UNIT 6 Review D

- A function f has Maclaurin series given by $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$. Which of the following is an expression for f(x)?
 - (A) $\cos x$
 - (B) $e^x \sin x$
 - (C) $e^x + \sin x$
 - (D) $\frac{1}{2}(e^x + e^{-x})$
 - (E) e^{x^2}

- 2) The coefficients of the power series $\sum_{n=0}^{\infty} a_n (x-2)^n$ satisfy $a_0 = 5$ and $a_n = \left(\frac{2n+1}{3n-1}\right) a_{n-1}$ for all $n \ge 1$. The radius of convergence of the series is

- (A) 0 (B) $\frac{2}{3}$ (C) $\frac{3}{2}$ (D) 2 (E) infinite

3) AP 2007B #6

Let f be the function given by $f(x) = 6e^{-x/3}$ for all x.

- (a) Find the first four nonzero terms and the general term for the Taylor series for f about x = 0.
- (b) Let g be the function given by $g(x) = \int_0^x f(t) dt$. Find the first four nonzero terms and the general term for the Taylor series for g about x = 0.
- (c) The function h satisfies h(x) = k f'(ax) for all x, where a and k are constants. The Taylor series for h about x = 0 is given by

$$h(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

Find the values of a and k.

4) AP 2003B #6

The function f has a Taylor series about x = 2 that converges to f(x) for all x in the interval of convergence. The nth derivative of f at x = 2 is given by $f^{(n)}(2) = \frac{(n+1)!}{3^n}$ for $n \ge 1$, and f(2) = 1.

- (a) Write the first four terms and the general term of the Taylor series for f about x = 2.
- (b) Find the radius of convergence for the Taylor series for f about x = 2. Show the work that leads to your answer.
- (c) Let g be a function satisfying g(2) = 3 and g'(x) = f(x) for all x. Write the first four terms and the general term of the Taylor series for g about x = 2.
- (d) Does the Taylor series for g as defined in part (c) converge at x = -2? Give a reason for your answer.