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1.​Method 
In this project, I will predict the positions of the tip of each finger based on the CNN model 

trained on the robotic hand from three camera views. The RGB-D dataset consists of 3396 

training images (with depth image respectively) and 849 test images. 

 

In the first part, I load the dataset to Colab by lazy loading. Lazy loading takes the path of the 

dataset and outputs an object for data storage. The train lazy loader stores img0, img1, img2, 

depth, field_id, and Y (six parameters in total), while the test loader stores img0, img1, img2, 

depth, and field_id (five parameters in total). In lazy loading, I apply data normalization by 

transforms (figure 1). The transforms from torchvision for RGB images (both the training and 

test sets) contain CenterCrop(), toTensor(), and Normalize(). For depth images, I first divide 

them by 1000 to limit their ranges and apply a max-and-min normalization on them. 

 

(figure 1) 

 

The CNN model I am going to use is VGG16 from tensorflow. To fit the model, I first convert 

data in the lazy data loader to numpy arrays. I use loops and store the array in the .npy files for 

fast access since the Colab often disconnects (figure 2). Besides, I transpose the RGB images set 

to size (num_samples, 224, 224, 3) to fulfill the input size requirement of VGG16. For the Depth 

images set, likewise, I stack three identical images (from the same camera view) with size 

(num_samples, 224, 224, 1) to size (num_samples, 224, 224, 3) to fit in the input of the model. 

At the same time, I split the training set to training set (80%) and validation set (20%) to better 

evaluate the model. 



 

(figure 2) 

 

The CNN training process in my project consists of three parts: 

1.​ Training for RGB/Depth images (6 models) 

2.​ Fusion network training for RGB-D features (3 models) 

3.​ Fusion network training for three camera views (1 model) 

 

For training RGB/Depth images, I fine-tune the pretrained VGG16 model with input size 

(num_samples, 224, 224, 3) in which 3 are RGB channels for RGB images and the stacked 

channels for Depth images. The architecture of VGG16 is comparably simple with less trainable 

parameters so that I do not have to worry too much about the vanishing gradients and dead 

neurons. I exclude the top layer of VGG16 and replace it with a Dense layer with 12 outputs 

since we have 12 features to be predicted (figure 3). For finetuning, I freeze all trainable layers 

except the last one to adjust our model. To compile the model, since I am training CNN for 

regression, I select Mean Squared Error for loss function and RMSprop for the optimizer (it 

divides the gradient by the root of the average). Also, 32 and 20 are respectively selected as the 

batch size and the number of epochs and shuffling is enabled while fitting (since I do not use the 

data loader). The fine-tuning process is the same across img0, img1, img2, depth(1st camera 

view), depth(2nd camera view), and depth(3rd camera view) training. 



 

(figure 3) 

 

In the second and the third part of CNN (fusion network for RGB-D and fusion network for three 

camera views), I apply an identical simple model which only contains a Dense layer with 12 

outputs. I do not include an activation function for regression prediction. The model respectively 

takes size (num_samples, 2 * 12) (RGB features and Depth features) and size (num_samples, 3 * 

12) (features from three camera views) as input and outputs with size (num_samples, 12) (figure 

4). Compilation parameters are still the same as above. 

 

(figure 4) 



 

Noticeably, I multiply the ground truth by 1000 via training. Since the given ground truth is 

estimated in meters, transforming it to millimeters encourages the model to converge faster and 

give a better accuracy. Still, the predicted output should divide 1000. 

 

2.​Experimental Results 

 

(figure 5) 

 

The training set accuracy and validation set accuracy in the final fusion network (camera views 

fusion network) is around 86%. Also, from the RMSE result shown on Kaggle (0.00437), there is 

still a way to go to improve the model accuracy. Generally, the performance of the model is not 

too bad. 

 

3.​Discussion 
The accuracy for the VGG16 pretrained model for RGB images and Depth images is not too high 

(around 80% and 76% respectively), indicating that VGG16 may not be the best model for this 

training set. Furthermore, the architecture of the added top layer, the number of layers frozen,  

compilation parameters, the batch size selected, and even the normalization still have an impact 

on the accuracy, so do the fusion networks. 

 



Additionally, the runtime of the model is large. When RGB images and Depth images are trained 

separately, the runtime is doubled. Probably a better model to accept RGB images and Depth 

images at the same time would be better. 

 

4.​Future Work 
In the future, more pretrained models can be attempted for RGB images and Depth images 

training, including Resnet-18 and Resnet-50. Moreover, hyperparameter optimization can be 

performed on the batch size and learning rate chosen, including grid search and hyperband. 

 

5.​Reference 

https://www.kaggle.com/code/viratkothari/image-classification-of-mnist-using-vgg16#3.-Preparing-Data 
 

https://www.kaggle.com/code/viratkothari/image-classification-of-mnist-using-vgg16#3.-Preparing-Data

