CSE 344 Section 4 Worksheet Solutions
Relational Algebra & Datalog

1. SQL to Relational Algebra. Write an expression in the form of a logical query plan (i.e., draw
a tree) that is equivalent to each of the SQL query below:
A. Select all clinics that do not have an assignment to a Model 1004 'Fridge'.
Schema: Clinic(cid, name, street, state) // cid is the Clinic ID

Equipment(eid, type, model) /1 eid is the Equipment ID

Assignment(cid, eid)
SELECT C.cid

FROM Clinic C
WHERE NOT EXISTS (SELECT * FROM Assignment A, Equipment E
WHERE C.cid = A.cid AND A.eid = E.eid
AND E.type = 'Fridge’ AND E.model = 1004);

\

A cid

OE type="Fridge’ and E.model=1004

A.eid=E.eid

/N

Clinic C Assignment A Equipment E

The selection could be pushed down into the join above E, as a query optimization.

B. Select
the same

Schema:

SELECT
FROM

WHERE

HAVING

the greatest difference in price between items exchanged between the same two people within
category, for each category among all categories that have more than 5 such exchanges.

Item(oid, category, price)
Gift(pid, rid, oid)
Gift.pid: presenter ID
Gift.pid: recipient ID
Gift.oid is a foreign key to Item.oid
Ol.category, max(abs(Ol.price - O2.price))
Gift G1, Gift G2, Item 01, Item O2
Gl.pid = G2.rid AND G2.pid = Gl.rid
AND Ol.oid = Gl.oid AND 0O2.0id = G2.oid
AND Ol.category = 02.category GROUP BY Ol.category

count (*) > 5;

"cﬂ.m

Uﬂ"lt}E

'f.::a, count(*) -> cnt, max(abs(p3-p4)) ->m

Mnilﬂ=uid4 A cd=cd

pld rid2 M pldE rid

Gift

pl:lid?_,ridz,nidz Poid3,c3.p3 Poidd,ca.ps

Gift Item Item

Solutions that use different join orders are possible.

2. Datalog

Consider a graph of colored vertices and undirected edges where the vertices can be red, green,
blue. In particular, you have the relations:

Vertex (x, color)
Edge (x, vy)

The Edge relation is symmetric in that if (X, y) is in Edge, then (y, x) is in Edge. Your goal is to
write a datalog program to answer each of the following questions:

A. Find all green vertices.

GreenV (x) :— Vertex(x, ‘green’)

B. Find all pairs of blue vertices connected by one edge.

BluePairs(x, y) :— Vertex(x, ‘blue’), Vertex(y , ‘blue’), Edge(x, V)

C. Find all triangles where all the vertices are the same color. Output the three vertices and their
shared color.

Triangle(x, vy, z, a) :— Vertex(x, a), Vertex(y, a), Vertex(z, a),
Edge (x, y), Edge(y, z), Edge(z, x)

D. Find all vertices that don’t have any neighbors.
WRONG ANSWER (UNSAFE)

LonelyV(x) :— not Edge(x,)

WRONG ANSWER (UNSAFE)

LonelyV(x) :- Vertex(x,), not Edge(x,)

RIGHT ANSWER (SAFE)
OnlyX (x) :- Edge(x,)

LonelyV(x) :— Vertex(x,), not OnlyX(x)

E. Find all vertices such that they only have red neighbors.

BlueV (x) :— Vertex(x,), Edge(x, y), Vertex(y, ‘blue’)
GreenV(x) :- Vertex(x,), Edge(x, y), Vertex(y, ‘green’)
RedV (x) :—- Vertex(x,), not BlueV(x), not GreenV (x)

OR here’s another solution:
NotRedNeighbor (x) :- Vertex(x,), Edge(x,y), V(y,c), c != 'red'

OnlyRedNeighbor (x) :- Vertex(x,), !NotRedNeighbor (x)

F. Find all vertices such that they only have neighbors with the same color. Return the vertex and

color.
SameColor(x, y, a) :— Vertex(x, a), Vertex(y, a)
NotSameNeigh(x) :—- Vertex(x,), Edge(x, y), Edge(x, z), not

SameColor (y, z)

OnlySameNeigh(x, a) :— Vertex(x, a), not NotSameNeigh (x)

OR

Neigh(x, vy, a) :— Edge(x, y), Vertex(y, a)
DifferentNeighbor (x) :- Neigh(x, y, a), Neigh(x, z, b), a != Db
OnlySameNeigh(x, a) :— Vertex(x, a), not DifferentNeighbor (x)

G. For some vertex v, find all vertices connected to v by all blue vertices (i.e., those blue vertices
connected to v by a chain of blue vertices). [This one requires recursion. |

ConnectedTo (x) :— Vertex(x, ‘blue’), Edge(x, V)

ConnectedTo (x) :— Vertex(x, ‘blue’), Edge(x, y), ConnectedTo(y)

