Async |/O in Python
programming Language

This is a documentation for the following web-page :
https://sites.google.com/view/kolledge/advanced/async-io

Contents of the Web Page are as follows :

s Event loop in Python : The event loop is a central concept in
Python's asynchronous programming paradigm, commonly used
with the "asyncio' module. It acts as a coordinator, managing the
execution of asynchronous tasks and events. The event loop allows
non-blocking I/O operations, enabling efficient utilization of
resources and responsiveness in concurrent applications.

s Async-await in Python : Async-await is a syntax feature in Python
that simplifies asynchronous programming by allowing developers to
write asynchronous code that resembles synchronous code. By
using the 'async' keyword with functions and 'await' keyword to
pause execution, developers can create asynchronous tasks and
make non-blocking calls, enhancing the readability and
maintainability of asynchronous code.

m Creating tasks in Python : In Python's asynchronous
programming, tasks represent units of concurrent execution that can
be scheduled and executed by the event loop. Developers can
create tasks using the 'asyncio.create_task()' function, allowing
them to perform multiple asynchronous operations concurrently.

s Canceling tasks in Python : In Python's asynchronous
programming, tasks can be canceled if they are no longer needed or
have timed out. The 'asyncio.Task.cancel()' method is used to


https://sites.google.com/view/kolledge/advanced/async-io
https://www.kolledge.com/python/tutorial/event-loop-in-python
https://www.kolledge.com/python/tutorial/async-await-in-python
https://www.kolledge.com/python/tutorial/creating-tasks-in-python
https://www.kolledge.com/python/tutorial/canceling-tasks-in-python

cancel tasks, releasing resources and stopping their execution
gracefully.

Asyncio.wait_for() function in Python : The 'asyncio.wait_for()’
function in Python's 'asyncio' module allows developers to set a
maximum timeout for awaiting a coroutine. If the awaited coroutine
does not complete within the specified timeout, a 'TimeoutError' is
raised, enabling better control over asynchronous operations with a
time limit.

Asyncio future object in Python : In Python's 'asyncio’' module, a
future is an object that represents the result of a coroutine before it
has completed. It provides a way to interact with the coroutine's
outcome, allowing developers to track the status of asynchronous
operations and handle their results appropriately.
Asyncio.gather() function in Python : The 'asyncio.gather()'
function in Python's "asyncio' module allows developers to run
multiple coroutines concurrently and gather their results. By
specifying a list of coroutines to execute, developers can efficiently
combine the results of multiple asynchronous operations into a
single future object.


https://www.kolledge.com/python/tutorial/asyncio-wait-for-function-in-python
https://www.kolledge.com/python/tutorial/asyncio-future-object-in-python
https://www.kolledge.com/python/tutorial/asynciogather-function-in-python

	Async I/O in Python programming Language 

