
Kinematics - The Physics (and Calculus!) of Motion

You throw a ball. It's height (or position) dependent on time is graphed below and can be represented by the position function:

$$s(t) = -t^2 + 6t$$

- 1. At what time is the ball at its highest?
- 2. How high is the highest point?
- 3. When does the ball have the highest velocity (speed) ?
- 4. What is happening to velocity as the ball goes up to its highest point?
- 5. When does the ball have no velocity?
- 6. What is happening to velocity when the ball is falling from its highest point?
- 7. Considering 1-6 above, do you see a connection between velocity and some aspect of the graph?

- 8. Draw a motion diagram for t = 0 5.
- 9. Find the displacement.
- 10. Find the **total distance** traveled.

velocity: v(t) = ____

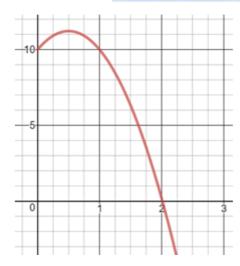
acceleration: a(t) = ____

Find the velocity function:

Find the acceleration function:

Fill the table:

t	0	1	2	3	4	5	6
v(t)							


Note how the acceleration affects the velocity.

- * Add the velocity graph to the co-ordinate plane above.
- * Add the acceleration graph to the co-ordinate plane above.

A diver jumps from a platform at time t = 0 seconds. The distance of the diver above water level at time t is given by $s(t) = -4.9t^2 + 4.9t + 10$, where s is in metres.

- a Find the average velocity of the diver over the given time intervals.
 - i [1,2]
- **b** Find the **instantaneous velocity** of the diver at t = 1 second.

c Find the acceleration at t = 2.

A particle moves in a horizontal line so that its position from a fixed point after t seconds, where $t \ge 0$, is s metres, where $s(t) = 5t^2 - t^4$.

- **a** Find the position, velocity and acceleration of the particle after 1 second.
- **b** Determine whether the particle is speeding up or slowing down at t = 1.
- **c** Find the values of *t* when the particle is at rest.
- **d** Find the time intervals on which the particle is speeding up, and the intervals on which it is slowing down.
- e Find the total distance the particle travels in the first 3 seconds.

A particle moves in a straight line with a displacement of s metres t seconds after leaving a fixed point. The displacement function is given by $s(t) = 2t^3 - 21t^2 + 60t + 3$, for $t \ge 0$.

- **a** Find the velocity of the particle at any time t.
- **b** Find the initial position and initial velocity of the particle.
- c Find when the particle is at rest.
- d Find when the particle is moving left and when the particle is moving right.
- e Draw a motion diagram for the particle.

For the displacement function

- $s(t) = 2t^3 21t^2 + 60t + 3$, with s in metres and $t \ge 0$ seconds, we found that $v(t) = 6t^2 42t + 60$.
- a Find the average acceleration of the particle from t = 1 seconds to t = 4 seconds.
- b Find the instantaneous acceleration of the particle at t = 3 seconds. Explain the meaning of your answer.
- C Find the speed of the particle at t = 3 seconds and determine whether the particle is speeding up or slowing down when t = 3 seconds.