subset) of set X as all
the elements of set Y is in set X. Hence, we can write Y⊆X.
Proper Subset
The term “proper subset” can be defined as “subset of but not equal to”. A Set X is a proper subset of set
Y (Written as X ⊂ Y) if every element of X is an element of set Y and |X| < |Y|.
Example − Let, X = {1,2,3,4,5,6} and Y = {1,2}. Here set Y ⊂ X, since all elements in Y are contained
in X too and X has at least one element which is more than set Y.
Universal Set
It is a collection of all elements in a particular context or application. All the sets in that context or
application are essentially subsets of this universal set. Universal sets are represented as U.

Example − We may define U as the set of all animals on earth. In this case, a set of all mammals is a
subset of U, a set of all fishes is a subset of U, a set of all insects is a subset of U, and so on.
Empty Set or Null Set
An empty set contains no elements. It is denoted by Φ. As the number of elements in an empty set is
finite, empty set is a finite set. The cardinality of empty set or null set is zero.
Example – S = {x|x ∈ N and 7 < x < 8} = Φ
Singleton Set or Unit Set
A Singleton set or Unit set contains only one element. A singleton set is denoted by {s}.
Example − S = {x|x ∈ N, 7 < x < 9} = {8}
Equal Set
If two sets contain the same elements, they are said to be equal.
Example − If A = {1,2,6} and B = {6,1,2}, they are equal as every element of set A is an element of set B
and every element of set B is an element of set A.

	What is Artificial Intelligence?
	Production System. Types of Production Systems.

	Single Agent Pathfinding Problems
	Search Terminology
	Brute-Force Search Strategies
	Breadth-First Search
	
	
	
	
	
	Depth-First Search
	Bidirectional Search
	Uniform Cost Search
	Iterative Deepening Depth-First Search
	
	
	
	
	
	Comparison of Various Algorithms Complexities

	
	, Best first Search, A* algorithm, AO* Algorithms and various types of control

	
	Hill-Climbing Search

	Disadvantage − This algorithm is neither complete, nor optimal
	
	
	Informed (Heuristic) Search Strategies
	Heuristic Evaluation Functions
	Pure Heuristic Search
	
	
	A * Search
	Greedy Best First Search

	Local Search Algorithms
	Local Beam Search
	Simulated Annealing
	Travelling Salesman Problem

	Introduction to Optimization
	What are Genetic Algorithms?
	Advantages of GAs
	Limitations of GAs

	Binary Representation
	Real Valued Representation
	Integer Representation
	Permutation Representation
	Genetic Algorithms - Population
	Population Initialization
	Population Models
	Steady State
	Generational

	Genetic Algorithms - Fitness Function
	Genetic Algorithms - Parent Selection
	Fitness Proportionate Selection
	Roulette Wheel Selection
	Stochastic Universal Sampling (SUS)

	Tournament Selection
	Rank Selection
	Random Selection

	Genetic Algorithms - Crossover
	Introduction to Crossover
	Crossover Operators
	One Point Crossover
	Multi Point Crossover
	Uniform Crossover
	Whole Arithmetic Recombination
	Davis’ Order Crossover (OX1)

	Genetic Algorithms - Mutation
	Introduction to Mutation
	Mutation Operators
	Bit Flip Mutation
	Random Resetting
	Swap Mutation
	Scramble Mutation
	Inversion Mutation

	Genetic Algorithms - Survivor Selection
	Age Based Selection
	Fitness Based Selection

	Genetic Algorithms - Termination Condition
	Genetic Algorithms - Application Areas
	What are Artificial Neural Networks (ANNs)?
	Basic Structure of ANNs
	Types of Artificial Neural Networks
	
	FeedForward ANN
	FeedBack ANN

	Working of ANNs
	
	Machine Learning in ANNs
	Back Propagation Algorithm

	Bayesian Networks (BN)
	Building a Bayesian Network

	Applications of Neural Networks
	The main differences

	Single-Layer Network
	Perceptron
	Training Algorithm
	Training Algorithm for Single Output Unit
	Training Algorithm for Multiple Output Units

	Adaptive Linear Neuron (Adaline)
	Architecture
	Training Algorithm

	Multiple Adaptive Linear Neuron (Madaline)
	Architecture
	Training Algorithm

	Back Propagation Neural Networks
	Architecture
	Training Algorithm
	Phase 1
	Phase 2
	Phase 3

	Generalized Delta Learning Rule
	Mathematical Formulation

	The Forward Pass
	Calculating the Total Error

	The Backwards Pass
	Output Layer
	Hidden Layer
	Application #1: Classification
	Application #2: Function Approximation
	Application #3: Time-series Prediction

	Operating Principal
	ART1
	Architecture of ART1
	Parameters Used
	Algorithm
	Example

	Mathematical Representation of a Set
	Roster or Tabular Form
	Set Builder Notation
	Cardinality of a Set

	Types of Sets
	Finite Set
	Infinite Set
	Subset
	Proper Subset
	Universal Set
	Empty Set or Null Set
	Singleton Set or Unit Set
	Equal Set

