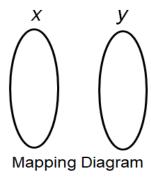
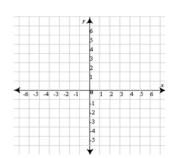

Relations vs. Functions

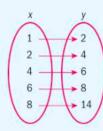
Function Not a Function

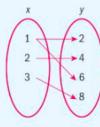



Given the relation: y = x + 2

Domain: x is an element of the set { 0, 1, 2, 3, 4, 5}

Range: y is an element of the set


Ordered pairs:


Determine whether each relation below is a function or not.

- **a** {(6, 12), (8, 16), (10, 20), (12, 24)}
- **b** {(5, 20), (5, 25), (10, 40), (10, 100)}

C

d

y = -3x + 7

f $y = \sqrt{x}$

Investigation 2

Functions can be expressed in words. For example:

Every number from 1 to 6 maps to three times itself.

- 1 Express this function as:
 - i a set of ordered pairs
- ii a table of values
- iii a mapping diagram
- 2 For each of the representations above, describe how you can tell whether they are a function or not.

Here is another function in words:

Every real number maps to its square.

- 3 Try to express this as a set of ordered pairs. Explain why this is difficult.
- 4 Express this function as an equation.

The "Handshake" Problem

# of People n	# of Handsh H(n)
2	1
3	3
4	
5	
6	

First Person Shakes	Second Person Shakes	Third Person Shakes	Fourth Person Shakes
1			
2	2 1		

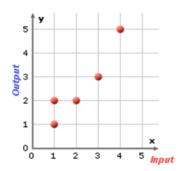
Create a function (as an equation) for the number of handshakes in terms of people, n.

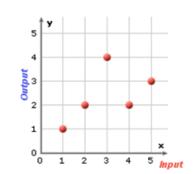
Investigation 3

Look at the graphs below:

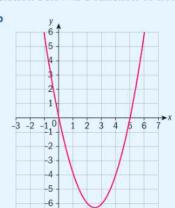
Function

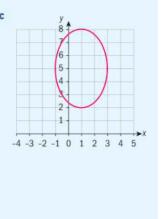
Not a function

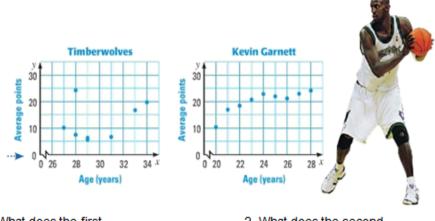

Not a function


- Hypothesize why the second and third graphs are not functions.
- 2 We use the vertical line test to determine whether a graph is of a function. Using the diagrams above and what you know about the definition of a function, explain the vertical line test.

Vertical Line Test


For Graphs of relations – use the _____LINE_TEST


 \rightarrow if it 'hits' ______, then __



Determine whether each relation below is a function or not:

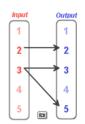
DISCUSS:

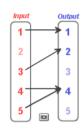
1. What does the first graph represent?

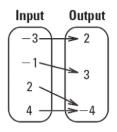
- 2. What does the second graph represent?
- 3. Which graph is a function?

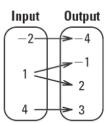
 Describe why this data MUST BE a function.
- 4. Which graph is NOT a function.

 Describe why this data cannot be a function.

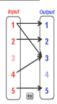

PRACTICE

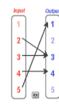

Use the given ordered pairs to complete the table, graph, and mapping diagram.


Ordered Pairs	Tal	ble	Graph	Mapping Diagram
(-2, 2)	x	y	5 y	Input Output
(-2, -2) (0, 1) (3, 1)	-2	2	3 2	$\begin{pmatrix} -2 \\ -2 \end{pmatrix}$
	-2	-2	-5 -4 -3 -2 -1 1 2 3 4 5 x	0 2
	0	1		3 1
	3	1	-4	

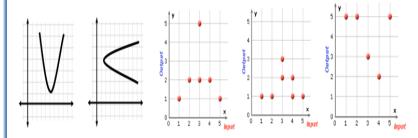

Is this relation a function? Justify your answer.

Is each mapped relation a function? Justify your answer.





Tell whether each relation below is ALSO a function. If NOT, show why. Mapping Diagrams:


Ordered Pairs:

(3, 3)	(1, 2)
(5, 4)	(2, 5)
(4, 3)	
1	

Vertical Line Test: used to check if a graphed relation is a function or not

Tell whether each relation below is ALSO a function. If NOT, show why with a vertical line.

